

Oft-used notation of Prof. JLF King

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

23 September, 2017 (at 16:20)

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’. CoV: ‘Change-of-Variable’.

Prefixes: Use **nv-** for ‘*non-void*’, e.g “the cartesian product of two nv-sets is non-void”. Use **nt-** for ‘*non-trivial*’, e.g “the (positive) nt-divisors of 14 are 2, 7, 14, whereas the *proper* divisors are 1, 2, 7”.

Operations on Sets

Use \in for “is an element of”. E.g, letting \mathbb{P} be the set of primes, then, $5 \in \mathbb{P}$ yet $6 \notin \mathbb{P}$. Changing the emphasis, $\mathbb{P} \ni 5$ (“ \mathbb{P} owns 5”) yet $\mathbb{P} \not\ni 6$.

For subsets A and B of the same space, Ω , the **inclusion relation** $A \subset B$ means:

$\forall \omega \in A$, necessarily $B \ni \omega$.

And this can be written $B \supset A$. Use $A \subsetneq B$ for *proper* inclusion, i.e, $A \subset B$ yet $A \neq B$.

The *difference set* $B \setminus A$ is $\{\omega \in B \mid \omega \notin A\}$. Employ A^c for the **complement** $\Omega \setminus A$. Use $A \Delta B$ for **symmetric difference** $[A \setminus B] \cup [B \setminus A]$. Furthermore

$A \blacksquare B$, Sets A & B have at least one point in common; they intersect.

$A \sqcap B$, The sets have *no* common point; disjoint.

The symbol “ $A \blacksquare B$ ” both asserts intersection and represents the set $A \cap B$. For a collection $\mathcal{C} = \{E_j\}_j$ of sets in Ω , let the **disjoint union** $\bigsqcup_j E_j$ or $\bigsqcup(\mathcal{C})$ represent the union $\bigcup_j E_j$ and also assert that the sets are pairwise disjoint.

If there is a *measure* on the space then

$A \sqcap^{\text{a.e.}} B$, means their intersection is a nullset; it is empty a.e. (i.e *almost everywhere*)

In contrast, $A \blacksquare^{\text{a.e.}} B$ means that the sets intersect in positive mass.

Linear Algebra

In a real vectorspace \mathbf{V} , say that

\dagger : $\sum_{j=1}^N \alpha_j \mathbf{v}_j$ (with each $\alpha_j \in \mathbb{R}$)

is a **linear combination** (*lin.comb*) of vectors (points) $\mathbf{v}_1, \dots, \mathbf{v}_N$. If, further, these scalars satisfy

\ddagger : $\alpha_1 + \alpha_2 + \dots + \alpha_N = 1$,

Names for sets of numbers

An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a **natnum**.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$.

Use \mathbb{Q}_+ for the positive **ratnums** and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

Phrases used in proofs

WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. QED: *quod erat demonstrandum*, meaning ‘end of proof’.

Names for Mathematical Objects

Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’.

Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘left-hand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

then we call (†) a **weighted average** of the points. Finally, if (‡) and each $\alpha_j \geq 0$, then we call (†) a **convex average** of the points.

Given a set $S \subset \mathbf{V}$ of points, we define three supersets

$$\text{Spn}(S) \supset \text{AffSpn}(S) \supset \text{Hull}(S).$$

The **span** is the set of all lin.combs (†), as $\{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ ranges over all finite subsets of S . The **affine span** is the set of all (†) satisfying (‡), whereas the **hull** is the smaller set of all convex averages. Thus $\text{Spn}(S)$ is the smallest *subspace* (that includes S) whereas $\text{AffSpn}(S)$ is the smallest *affine-space* and $\text{Hull}(S)$ is the smallest *convex set*.

A point $\mathbf{w} \in C$ is an “**extreme point**” of a convex set C if: Whenever we write $\mathbf{w} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ as a *convex average* (of points $\mathbf{v}_1, \mathbf{v}_2 \in C$), then necessarily $\mathbf{v}_1 = \mathbf{v}_2 = \mathbf{w}$. A non-void set $C \subset \mathbf{V}$ is an N -dimensional **simplex** (an “ N -simplex”) if we can write it as

$$C = \text{Hull}(\mathbf{w}_1, \dots, \mathbf{w}_{N+1})$$

where no \mathbf{w}_j is in the affine-span of the others. Equivalently, C has precisely $N+1$ extreme-pts, and $\text{Dim}(C) = N$.

Polynomials

Use **poly** for “polynomial”. An integer-coefficient poly is a \mathbb{Z} -poly or an **intpoly**. With rational coeffs, it is a \mathbb{Q} -poly or **ratpoly**. An \mathbf{F} -poly has its coeffs come from a *field* \mathbf{F} . (A commutative ring is ok too).

The poly **zip** has all of its coefficients zero. Say that a poly is **5-topped** if its degree is *strictly* less than 5. Over a field \mathbf{F} , the set of (single variable) N -topped polys forms an N -dimensional *vectorspace*.

Counting

For a natnum n , use “ $n!$ ” to mean “ n **factorial**”; the product of all positive-integers less-equal n . So $3! = 3 \cdot 2 \cdot 1 = 6$ and $5! = 120$. Also $0! = 1$ and $1! = 1$.

The **binomial coefficient** $\binom{7}{3}$, read “7 choose 3”, means *the number of ways of choosing 3 objects from 7 distinguishable objects*. If we think of putting these objects in our left pocket, and putting the remaining

4 things in our right pocket, then we write the coefficient as $\binom{7}{3,4}$. [Read as “7 choose 3-comma-4.”] Note that $\binom{7}{0} = \binom{7}{0,7} = 1$. Also note this identity:

$$[x+y]^N = \sum_{j+k=N} \binom{N}{j,k} \cdot x^j y^k,$$

where (j, k) ranges over all *ordered* pairs of natural numbers with sum N .

In general, for natnums $N = K_1 + \dots + K_L$, the **multinomial coefficient** $\binom{N}{K_1, K_2, \dots, K_L}$ means the number of ways of partitioning N different things, by putting K_1 of them in pocket 1 and K_2 of them in pocket 2, and so on. Easily

$$\binom{N}{K_1, K_2, \dots, K_L} = \frac{N!}{K_1! \cdot K_2! \cdots K_L!}.$$

And $[x_1 + \dots + x_L]^N$ indeed equals the sum of

$$\binom{N}{K_1, \dots, K_L} \cdot x_1^{K_1} \cdot x_2^{K_2} \cdots x_L^{K_L},$$

taken over all natnum-tuples $\vec{K} = (K_1, \dots, K_L)$ that sum to N .

Let “50 **placed into 3 types**” (or just “50 into 3 types”) denote the number of ways of choosing 50 individual candies from 3 *distinct types* of candy. Write it $\llbracket \frac{50}{3} \rrbracket$. For $N, T \in \mathbb{N}$, use $\llbracket \frac{N}{T} \rrbracket$ for “ N (objects) into T -types”, the number of ways of filling T distinct types with N objects total. So $\llbracket \frac{0}{T} \rrbracket = 1$ for each natnum T . And $\llbracket \frac{N}{0} \rrbracket = 0$ for each posint N . Furthermore

$$\forall T \in \mathbb{Z}_+ : \llbracket \frac{N}{T} \rrbracket = \binom{N+T-1}{N, T-1} = \llbracket \frac{T-1}{N+1} \rrbracket.$$

This, since $\binom{N+T-1}{N, T-1} = \binom{T-1+[N+1]-1}{T-1, [N+1]-1}$.

Number Theory

Use \equiv_N to mean “congruent mod N ”. Let $n \perp k$ mean that n and k are co-prime. Use $k \bullet n$ for “ k divides n ”. Its negation $k \nbullet n$ means “ k does not divide n .” Use $n \bullet k$ and $n \nbullet k$ for “ n is/is-not a multiple of k .” Finally, for p a prime and E a natnum: Use double-verticals, $p^E \bullet n$, to mean that E is the **highest** power of p which divides n . Or write $n \parallel p^E$ to emphasize that this is an assertion about n . Use **PoT** for Power of Two and **PoP** for Power of (a) Prime.

A natnum N is a **SOTS**, Sum Of Two Squares, if there are integers for which $\ell^2 + k^2 = N$. If there exists such a pair with $\ell \perp k$, then N is **coprime-SOTS**. (E.g, 25 has a non-coprime rep as $5^2 + 0^2$; nonetheless, 25 is coprime-SOTS, since $25 = 3^2 + 4^2$. OTOH, both $4 = 0^2 + 2^2$ and $40 = 2^2 + 6^2$ have these unique SOTS reps, so neither is coprime-SOTS.) An odd integer L is **4Neg** if $L \equiv_4 -1$ and is **4Pos** if $L \equiv_4 +1$. Fermat's Prime-SOTS Thm says: *Oddprime p is SOTS iff p is 4Pos.*

Mod N , a **rono** is a (square-)Root Of Negative One; an integer I such that $I^2 \equiv_N -1$.

Use **CRT** for the Chinese Remainder Thm.

For N a posint, use $\Phi(N)$ or Φ_N for the set $\{r \in [1..N] \mid r \perp N\}$. The cardinality $\varphi(N) := |\Phi_N|$ is the **Euler phi function**. (So $\varphi(N)$ is the cardinality of the multiplicative group, Φ_N , in the \mathbb{Z}_N ring.) Use **EFT** for the Euler-Fermat Thm, which says: *Suppose that integers $b \perp N$, with N positive. Then $b^{\varphi(N)} \equiv_N 1$.*

Filename: `Texdir/LatexCode/nota.all.latex`
 As of: `Tuesday 02Mar2004`. Typeset: `23Sep2017 at 16:20`.