Codes

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/

10 May, 2023 (at 11:10)
(Folks, help me proofread and correct this.)

§An Overview

..................... 2
Wordsl 2
..................... 2
........................ 2
[Prefix/Suffix| 2

[Coded 2
Mreesl. .« o v oo e e 3

TRequalitied oo 4

Eraft—!czi an !ne§ua itz] 4

Completoness Tommal - - . . - . oo 5

[K-M Completeness corollary]. 5
Sardinas-Patterson Algorithm|. 5

ecoding-delay for -codes] 5
Cryptography|, 5
Data comprossion]. oo 6

Espected codinglength] . - 6
Probability distr] . . .« .« o oo 7
Codemap] - - - - - o e e 7
ECT o 7
MECO. 7

[Moffman codesl - -« v v v v v e e 8

HCsameECT Thml - - - o v oo e e e e e e 8
------------------ 8

[Depth Lemmal 9

.................... 9
[[nduction step] 9

Entropy/Distropy|. 10

Distropy UD-code Inequality] 10
[Convention| 11

Bhomal Teml - - -« v v oot e e e 11
[Codemap| 11

[Error-correcting codes 12
[A"Appendix] 13
Jensen’s inequality] 0L 13
Probability] . - .« .« e e 13

depend e ... 13
...................... 13

|Weak Law of Large Numbers| 13

[99 14

Webpage http://people.clas.ufl.edu/squash/ Page 1 Of

http://people.clas.ufl.edu/squash/index.html

Page 2 of

Formal languages

Words. Use @ for the empty set. An alphabet G
is a non-empty set, whose members are called letters;
usually 2 < |G| < 0o. A word (over an alphabet G) is a
finite string of letters; Use G* for the set of all words,
and use € for the nullword e, the unique length-zero
word. E.g if G = {a,b}, then G* equals

{e,a,b, aa, ab,ba, bb, aaa, aab,...}.

Write G* for G* \ {e}.

Concatenation of words v,z € G* is written v >z
or just vz. Thus cat bnip = catnip. So G is
a semigroup under concatenation, with € the identity

element. Use Len(v) or |v| for the length of word v,

I
and have v > 3 mean that |v| > 3. For n a natnum,

let v"* mean the concatenation vv.?.v. So v¥ = ¢.

Languages. A “language over alphabet G” is a
subset £ C G*. Here are six distinct languages over
alphabet {a,b,...,z}:

o={}, {e}, {catnip}, {cat,nip}, {e,cat,nip}

and {bc,bac,baac,baaac,...} = {ba"c} 2.

The first five are finite languages, having cardinali-
ties 0,1,1,2,3. Call @ the void language and call
{e} the nullword language. The “concatenation of
languages” K, L C G* is

KL =KpL = {vebw|veKadweL/L}.
[So oL = 2 = L>o and {e}>L = £ = L>{e}.] Let
L™ mean LL.". L. Hence LY = {e}, since the null-
word language is the identity element for language-
concatenation[”]]

For languages K C L, language L is an extension
of IC, and K is a restriction of L.

“IAside: We already knew that (G*,l>, e) is a [non-
commutative] semigroup. And letting L=Lg denote the set of
all languages over G, this generalizes to a [non-commutative]

semigroup
(Lo, {e}).

Of course, we also have the two commutative semigroups
(L,u, @) and (L, N, GY).

Codes

Prof. JLF King

Star. Define the Kleene star operator by

U:iO Lo,

[Language L is the minimal extension of £ which is sealed

s o=

(closed) under finite concatenation of words. Since L* contains
the concatenation of zero-many words, £* owns s.] In partic-
ular @ = {e} = {e}*. Similarly, the Kleene plus
operator is

=+ — o0 n
L o= Un:1 L.
Hence [e€L"] & [e€L] & [L"=L"]. Each Kleene op
is idempotent: [L]* = L5 and [L']" =L,

Prefix /Suffix. For words, say “v is a prefix of w”
if there exists a word z with vz = w; write v < w for
this relation. If, also, v # w, then v is a proper
prefix of w, written v < w.

If 3z € G* with zv = w, then “v is a suffiz of w”.

[However, we have no special symbol for the relation.]

Codes

For the time being, a code C means a non-void sub-
set C C G"; usually 2 < |C| < 0o. [Occasionally it is
convenient to consider collections C which might own e. So if
all we know is that C C G, then we call C a nullishcode. If

we can later on prove that C Z &, then we’ll have shown C to
be a code.]

Call C a block code if all its codewords have the
same length. E.g, {FBI,CIA} is a blockcode, whereas
{Go,Gators} is not a blockcode, —although it is (see
below) a prefixcode. [Caveat: “block code” is used with
slightly different meanings in the literature. Perhaps constant-
length code is a more accurate term.]

A code C is uniquely decodable (a UD-code) if
each code-message z € C* has a unique decomposition
w.r.t C. That is, if words v;,wy, € C satisfy

If vivy...Vy = 2 = Wi{Wa... Wk

1.1:
then J = K and Vi: v; = w;.

A prefix code C (more accurately called a “prefix-
free code”) has no codeword being a proper prefix of
another. Prefix-codes are UD-codes since, stronger
than (1.1)), they have the RI-UD property (the “right-
infinite-UD property”) that

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Codes Page 3 Of
- with each v;,wi € C v, =w;l’

We have these non-reversible implications

L2: Block —> Prefixcode =% RI-UD =2 UD.

A code showing (*2) non-reversible has these words
L2

It is uniquely decodable (Exer. E1), yet fails (1.2),
since vzzz--- equals wzzz---. Finally, that (x1)
is non-reversible will be shown by , the “Chris
code”.

A suffix code (no codeword is a proper suffix of another)
is automatically a UD-code. Dually to (1.2[) we have
non-reversible implications

v:i=Db, w:=ba, zZz:=aa.

[L3: Block = Suffixcode = LI-UD = UD,

where a left-infinite- UD—code (a LI-UD-code) sat-
isfies

13: [---v72v71:-~w72w71} N {ViEZ,: }

with each v;,wi € C VvV, = W;

Note (1.2]") is an example of a suffixcode which is not
a prefixcode.

Bi-infinite. A bi-oo G-string ¢ can be viewed as
amap 0:Z—G. A C-parsing of ¢ is a sequence

e <ko<ka<ky<ki<ko<ky<---

of integers st. each substring o],) is a codeword,

kot
that is, lies C. Write sequence (k) c; as k.

Say that C has the bi-infinite-UD property (is
BI-UD) if
FEach bi-co string ¢ which has a C-parsing,
has only one C-parsing. Il.e, with 7 and K
two C-parsings of o, then the sets {j; }icz and
{ke}oez are equal.

1.4:

Slightly weaker, consider two parsings 7 and E, and
let v = ol j,,,) and w¢ = o]y, The
weak-BI-UD property asserts

k1)

For each o and parsings as above, there
exists a translation T' € Z so that:

[4fveak, VleZ: vy =wy.
(I.e, one parsing may be a shift of the other, but

the codeword sequences are the same.)

L4: BLUD =% weak-BL-UD =% [Both LEUDT.

The code {bbb} produces o := ---bbbb---, which is
its only bi-oco string. This ¢ has three parsings, since
the cutpoints 7 can all be mod-3 congruent to -1 or
0 or 1. Yet each parsing yields the same codeword
sequence, namely - - - bbb || bbb |[bbb]|---. Hence (x3)
is not reversible.

The “Pirate code” {0H,HO0} is trivially LI-UD and
RI-UD, since it is a blockcode. Yet the Pirate code ad-
mits bi-oco string - - - HOHOHOH - - -, which can be parsed
as or as , two
different codeword sequences. Yup; (*4) ain’t revers-
wble either.

The “Chris code” (evidently a cry for help)

1.5: {s,s0s}

is BI-UD, since each occurrence of “0” must lie in
, and every other codeword must be . Not
being a prefixcode, proves (x1) not reversible.
[So is neither a prefix nor suffix code, yet is UD.]

Trees. Here, a (rooted) tree is a set T' of nodes,
equipped with two operators: Root(T") is the root-
node of T. For each node v € T, let Kids(v) be the
set of children of v. A node w is a leaf-node if: The
set Kids(w) is empty. A tree has the property that,
from the root-node, one can get to an arbitrary node,
by applying the Kids(-) operator finitely-many times.

Trees T and S are (tree-)isomorphic if there exists
a bijection f:T—.S such that:

TI1: f(Root(T)) = Root(S).

TI2: For each v € T
{f(k) | k € Kids(v)} = Kids(f(v)).

For aI' € Z4, a tree is I'-bounded if each node
has at most I' many children. The tree is I'-full if
every node is either has no children |is a leaf-node|, or
has precisely I' many children; otherwise, the tree is
I'-deficient.

Filename: Problems/NumberTheory/jk-codes.latex

Page 4 of

Inequalities

Kraft proved for prefiz-codes, as well as its con-
verse, . McMillan strengthened to UD-codes.

2: Kraft-McMillan Inequality. Consider a countable
code C over finite alphabet G. If C is a UD-code then

2a: Do /T <

where I is the number of letters in G.

7£R)~

Conversely, consider posints ¢ = (41,04,...

If Y5,1/T% < 1 then there exists
2b: a prefix G-code C = (v1,...,VR) with
each Len(v;) = ¢;.

[The also result holds for infinite tuples ¢ = (41, 02,43,...,)
that satisfy [> 52, 1/T%] < 1] O

Ezer. B2 . Give an example of a code, X, that
violates . [So X must fail to be UD.]]

Defn. A code C is weakly-UD if the following holds.
For each posint N and words v;,w; € C:

o If viva.. vy = Wiwa .. Wy
H’. then Vi: V; = Wj.
Contrast this with the (|1.1]) defn of UD. 0

Ezer. E3. POSTING RACE: Who can be the first to
post a code which is weakly-UD, but not UD? O

Preliminaries for . The below proof uses S, ¢, the
number of length-¢ strings which are concatenations of
n many codewords. E.g, consider a code C = {v, w,z}
have lengths 5,7, 8, respectively.

So.15 = {wz,zw}| = ?
Su15 = |2 =0.

51715 = |@| =0.
S35 = [{vvv}| = 1.

Indeed, S, 15 is zero for each n > 4. As for S5 15: If
wz = zw then 52715 = 1, else 52’15 = 2. OJ

Inequalities

Prof. JLF King

Proof of (2a)). WLOGenerality, C is finite. (Exer. E4)
With I' .= |G/, our goal is

?
Bdl: Do /T <

WELOG, suppose the shortest and longest words in C
have lengths 3 and 7. For n = 1,2,..., each string
in C" has a length, /, in [3n .. Tn]; let .S, y be the num-
ber of such strings. Certainly S, , < I'Y, the num-
ber of all length-¢ strings over G. So the “generating
function” ™

Fu(z) = Y [Spe-2']

{=3n
satisfies, for 2 > 0, that F,,(z) < >2)",, T -2’. Thus
note

n
w1 Fp(£) < Z Fz-% B4+ 7—3n < 5n,
{=3n

for each posint n.

Using uniqueness. Fix n and an ¢ € [3n..7n].

The coefficient of 2* in [F(z)]" is the number of
C-n-parsings of length-¢ strings, whereas 5, ; is the
number of length-¢ strings which admit a C-n-parsing.

The UD-hypothesis [actually, only “weakly-UD” is being
used| says these two numbers are equal. Hence our two
polynomials are equal,

[Fl(f’?)]n = Fp(x).
[Fi(F)]" < Bn.

So (x) implies

The LhS is exponential in n, whilst the RhS is linear.
Thus | Fi(+) <1.
rewriting of LhS(2al). ¢

Finally, observe that Fy(+) is a

Proof of . We’ll show the idea for T' = 2. Arrange
the lengths as £1 < f5 < ... < {r. On the full binary-
tree of depth D := ¢, put weight 1/2” on each leaf-
node. All the nodes start as free; we will iteratively
mark some as busy as we create words vi, va,.... Call
a node very-free if it and all its descendants are free,
i.e not busy.

Let v be the leftmost path down to depth #1; so
vi = 000.4.0. Mark v; and all its descendants as
busy. This action creates busy leaf-nodes of total
weight.

— t
2P~h. o B 120

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King

With d := ¢4, note that
x: Fach free node at depth >d is very-free.

Let vo be the leftmost path to a free node at
depth £s.
many 0s.] Mark vy and its descendants as busy. Now
the total weight of busy leaf-nodes is

1 1
o T on

Moreover, with , note () holds, since o > /.

We'd like to continue using depth /3, depth 44, ...,
depth ¢k, The only obstruction at a stage k, is
if there is no free node at depth ¢,. But the total
leaf-weight we’ve used up so far, is

=D NTE 2

Since this sum is strictly less than 1, there exists a
free-node at depth ;1. (Indeed, the number of such
free-nodes is precisely [1 — W]/2¥=1)) Finally, since
Ly, > L1, there is certainly a free-node at depth (.4

[So vo has ¢; — 1 many Os, then a 1, then ¢5 — ¢;

2c: Defn. For a I-code with lengths £ = ({1, . ..
use

AR),

-, -,

2@ = or@) = Zil 1T

for its Kraft-sum. Kraft's thm says —if the code
is UD- that Z(Z) < 1. If equality, then the code
[ditto the tuple|] is complete, otherwise it is redun-
dant; more precisely, I'-complete and I'-redundant.

,EN) and § = (s1,...

Given tuples £ = (¢4, .. ,SR),

write E 5 if N=R and Write £ < §

S. [Ditto for oo tuples] Note ﬁ

ifz 92
2() D

implies Z (£)

Exer. E5. A finite I'-bounded tree T' with R many
leaves, yields a length-spectrum £ = (41,...,LR); so
terms “I'-complete” and “I'-redundant” makes sense
for the tree. Prove:

2d: Completeness Lemma. A finite I'-bounded tree, T,
is I'-complete IFF it is I'-full. O

In , below, we first consider only binary prefix-
codes; I' = 2.

Cryptography

Page 5 of

2e: K-M Completeness corollary. If finite tuple S has
Y(S) < 1, then there exists a complete prefix-code
with tuple £ < S. O

Proof. We need but produce a complete ¢ < §, since
Kraft's thm will hand us a prefix-code with lengths £.

It suffices, given a redundant S, to produce an (<58
with E(Z) < 1. After all, there are only finitely-many
tuples <8, so iterating will eventually halt, at a com-
plete tuple.

WLOG, T := s is a max-length in §; so each 1/2%
is a multiple of 1/27, hence so is ¥(5). As § is redun-
dant, the gap 1 — %(S) dominates 1/27. So define £

by £y :=S9,... fr = sg, and {1 := s1 — 1. ¢

Ezer. E6. POSTING RACE: Does hold for larger
alphabet-sizes? If so, how does the proof need to be
modified?]

Ezer. E7.POSTING RACE: A block code is an example
of a prefiz/suffiz-code, i.e, both. (Dis)Prove: There
exists a complete prefix/suffix-code C whose length-
spectrum is not constant.]

Sardinas-Patterson Algorithm. An example of a
UD-code [indeed, it is a suffixcode], for which the SarPat
algorithm eventually cycles (as it must), but not with
the empty prefix-list, is

{bc, b, Xc, cX}.

(On hold. . .)

Decoding-delay for UD-codes. Consider a long

word w which is the initial part. ..

(On hold...)

Cryptography

Affine codes. Breaking affine codes with
known /chosen plaintext.
Diffie-Hellman and El Gamal.

RSA. Pollard-p algorithm and Floyd cycle-finding alg..

Filename: Problems/NumberTheory/jk-codes.latex

Page 6 Of Expected coding-length Prof. JLF King

Data compression

[Huffman codes. Source coding. In Spring2019: Skipped Ziv-
Lempel.]

Expected coding-length

The binary numeral for posint K has form 1Bits(K),
where Bits(K) is a {0, 1}-word. E.g, Bits(23) = 0111
because Binary(23) = 10111. Also Bits(3) = 1 and
Bits(2) = 0 and Bits(1) = &, the nullword. Let

K|ge = [Bits(K)|. 50 B =4 [2me=1

and |1‘Bit = 0.
With n := |K|pi, then, 21 > K > 27,

Fxer. ES.PostinG rRacE: Produce an infinite prefix-code

vk
C = 2, V3, ... h that 1 = 1. O
{vi,va,vs,...} suc et K [pit

Ezer.E8.1. Infinite prefix-code C = {w1,wy,...} has
the property that each

s lwi| < |K|git + f(|K|Bit) ,

where f:Z,—N. Prove that li_>m f(n) = oo, using
n oo
that C satisfies the Kraft inequality. O

Ezer.ES.2.(Dis)Prove: 3 prefix code C={w, wa,...}
satisfying (1), with f(n) < Const + [1.007]-log(n). O

Ezer.ES.3. (Dis)Prove: 3 prefcode {wi,wa,...}

. . WK|
with i e

=1 and subseq K;<K><... with each

|wi,| < |K¢|gic +99. O

Filename: code-Kraft-Elias.SOLN.tex

Prof. JLF King

Probability distr. A probability distribution on
a codeword-set C is a map P:C—[0, 1] st.

3a: ZVGC P(v) = 1.

We will usually discard from the code all probability-
zero words. In practice, then, a “probability distribu-
tion” is a map P:C—(0, 1) fulfilling

The e:z:pectec@ coding length of C is

3b: ECL(C) = Y P(v)-Len(v).
vel
E.g, consider code C := {w1,...,wy} where

3c: wp =00, wg =010, wg =011, wy =1,

where P(wy) =1, and the other three words have

probability . Then ECL(C) is then

1 1 _ 11

Codemap. A source alphabet (), also called a
“message set”, might be

{a,b,...,2, ., Space},

or might be {tank, ship,...,plane}. Fixing a code-
alphabet G, a map f:Q—G" is a codemap (or ci-
pher) if

1: f is injective, and

itz C := Range(f) is a code. [Phrased this way, so that
if we change our defn of “code” for a given context, then

the defn of codemap changes with it.]

Every adjective applying to a code, also applies to a
codemap; e.g, “a block/prefix/UD codemap”.

ECL. Consider a |finite or countably-infinite] message
set and a probability distribution P:Q—[0,1]. A
codemap f:Q—G" puts a probability-distribution on
C = Range(f) by assigning, for w € C,

4a: P(w) = P(ft(w)).

Thus the code has an expected coding-length, which
we may write as

ECL(C) or ECL(f).

“2«Expected” is what probabilists use for “average”.

Expected coding-length

Page 7 of

MECL. Use MECL for Minimum ECL. Consider a
finite prob-vector p = (p1,...,pr). A code [for the
moment, assume a binary code] C= (Vl, . ,VL) has

BY: ECL(C) = ijl p; - Len(v;) .

The minimum of @) taken over all prefix-codes, or
over all UD-codes, we will call

4b: PC-MECL(B) and UD-MECL(P),

respectively. Evidently
4c: PC-MECL(p) > UD-MECL(p)

since, for UD-codes, we are taking a minimum over the
larger collection of codes. By the way, I'll sometimes
use MECL(pP) as a synonym for UD-MECL(p).

The minimum in (3Y) depends on T' := |G|, the
number of letters in our code alphabet. [We can com-
press English more by coding into a 3-letter alphabet, rather
than a 2-letter alphabet.] To indicate the dependency on
cardinality ', we may write

4d: PC-MECLp(B) and UD-MECLp(P).

Filename: Problems/NumberTheory/jk-codes.latex

Page 8 of

Huffman codes

[Binary HCs will be described in class.]

Interpret a tuple such as (3:A 1:B 5:C) as putting
prob-distribution (g, é, S) on letters (4, B, C); the 9 is
the sum of the weights, 3+ 1+ 5.

Our convention is that the branch going up-right is
labeled with bit 0;

exams, all coalescings will be of distinct probabilities, and T’ll

the down-right with bit 1. [On

ask that you put the smaller probability on the O-branch.l

Non-uniqueness of Huffman Codes.
F :=(1:A 1:B 1:C 1:D) admits HC

1—B8: 01
o ! < 1—c: 10
2 < 1—D: 11
But F also admits each other permutation of
{A,B,C,D} being attached to those leaves. So this
Freg-tuple admits several HCs.
For a more interesting example, consider Frequen-
cy-tuple F’ := (1:A 1:B 2:C 2:D 14:E). This admits
HC Cq:

14 —E: 0
20< 2—D: 10

2-C: 110
1-B: 1110
2
< 1-A: 1111

So 20-ECL(C1) equals [Weight - WordLen - Count]

Frequency-tuple

B,A ¢ D E

~ = ~ ~ —~
142 + 231 + 22:1 + 14.1.1 = 32.

Thus ECL(Cy) =
Our F’ also admits HC Cs:

32 = £ bits-per-letter.

B: 110
A 111

14 —E: 0
5e: D: 100
< c: 101
2 <

Thus 20-ECL(C2) equals
B,A D,C E

~ N N/~
1-.3-2 + 232 + 14-1-1 = 32.

Huffman codes

Prof. JLF King

We see that ECL(Cy) = ECL(Cy). It is worth noticing
that codes C; and Cs are not only different, they are
not even tree-isomorphic.]

6: HC-same-ECL Thm. Fix a probability L-vec P,
with L > 2. Then all p-HCs have the same ECL. ¢

Proof. We proceed by induction on L, with proposition

For every prob. L-vec q: Each two q-HCs
have the same ECL.

The base L=2 case is easy, since the only Huffman-
tree is Root << 2" whose ECL is 1.

P1 «)l)

R(L):

Induction step. Fix an L > 3 st. R(L—1).
Let J := L—2. Given p, let «, 8 denote its two low-
est probabilities and write p as (o, 8,p1,.-.,D0J)-
Consider two HCs, C and X, with length-spectra
that I have written above and below P, here.

C: D Dd do ... dy
(a7 /87 pP1, P2, -, pJ)
X YYyl Y2 ... Y.

So code C assigns length-D codewords to the first two
nodes it joins, which have probs a and 8. Computing

ECL(C) = D-a+ DS+ Z;.]:l[di “pil;

—

ECL(X) = Ya+Y8+ Y [y pil.

After joining two nodes, the codes now recursively
actonq = (a+f, p1, p2, --., ps) and assign length-
spectra as follows:

CZ D—1 d1 d2 dJ
(Oé—{—B, b1, P2, -+, pJ)
X: Y-1 9y y2 ... ys.

Since g is an [L—1]-vector, proposition R(L—1) says
that the above two ECLs are equal, i.e

[D—1]-[a+0] +Z

= [Y-1)[a+8] + Zizl[yz pil
And this implies equality in the two RhSs of (). 4

[d; - pi]

“3They might be equal; indeed, perhaps 8 = «, with 8 nodes
all having probability «v. We are not picking two nodes; we are
picking two probabilities. In particular, I am not assuming
that HCs C and X join the same two nodes, at the first step.

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King

Ta: Depth Lemma. Fix a probability L-vector p, and
a p—PC-MECL. Consider two leaf-nodes with proba-
bilities o and o, at depths D and D', respectively. If
a > o, then necessarily D < D’. O

Exer. E9 . Prove the above Depth Lemma. O

7b: Huffman's theorem.
i HCs are PC-MECLs.

ii: HCs are UD-MECLs. O

Pf of (i). We induct on L, with proposition

Each probability L-vector q, admits a

HUFF(L):
(L) Huffman Code which is a PC-MECL.

The base L=2 case is immediate, since the only tree
is Root << P which is a Huffman-tree.

Prob. ?

Induction step. Fix an L > 3 st. Hurr(L—1).
Fix p, a prob. L-vector, and consider a p-PC-MECL,
viewed as a tree.

Let a</3 denote the two smallest probabilities of p.
At the tree’s deepest level, D, consider two joined leaf-
nodes, and call their probabilities = and y. It suffices
to show:

We can permute the probabilities of the leaves,
x: without changing the ECL, so that, now, these
two nodes have probabilities o and [3.

For then, we collapse these two into a single node, pro-
ducing prob.-vec q = (a+0, p2, p3, ..., pr—1). By
the induction hypothesis, there is a g-HC which is
a g-PC-MECL. Expanding the collapsed node back

— (; automatically produces a Huffman-

tred”?] which is a p-PC-MECL. And all HCs have
the same ECL, by @

into

“4The permuting of probabilities, because it is done recur-
sively, can permute interior-nodes of the tree. So the final
Huffman-tree can be non-isomorphic to the original PC-MECL
tree. This kind of argument is called tree surgery.

Huffman codes

Page 9 of

Establishing (x). If © = «, then leave that leaf-
node alone. Otherwise, 2 > «. Our Depth Lemma,
, says that no a-node can be shallower than x, so
[since x is at max depth]7 every a-node has to be at D,
the deepest level. Switch some a-leaf with our z-leaf.

This does not change the ECL, since the
nodes are at the same depth.

Now our joined-pair is — j} Do the same oper-

ation with y w.r.t 8. Now our joined-pair is —— (} ,
as desired. ¢

Ezer. E10. Prove (ii), that every HC is a UD-
MECL. U

Pf of (ii), (E10). Fix p and a p—-UD-MECL; write
its length-spectrum as £ = (41,...,4R). By Kraft's
thm, there is a PC-code with the same spectrum
hence, when assigned to the same probabilities, has
the same ECL. And part (i) shows there is a HC with
the same ECL. ¢

FEzer. E11. POSTING RACE: (Dis)Prove: If prefix code
C is a PC-MECL, then C is a Huffman code. O

Solution to E11. False. Consider frequency-tuple
(2:A 2:B 3:C 3:D). Its only Huffman-tree is

2—A
4
oo
Tc: 10 5
6
<5-»
(This admits eight HCs, since at each of the three nodes we can

choose which edge is labeled 0 and which is 1.) This codetree
has ECL = 2. But so does this tree,

2—-A

P s-c

7d: 10< 5
*<s-s

which is not a Huffman code. ¢

Filename: Problems/NumberTheory/jk-codes.latex

Page 10 of

Entropy/Distropy
Define n:[0, 1]—[0,00) by n(z) = x - logy(1/z), and
extend by continuity, so that n(0) = 0. (Use I'Hépital’s
rule, if you like.)

The distribution entropy, which I call distropy,
of a probability-vector Vv is

HE) = Y 1)

For a probability-distr ~() on a codeifl C, then, H(P)
equals >, con(P(v)).

8: Distropy UD-code Inequality.
and probability distribution P:C—(0,1).
uniquely decodable, then

Fix a binary code C
If C is

8a: ECL(C) > H(P).
There is equality in IFF
8b: Yvecl: Pv) = 1/2¥,

where, here, Vv means Len(v). O

Pf of. Let “3°,” mean “ > "

veC
With Z() :=logy(), mnote ECL(C)

>y P(v)-v, which equals >, P(v).Z(2Y).
sequently, we can write H(P) — ECL(C) as

X, P 2] - [, P 2(29)]
= >, P L (5l 5)-

Since .Z() is strictly convex-down, Jensen's inequality,
, applies to say
H(P) <2(Y} P (—%)
note v
2(> 1)),

By the Kraft-McMillan inequality, >, 1/23 <1.
And .Z() is order-preserving. Thus the above yields

equals
Con-

— ECL(C

H(P) —
as desired. ¢

ECL(C) < (1) = 0,

“5For comparison with (binary) distropy/entropy, we will usu-
ally be examining a binary code; a code over a 2-symbol al-
phabet, B. (Typically, B = {0,1}.) So a binary code is a sub-
set CC B'.

Entropy /Distropy

Prof. JLF King

Pfof ([8D). Suppose ECL(C) = H(P).
equality in Kraft, so >, 1/2¥ = 1, and in Jensen's, so
the map v — P(lv) . 2% is constant; say k.

This forces

Thus P(v)-r = 1/20, for each v. Summing over
all v € C implies that 1-x = 1. Hence x = 1. ¢

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King

Convention. For p € [0,1], let p© mean 1 — p, in
analogy with P(B¢) equaling 1 — P(B) on a proba-
bility space. [See ApPENDIX for independence, |, defns.]

9: Distropy fact. For partitions P, Q, R on probability

space.

a: H(P) < log(”P), with equality IFF P is an equi-
mass partition.

b: H(QVR) < H(Q) + H(R), with equality IFF
Q LR

c: Forp € [0, %], the function p — H(p, p°) is strictly
increasing. O

Proof. Use the strict concavity of 7(), together with
Jensen's Inequality. ¢

10: Binomial Lem. Fixp € [0, 1] and let H := H(p, p°).
Then for eachn € Z:

10]: Z (7;) < oHn O
JE[0..pn]
Proof. Let X C {0,1}" be the set of x with

#ic[l.n]|z; =1} <p-n. On X,let P1,Pa,... be
the coordinate partitions; e.g P; = (A7, A7°), where
A7 = {x | x7 = 1}. Weighting each point by ﬁ, the
uniform distribution x() on X, gives that p(A7) < p.
So H(P7) < H, by @
Finally, the join P; V...V P, separates the points
of X. So

log(#X) = H(P1V...VP,)
< H(P1)+...+H(P,) < Hn,

making use of (9plb). And #X equals LhS(IOl). 4

NOTE: Below, several quantities need to be natnums, and so some
floor or ceiling symbols are needed. I have omitted them, to show the

overall idea of the proof.

11: Shannon source-coding thm. Fix probability
0<p< %, and set H = H(p,p°). Consider the
iid-process on alphabet {0,1} with P(1) = p (hence
P(0) = 1—p). Fix €>0. Then Vjarge N, there exists a
block-code, mapping

N bits — [H+¢€|-N bits,

with error-probability <e. O

Entropy /Distropy

Page 11 of

Pf. Pick 6>0 so small that H(p+d, [p+3]°) < H + ¢.
Define

Xy = {ie {0, 1}V]p—a < Freq(1in %) < p+5},
where the frequency is % times the number of 1s in
bit-string X. Courtesy the Binomial Lemma ,

| Xn| < 2[H+€]'N, for all N € Z+.
And WLLN (13b)) allows us to fix a large enough N
such that

P(Xy) > 1 —¢. Henceforth, X == Xy.

Codemap. Let K = “H—l—g]N] Our Nbit—Kbit

code, maps X [enumerated in, say, lexicographic order| to
bit-strings % K % K
—— — —

0...00,0...01,0...10,0...11, ---

And the code maps each X € X¢ to, say, 1.5 1.
Every word in X is decoded correctly, so the prob-
ability of error is <e. ¢

Filename: Problems/NumberTheory/jk-codes.latex

Page 12 Of Error-correcting codes Prof. JLF King

Error-correcting codes

Hamming codes, distance, weight, bound.
Shannon’s Noisy-channel Thm ...

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King

§A Appendix

Various general tools.

12: Jensen's inequality. On an interval J C R, consider
points QQy € J, for each v in a countable indexing-
set C. We have a probability-distr P() on C. Then for
each convex-down fnc £:J—R

1220 Z(YPV)-Qv) = D PV)-Z(Qu).

vel vel
Now suppose £ is strictly convex-down. Then:

Equality in (12a)) IFF the probability-distr is

12b: .)
concentrated on a single point.

IOWords, having removed all zero-probability ele-
ments from C, the map v —)y is constant.

Proof. Exercise. I()r see picture on blackboa‘rd.l O

Probability

A random wvariable |r.var| is a measurable map
Y:Q—R where () is a probability space. [Can take Q to
be [0,1).] Unless both the positive and negative parts
of Y have infinite integral, the “expectation of Y”,
E(Y) = J,Y, is a value in [-00,+00].

When finite, it is common to call g = E(Y) the
mean of Y. Then variance Var(Y) = E([Y — pu]?)
is well-defined, and could be +oo.

Independence. Events A, B are independent ,
written ALB, if P(ANB) = P(A)P(B). A family C
of events is independent, written L (C) or L({A}4ce),
if each finite subset A;,..., Ay has P(A; N ...NAx)
equalling HéVZIP(Aj). This property of € is much
stronger than pairwise independence, where each
pair of events in € is independent.

Random variables X,Y are independent, X 1 Y,
if for each pair of measurable sets S,T C R, events
{X € S} and {Y € T'} are independent. It turns out
that this is equivalent to saying, for each pair x,y € R,
that events {X <z} L {Y <y}. When XLY have
finite expectations, then E(X-Y) = E(X)-E(Y).

Extend notions of independence and pairwise
independence to collections of random variables.

Probability

Page 13 of

13a: Markov Lemma. Consider posint n and random
variable Y. For each € € R..:

. pvl >) < YT,

Markov Inequality.
En

When n is even,

E(Y™) In particular, if Y has
P(|Y| > 6) < —5—. finite mean p = E(Y),
I
1: then

P(|Y — p| > E) < V%gY); Chebyshev Inequality.

Proof. Exercise. O
13b: Weak Law of Large Numbers (WLLN). Con-

sider an identically-distributed pairwise-independent

sequence Xi, X, ... where both mean p = E(X) and

variance v := Var(X) def E([X — p]?) are finite. Then

lim P([Xy —p[2c) = o0,

where Xy = %Z;Vﬂ X;. O

Proof. WLOG p = 0. Then N2-Var(Xy) equals
N 2 N 9 N
E<{Zj:1 XJ}) - [Zizl E(X;)} T Zj;ékE(Xij)
N
since each E(X;) = 0. Thus Var(Xy) = %. Hence

- Var(Xy) 1 v
PRalze) < =55 =y

by the Chebyshev Inequality. ¢

Filename: Problems/NumberTheory/jk-codes.latex

Page 14 of

This is a test of the pre-note.

C-parsing, [3

>, see concatenation

||, see word, length

<,=, see word, prefix

g, see nullword

L* LT, see Kleene star/plus

alphabet, [Z

bi-infinite-UD property, [3
BI-UD, [3]
block code (constant-length),

cipher, [7

code,

codemap, [
complete code, [5]
concatenation, >,

distribution entropy,
distropy,

entropy, [I0]
expectation, [13

expected coding-length, ECL, [
extension of a language,

full tree, see tree, I'-full
HC, Huffman code,

idempotent, [
independent events, [I3]

Kleene star/plus,
Kraft-sum, [3]

language,
leaf-node, [3

INDEX FOR “JK CODES NOTES”

§Index for “JK Codes notes”

left-infinite-UD—-code, [3
LI-UD-code, [3

MECL, [7

nullishcode, [
nullword &,
nullword language, [2

Posting race, [4H6} [9]
prefix code,

prefix/suffix-code, [5]
probability distribution, [7

random variable,
redundant code, [5]
restriction of a language, [
RI-UD property,

source alphabet, [7

spectrum, [3], [9
suffix code, [3

tree, [3
I'-complete /redundant,

I-full /deficient, 3]
I'-bounded,
isomorphism, [3
surgery, [9

UD, uniquely decodable,
void language, [

weak-BI-UD, [3]
weakly-UD,
word, [Z
length ||,
prefix of < <,

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King

Prof. JLF King INDEX FOR “JK CODES NOTES” Page 15 of

Filename: Problems/NumberTheory/jk-codes.latex
As of: Saturday 30Mar2019. Typeset: 10May2023 at 11:10.

Filename: Problems/NumberTheory/jk-codes.latex

	Formal languages
	Words
	Languages
	Star
	Prefix/Suffix

	Codes
	Trees

	Inequalities
	redKraft-McMillan Inequality
	redCompleteness Lemma
	redK-M Completeness corollary
	Sardinas-Patterson Algorithm
	Decoding-delay for UD-codes

	Cryptography
	Data compression
	Expected coding-length
	Probability distr.
	Codemap
	ECL
	MECL

	Huffman codes
	redHC-same-ECL Thm
	Induction step

	redDepth Lemma
	redHuffman's theorem
	Induction step

	Entropy/Distropy
	redDistropy UD-code Inequality
	Convention

	redBinomial Lem
	Codemap

	Error-correcting codes
	Appendix
	redJensen's inequality
	Probability
	Independence

	redMarkov Lemma
	redWeak Law of Large Numbers

	Index for ``JK Codes notes''

