

A Glorious solution to Home-F **or**
Don Juan's tilting at Windmills **or**
 THE LIGHTS ARE ON and SOMEBODY IS HOME

Kelly A. Sinatra
University of Florida, Gainesville FL 32611-2082, USA
KellySinatra23@ufl.edu

September 3, 2015

0.0.1 Notation for F1

Suppose we have maps $g, f_n: \mathbb{R} \rightarrow \mathbb{R}$ that are **PB**, “piecewise beautiful”. (Later, we will define *quasi-PB* functions.) Use $f_n \searrow g$ to mean that

$$(1) \quad \forall x: \quad n \mapsto f_n(x) \quad \text{is decreasing.}$$

Moreover, $\lim_{n \rightarrow \infty} f_n(x) = g(x)$.

Please carefully prove the following theorem. Notice that we will want to

a: Always wash our hands, before proving.

b: Make our bed, and put away the supper-time dishes. Possibly also prove that

$$(2) \quad e = m \cdot c^2 \quad \text{and}$$

$$(3) \quad \sum_{k=3}^{\infty} \left[\frac{3}{4} \right]^k > \pi - 3,$$

as well as other physics facts.

c: Give a café latté to some old guy in class.

Now, plugging (??) into (??) and applying liberal doses of the infamous Pythagorean theorem, we shall prove that black is white on the second, 7th, 15th, 23rd and 31st of each month whose name has an *even* number of letters.

Theorem 1. *If $x^{5f''(x)} < \sum_{k=3}^{\infty} \left[\frac{3}{4} \right]^k$ and car-drivers use turn signals, then*

$$\log_{4212}(x) \geq e^{\cos(x \log 7(x))}$$

on alternate Tuesdays.

Proof. I hope so. □

Remark 2. *Notice that our proof used that*

i:: Most children either walk to school or carry their lunch.

ii:: If you aren't part of the problem —then good for you!

iii:: See (??) for details.

Note also that

[I] most mathematical statements

[II] ... written hastily ...

[III] ... contain rerors. Refer to (??) and (??) for the Whole Scoop.

To sum up:

ThThThat's All, Folks!