
Codes

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu
Webpage http://squash.1gainesville.com/

10 May, 2023 (at 11:10)

(Folks, help me proofread and correct this.)

§An Overview
Formal languages . 2

Words . 2
Languages . 2
Star . 2
Prefix/Suffix 2

Codes . 2
Trees . 3

Inequalities . 4
Kraft-McMillan Inequality 4
Completeness Lemma 5
K-M Completeness corollary 5

Sardinas-Patterson Algorithm 5
Decoding-delay for UD-codes 5

Cryptography . 5
Data compression . 6

Expected coding-length 6
Probability distr. 7
Codemap . 7
ECL . 7
MECL . 7

Huffman codes . 8
HC-same-ECL Thm . 8

Induction step 8
Depth Lemma . 9
Huffman’s theorem . 9

Induction step 9
Entropy/Distropy . 10
Distropy UD-code Inequality 10

Convention . 11
Binomial Lem . 11

Codemap . 11
Error-correcting codes . 12

A Appendix 13
Jensen’s inequality . 13
Probability . 13

Independence 13
Markov Lemma . 13

Weak Law of Large Numbers 13

Index for “JK Codes notes” 14

Webpage http://people.clas.ufl.edu/squash/ Page 1 of 15

http://people.clas.ufl.edu/squash/index.html

Page 2 of 15 Codes Prof. JLF King

Formal languages

Words. Use ∅ for the empty set. An alphabet G
is a non-empty set, whose members are called letters;
usually 2 ≤ |G| <∞. A word (over an alphabet G) is a
finite string of letters; Use G? for the set of all words,
and use ε for the nullword ε, the unique length-zero
word. E.g if G = {a, b}, then G? equals

{ε, a, b, aa, ab, ba, bb, aaa, aab, . . .} .

Write G+ for G? r {ε}.
Concatenation of words v,z ∈ G? is written v . z

or just vz. Thus cat . nip = catnip. So G? is
a semigroup under concatenation, with ε the identity
element. Use Len(v) or |v| for the length of word v,

and have v
|·|
> 3 mean that |v| > 3. For n a natnum,

let vn mean the concatenation vv n. . .v. So v0 = ε.

Languages. A “ language over alphabet G ” is a
subset L ⊂ G?. Here are six distinct languages over
alphabet {a, b, . . . , z}:

∅={} , {ε} , {catnip} , {cat, nip} , {ε, cat, nip}
and {bc, bac, baac, baaac, . . . } = {banc}∞n=0 .

The first five are finite languages, having cardinali-
ties 0, 1, 1, 2, 3. Call ∅ the void language and call
{ε} the nullword language. The “concatenation of
languages ” K,L ⊂ G? is

KL = K . L := {v .w | v ∈ K and w ∈ L} .

[So ∅ . L = ∅ = L .∅ and {ε} . L = L = L . {ε}.] Let
Ln mean LL n. . .L. Hence L0 = {ε}, since the null-
word language is the identity element for language-
concatenation.♥1

For languages K ⊂ L, language L is an extension
of K, and K is a restriction of L.

♥1Aside: We already knew that
(((
G? , . , ε

)))
is a [non-

commutative] semigroup. And letting L=LG denote the set of
all languages over G, this generalizes to a [non-commutative]
semigroup (((

L , . , {ε}
)))
.

Of course, we also have the two commutative semigroups(((
L , ∪ , ∅

)))
and

(((
L , ∩ , G?

)))
.

Star. Define the Kleene star operator by

L? :=
⋃∞

n=0
Ln .

[Language L? is the minimal extension of L which is sealed
(closed) under finite concatenation of words. Since L? contains
the concatenation of zero-many words, L? owns ε.] In partic-
ular ∅? = {ε} = {ε}?. Similarly, the Kleene plus
operator is

L+ :=
⋃∞

n=1
Ln .

Hence [ε∈L+] ⇔ [ε∈L] ⇔ [L+=L?]. Each Kleene op
is idempotent : [L?]? = L? and [L+]+ = L+.

Prefix/Suffix. For words, say “v is a prefix of w”
if there exists a word z with vz = w; write v 4 w for
this relation. If, also, v 6= w, then v is a proper
prefix of w, written v ≺ w.

If ∃z ∈ G? with zv = w, then “v is a suffix of w” .
[However, we have no special symbol for the relation.]

Codes

For the time being, a code C means a non-void sub-
set C ⊂ G+; usually 2 ≤ |C| < ∞. [Occasionally it is
convenient to consider collections C which might own ε. So if
all we know is that C ⊂ G?, then we call C a nullishcode. If
we can later on prove that C 63 ε, then we’ll have shown C to
be a code.]

Call C a block code if all its codewords have the
same length. E.g, {FBI, CIA} is a blockcode, whereas
{Go, Gators} is not a blockcode, –although it is (see
below) a prefixcode. [Caveat: “block code” is used with
slightly different meanings in the literature. Perhaps constant-
length code is a more accurate term.]

A code C is uniquely decodable (a UD-code) if
each code-message z ∈ C? has a unique decomposition
w.r.t C. That is, if words vj ,wk ∈ C satisfy

If v1v2 . . .vJ = z = w1w2 . . .wK

then J = K and ∀i: vi = wi.
1.1:

A prefix code C (more accurately called a “prefix-
free code”) has no codeword being a proper prefix of
another. Prefix-codes are UD-codes since, stronger
than (1.1), they have theRI-UD property (the “right-
infinite-UD property”) that

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Codes Page 3 of 15

[v1v2v3 · · · = w1w2w3 · · ·
with each vj ,wk ∈ C

]
⇒
[∀i ∈ Z+:

vi = wi

]
.1.2:

We have these non-reversible implications

Block =⇒ Prefixcode ∗1
=⇒ RI-UD ∗2

=⇒ UD .1.2′:

A code showing (∗2) non-reversible has these words

v := b , w := ba , z := aa .1.2′′:

It is uniquely decodable (Exer. E1), yet fails (1.2),
since vzzz · · · equals wzzz · · · . Finally, that (∗1)
is non-reversible will be shown by (1.5), the “Chris
code”.

A suffix code (no codeword is a proper suffix of another)
is automatically a UD-code. Dually to (1.2′) we have
non-reversible implications

Block =⇒ Suffixcode =⇒ LI-UD =⇒ UD ,1.3′:

where a left-infinite-UD–code (a LI-UD–code) sat-
isfies [· · ·v 2v 1 = · · ·w 2w 1

with each vj ,wk ∈ C

]
⇒
[∀i ∈ Z− :

vi = wi

]
.1.3:

Note (1.2′′) is an example of a suffixcode which is not
a prefixcode.

Bi-infinite. A bi-∞ G-string σ can be viewed as
a map σ:Z→G. A C-parsing of σ is a sequence

· · · < k 2 < k 1 < k0 < k1 < k2 < k3 < · · ·

of integers st. each substring σ�[k` .. k`+1)
is a codeword,

that is, lies C. Write sequence (((k`)))`∈Z as ~k.
Say that C has the bi-infinite-UD property (is

BI-UD) if
Each bi-∞ string σ which has a C-parsing,
has only one C-parsing. I.e, with ~ and ~k
two C-parsings of σ, then the sets {ji}i∈Z and
{k`}`∈Z are equal.

1.4:

Slightly weaker, consider two parsings ~ and ~k, and
let v` := σ�[j` .. j`+1)

and w` := σ�[k` .. k`+1)
. The

weak-BI-UD property asserts
For each σ and parsings as above, there
exists a translation T ∈ Z so that:

∀` ∈ Z: v`+T = w` .

(I.e, one parsing may be a shift of the other, but
the codeword sequences are the same.)

1.4weak:

Immediately,

BI-UD ∗3
=⇒ weak-BI-UD ∗4

=⇒
[
Both LI-UD
and RI-UD

]
.1.4′:

The code {bbb} produces σ := · · · bbbb · · ·, which is
its only bi-∞ string. This σ has three parsings, since
the cutpoints ~ can all be mod-3 congruent to 1 or
0 or 1. Yet each parsing yields the same codeword
sequence, namely · · · bbb bbb bbb · · · . Hence (∗3)
is not reversible.

The “Pirate code” {OH, HO} is trivially LI-UD and
RI-UD, since it is a blockcode. Yet the Pirate code ad-
mits bi-∞ string · · · HOHOHOH · · · , which can be parsed
as · · · OH OH OH · · · or as · · · HO HO HO · · · , two
different codeword sequences. Yup; (*4) ain’t revers-
ible either.

The “Chris code” (evidently a cry for help)

{S, SOS}1.5:

is BI-UD, since each occurrence of “O” must lie in
SOS , and every other codeword must be S . Not
being a prefixcode, (1.5) proves (∗1) not reversible.
[So (1.5) is neither a prefix nor suffix code, yet is UD.]

Trees. Here, a (rooted) tree is a set T of nodes,
equipped with two operators: Root(T) is the root-
node of T . For each node v ∈ T , let Kids(v) be the
set of children of v. A node w is a leaf-node if: The
set Kids(w) is empty. A tree has the property that,
from the root-node, one can get to an arbitrary node,
by applying the Kids(·) operator finitely-many times.

Trees T and S are (tree-)isomorphic if there exists
a bijection f :T→S such that:

TI 1: f
(
Root(T)

)
= Root(S).

TI 2: For each v ∈ T :{
f(k)

∣∣ k ∈ Kids(v)
}

= Kids(f(v)).

For a Γ ∈ Z+, a tree is Γ-bounded if each node
has at most Γ many children. The tree is Γ-full if
every node is either has no children [is a leaf-node], or
has precisely Γ many children; otherwise, the tree is
Γ-deficient.

Filename: Problems/NumberTheory/jk-codes.latex

Page 4 of 15 Inequalities Prof. JLF King

Inequalities

Kraft proved (2a) for prefix-codes, as well as its con-
verse, (2b). McMillan strengthened (2a) to UD-codes.

2: Kraft-McMillan Inequality. Consider a countable
code C over finite alphabet G. If C is a UD-code then∑

v∈C
1
/

ΓLen(v) ≤ 1 ,2a:

where Γ is the number of letters in G.
Conversely, consider posints ~̀ = (((`1, `2, . . . , `R))).

If
∑R

j=1 1
/

Γ`j ≤ 1 then there exists
a prefix G-code C = (((v1, . . . ,vR))) with
each Len(vj) = `j .

2b:

[The also result holds for infinite tuples ~̀ = (((`1, `2, `3, . . . ,)))

that satisfy
[∑∞

j=1 1
/

Γ`j
]
≤ 1.] ♦

Exer. E2 . Give an example of a code, X , that
violates (2a). [So X must fail to be UD.] �

Defn. A code C is weakly-UD if the following holds.
For each posint N and words vi,wi ∈ C:

If v1v2 . . .vN = w1w2 . . .wN

then ∀i: vi = wi.
1.1′:

Contrast this with the (1.1) defn of UD. �

Exer. E3. Posting race: Who can be the first to
post a code which is weakly-UD, but not UD? �

Preliminaries for (2a). The below proof uses Sn,`, the
number of length-` strings which are concatenations of
nmany codewords. E.g, consider a code C = {v,w, z}
have lengths 5, 7, 8, respectively.

S1,15 = |∅| = 0. S2,15 = |{wz, zw}| = ?
S3,15 = |{vvv}| = 1. S4,15 = |∅| = 0.

Indeed, Sn,15 is zero for each n ≥ 4. As for S2,15: If
wz = zw then S2,15 = 1, else S2,15 = 2. �

Proof of (2a). WLOGenerality, C is finite. (Exer. E4)
With Γ := |G|, our goal is∑

v∈C
1
/

ΓLen(v)
?
≤ 1 .2a′:

WELOG, suppose the shortest and longest words in C
have lengths 3 and 7. For n = 1, 2, . . ., each string
in Cn has a length, `, in [3n .. 7n]; let Sn,` be the num-
ber of such strings. Certainly Sn,` ≤ Γ`, the num-
ber of all length-` strings over G. So the “generating
function”

Fn(x) :=
7n∑

`=3n

[
Sn,` · x`

]
satisfies, for x > 0, that Fn(x) ≤

∑7n
`=3n Γ` ·x`. Thus

Fn(1
Γ) ≤

7n∑
`=3n

Γ` · 1
Γ`

note
=== 1 + 7n− 3n

note
≤ 5n ,∗:

for each posint n.

Using uniqueness. Fix n and an ` ∈ [3n .. 7n].
The coefficient of x` in

[
F1(x)

]n is the number of
C-n-parsings of length-` strings, whereas Sn,` is the
number of length-` strings which admit a C-n-parsing.

The UD-hypothesis [actually, only “weakly-UD” is being
used] says these two numbers are equal. Hence our two
polynomials are equal,[

F1(x)
]n

= Fn(x). So (∗) implies[
F1(

1
Γ
)
]n ≤ 5n .

The LhS is exponential in n, whilst the RhS is linear.
Thus F1(1

Γ) ≤ 1 . Finally, observe that F1(1
Γ) is a

rewriting of LhS(2a). �

Proof of (2b). We’ll show the idea for Γ = 2. Arrange
the lengths as `1 ≤ `2 ≤ . . . ≤ `R. On the full binary-
tree of depth D := `R, put weight 1/2D on each leaf-
node. All the nodes start as free ; we will iteratively
mark some as busy as we create words v1,v2, Call
a node very-free if it and all its descendants are free,
i.e not busy.

Let v1 be the leftmost path down to depth `1; so
v1 = 000 `1. . . 0. Mark v1 and all its descendants as
busy. This action creates busy leaf -nodes of total
weight.

2D−`1 · 1
2D

note
=== 1/2`1 .

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Cryptography Page 5 of 15

With d := `1, note that

Each free node at depth ≥d is very-free.∗:

Let v2 be the leftmost path to a free node at
depth `2. [So v2 has `1 − 1 many 0s, then a 1, then `2 − `1
many 0s.] Mark v2 and its descendants as busy. Now
the total weight of busy leaf-nodes is

1

2`1
+

1

2`2
.

Moreover, with
�� ��d := `2 , note (∗) holds, since `2 ≥ `1.

We’d like to continue using depth `3, depth `4, . . . ,
depth `k, The only obstruction at a stage k, is
if there is no free node at depth `k. But the total
leaf-weight we’ve used up so far, is

W :=
∑k−1

j=1
1
/

2`j .

Since this sum is strictly less than 1, there exists a
free-node at depth `k−1. (Indeed, the number of such
free-nodes is precisely [1−W]/2k−1.) Finally, since
`k ≥ `k−1, there is certainly a free-node at depth `k.�

2c: Defn. For a Γ-code with lengths ~̀ = (((`1, . . . , `R))),
use

Σ(~̀) := ΣΓ(~̀) :=
∑R

j=1
1/Γ`j

for its Kraft-sum. Kraft’s thm says –if the code
is UD– that Σ(~̀) ≤ 1. If equality, then the code
[ditto the tuple] is complete, otherwise it is redun-
dant ; more precisely, Γ-complete and Γ-redundant.

Given tuples ~̀ = (((`1, . . . , `N))) and ~s = (((s1, . . . , sR))),
write ~̀ 4 ~s if N=R and

�� ��∀j: `j ≤ sj . Write ~̀ ≺ ~s
if ~̀ 4 ~s yet ~̀ 6= ~s. [Ditto for ∞ tuples.] Note ~̀ 4 ~s
implies Σ(~̀)≥Σ(~s) �

Exer. E5. A finite Γ-bounded tree T with R many
leaves, yields a length-spectrum ~̀ = (((`1, . . . , `R))); so
terms “Γ-complete” and “Γ-redundant” makes sense
for the tree. Prove:

2d: Completeness Lemma. A finite Γ-bounded tree, T ,
is Γ-complete IFF it is Γ-full. ♦

In (2e), below, we first consider only binary prefix-
codes; Γ = 2.

2e: K-M Completeness corollary. If finite tuple ~s has
Σ(~s) ≤ 1, then there exists a complete prefix-code
with tuple ~̀ 4 ~s. ♦

Proof. We need but produce a complete ~̀ 4 ~s, since
Kraft’s thm will hand us a prefix-code with lengths ~̀.

It suffices, given a redundant ~s, to produce an ~̀ ≺ ~s
with Σ(~̀) ≤ 1. After all, there are only finitely-many
tuples ≺~s, so iterating will eventually halt, at a com-
plete tuple.

WLOG, T := s1 is a max-length in ~s; so each 1/2sj

is a multiple of 1/2T , hence so is Σ(~s). As ~s is redun-
dant, the gap 1− Σ(~s) dominates 1/2T . So define ~̀
by `2 := s2, . . . ,`R := sR, and `1 := s1 − 1. �

Exer. E6. Posting race: Does (2e) hold for larger
alphabet-sizes? If so, how does the proof need to be
modified? �

Exer. E7.Posting race: A block code is an example
of a prefix/suffix-code, i.e, both. (Dis)Prove: There
exists a complete prefix/suffix-code C whose length-
spectrum is not constant. �

Sardinas-Patterson Algorithm. An example of a
UD-code [indeed, it is a suffixcode], for which the SarPat
algorithm eventually cycles (as it must), but not with
the empty prefix-list, is

{bc , b , Xc , cX} .

(On hold. . .)

Decoding-delay for UD-codes. Consider a long
word w which is the initial part. . .
(On hold. . .)

Cryptography
Affine codes. Breaking affine codes with
known/chosen plaintext.

Diffie-Hellman and El Gamal.
RSA. Pollard-ρ algorithm and Floyd cycle-finding alg..

Filename: Problems/NumberTheory/jk-codes.latex

Page 6 of 15 Expected coding-length Prof. JLF King

Data compression
[Huffman codes. Source coding. In Spring2019: Skipped Ziv-
Lempel.]

Expected coding-length

The binary numeral for posint K has form 1Bits(K),
where Bits(K) is a {0, 1}-word. E.g, Bits(23) = 0111
because Binary(23) = 10111. Also Bits(3) = 1 and
Bits(2) = 0 and Bits(1) = ε, the nullword. Let

|K|Bit := |Bits(K)| . So |23|Bit = 4, |2|Bit = 1
and |1|Bit = 0.

With n := |K|Bit, then, 2n+1 > K ≥ 2n.

Exer.E8.Posting race:Produce an infinite prefix-code

C = {v1,v2,v3, . . .} such that lim
K→∞

|vK |
|K|Bit

= 1. �

Exer.E8.1. Infinite prefix-code C = {w1,w2, . . .} has
the property that each

|wK | ≤ |K|Bit + f
(
|K|Bit

)
,†:

where f :Z+→N. Prove that lim
n→∞

f(n) = ∞, using
that C satisfies the Kraft inequality. �

Exer.E8.2.(Dis)Prove: ∃ prefix code C={w1,w2, . . .}
satisfying (†), with f(n) ≤ Const + [1.007]·log(n). �

Exer.E8.3. (Dis)Prove: ∃ prefcode {w1,w2, . . .}
with lim

K→∞

|wK |
|K|Bit

= 1 and subseq K1<K2< . . . with each

|wK`
| ≤ |K`|Bit + 99. �

Filename: code-Kraft-Elias.SOLN.tex

Prof. JLF King Expected coding-length Page 7 of 15

Probability distr. A probability distribution on
a codeword-set C is a map P:C→[0, 1] st.∑

v∈C
P(v) = 1 .3a:

We will usually discard from the code all probability-
zero words. In practice, then, a “probability distribu-
tion” is a map P:C→(0, 1) fulfilling (3a)

The expected♥2 coding length of C is

ECL(C) :=
∑
v∈C

P(v) · Len
(
v
)
.3b:

E.g, consider code C := {w1, . . . ,w4} where

w1 := 00 , w2 := 010 , w3 := 011 , w4 := 1 ,3c:

where P(w4) = 1
2 , and the other three words have

probability 1
6 . Then ECL(C) is then

1
2 · 1 + 1

6 · [2 + 3 + 3] = 11
6 .

Codemap. A source alphabet Ω, also called a
“message set” , might be{

a, b, . . . , z,.,Space} ,
or might be

{
tank, ship, . . . , plane

}
. Fixing a code-

alphabet G, a map f :Ω→G+ is a codemap (or ci-
pher) if

i : f is injective, and

ii : C := Range(f) is a code. [Phrased this way, so that
if we change our defn of “code” for a given context, then
the defn of codemap changes with it.]

Every adjective applying to a code, also applies to a
codemap; e.g, “a block/prefix/UD codemap” .

ECL. Consider a [finite or countably-infinite] message
set Ω and a probability distribution P:Ω→[0, 1]. A
codemap f :Ω→G+ puts a probability-distribution on
C := Range(f) by assigning, for w ∈ C,

P(w) := P
(
f 1(w)

)
.4a:

Thus the code has an expected coding-length, which
we may write as

ECL(C) or ECL(f) .

♥2“Expected” is what probabilists use for “average”.

MECL. Use MECL for Minimum ECL. Consider a
finite prob-vector ~p = (((p1, . . . , pL))). A code [for the
moment, assume a binary code] C = (((v1, . . . ,vL))) has

ECL(C) =
∑L

j=1
pj · Len

(
vj
)
.3b′:

The minimum of (3b′) taken over all prefix-codes, or
over all UD-codes, we will call

PC-MECL(~p) and UD-MECL(~p) ,4b:

respectively. Evidently

PC-MECL(~p) ≥ UD-MECL(~p)4c:

since, for UD-codes, we are taking a minimum over the
larger collection of codes. By the way, I’ll sometimes
use MECL(~p) as a synonym for UD-MECL(~p).

The minimum in (3b′) depends on Γ := |G|, the
number of letters in our code alphabet. [We can com-
press English more by coding into a 3-letter alphabet, rather
than a 2-letter alphabet.] To indicate the dependency on
cardinality Γ, we may write

PC-MECLΓ(~p) and UD-MECLΓ(~p) .4d:

Filename: Problems/NumberTheory/jk-codes.latex

Page 8 of 15 Huffman codes Prof. JLF King

Huffman codes

[Binary HCs will be described in class.]
Interpret a tuple such as (((3:A 1:B 5:C))) as putting

prob-distribution (((3
9 ,

1
9 ,

5
9))) on letters (((A, B, C))); the 9 is

the sum of the weights, 3 + 1 + 5.
Our convention is that the branch going up-right is

labeled with bit 0; the down-right with bit 1. [On
exams, all coalescings will be of distinct probabilities, and I’ll
ask that you put the smaller probability on the 0-branch.]

Non-uniqueness of Huffman Codes. Frequency-tuple
F := (((1:A 1:B 1:C 1:D))) admits HC

4
2

1 A: 00
1 B: 01

2
1 C: 10
1 D: 11

5a:

But F also admits each other permutation of
{A, B, C, D} being attached to those leaves. So this
Freq-tuple admits several HCs.

For a more interesting example, consider Frequen-
cy-tuple F ′ := (((1:A 1:B 2:C 2:D 14:E))). This admits
HC C1:

20
14 E: 0

6
2 D: 10

4
2 C: 110

2
1 B: 1110
1 A: 1111

5b:

So 20·ECL(C1) equals [Weight ·WordLen · Count]

B,A︷ ︸︸ ︷
1·4·2 +

C︷ ︸︸ ︷
2·3·1 +

D︷ ︸︸ ︷
2·2·1 +

E︷ ︸︸ ︷
14·1·1 = 32 .

Thus ECL(C1) = 32
20 = 8

5 bits-per-letter.

Our F ′ also admits HC C2:

20

14 E: 0

6
4

2 D: 100
2 C: 101

2
1 B: 110
1 A: 111

5c:

Thus 20·ECL(C2) equals

B,A︷ ︸︸ ︷
1·3·2 +

D,C︷ ︸︸ ︷
2·3·2 +

E︷ ︸︸ ︷
14·1·1 = 32 .

We see that ECL(C2) = ECL(C1). It is worth noticing
that codes C1 and C2 are not only different, they are
not even tree-isomorphic. �

6: HC-same-ECL Thm. Fix a probability L-vec ~p,
with L ≥ 2. Then all ~p-HCs have the same ECL. ♦

Proof.We proceed by induction on L, with proposition

For every prob. L-vec ~q: Each two ~q-HCs
have the same ECL.

R(L):

The base L=2 case is easy, since the only Huffman-
tree is Root Prob.

Prob. whose ECL is 1.

Induction step. Fix an L ≥ 3 st. R(L−1).
Let J := L−2. Given ~p, let α, β denote its two low-

est probabilities,♥3 and write ~p as (((α, β, p1, . . . , pJ))).
Consider two HCs, C and X , with length-spectra

that I have written above and below ~p, here.

C : D D d1 d2 . . . dJ

(((α, β, p1, p2, . . . , pJ)))

X : Y Y y1 y2 . . . yJ .

So code C assigns length-D codewords to the first two
nodes it joins, which have probs α and β. Computing

ECL(C) = D·α + D·β +
∑J

i=1
[di · pi] ;

ECL(X) = Y ·α + Y ·β +
∑J

i=1
[yi · pi] .

†:

After joining two nodes, the codes now recursively
act on ~q := (((α+β, p1, p2, . . . , pJ))) and assign length-
spectra as follows:

C : D−1 d1 d2 . . . dJ

(((α+β, p1, p2, . . . , pJ)))

X : Y−1 y1 y2 . . . yJ .

Since ~q is an [L−1]-vector, proposition R(L−1) says
that the above two ECLs are equal, i.e

[D−1]·[α+β] +
∑J

i=1
[di · pi]

= [Y−1]·[α+β] +
∑J

i=1
[yi · pi] .

‡:

And this implies equality in the two RhSs of (†). �

♥3They might be equal; indeed, perhaps β = α, with 8 nodes
all having probability α. We are not picking two nodes; we are
picking two probabilities. In particular, I am not assuming
that HCs C and X join the same two nodes, at the first step.

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Huffman codes Page 9 of 15

7a: Depth Lemma. Fix a probability L-vector ~p, and
a ~p–PC-MECL. Consider two leaf-nodes with proba-
bilities α and α′, at depths D and D′, respectively. If
α > α′, then necessarily D ≤ D′. ♦

Exer. E9 . Prove the above Depth Lemma. �

7b: Huffman’s theorem.

i: HCs are PC-MECLs.

ii: HCs are UD-MECLs. ♦

Pf of (i). We induct on L, with proposition

Each probability L-vector ~q, admits a
Huffman Code which is a PC-MECL.

Huff(L):

The base L=2 case is immediate, since the only tree
is Root Prob.

Prob. , which is a Huffman-tree.

Induction step. Fix an L ≥ 3 st. Huff(L−1).
Fix ~p, a prob. L-vector, and consider a ~p–PC-MECL,
viewed as a tree.

Let α≤β denote the two smallest probabilities of ~p.
At the tree’s deepest level, D, consider two joined leaf-
nodes, and call their probabilities x and y. It suffices
to show:

We can permute the probabilities of the leaves,
without changing the ECL, so that, now, these
two nodes have probabilities α and β.

∗:

For then, we collapse these two into a single node, pro-
ducing prob.-vec ~q := (((α+β, p2, p3, . . . , pL−1))). By
the induction hypothesis, there is a ~q-HC which is
a ~q–PC-MECL. Expanding the collapsed node back
into α

β automatically produces a Huffman-

tree♥4. which is a ~p–PC-MECL. And all HCs have
the same ECL, by (6).

♥4The permuting of probabilities, because it is done recur-
sively, can permute interior-nodes of the tree. So the final
Huffman-tree can be non-isomorphic to the original PC-MECL
tree. This kind of argument is called tree surgery .

Establishing (∗). If x = α, then leave that leaf-
node alone. Otherwise, x > α. Our Depth Lemma,
(7a), says that no α-node can be shallower than x, so
[since x is at max depth], every α-node has to be at D,
the deepest level. Switch some α-leaf with our x-leaf.

This does not change the ECL, since the
nodes are at the same depth.

Now our joined-pair is α
y . Do the same oper-

ation with y w.r.t β. Now our joined-pair is α
β ,

as desired. �

Exer. E10 . Prove (ii), that every HC is a UD-
MECL. �

Pf of (ii), (E10). Fix ~p and a ~p–UD-MECL; write
its length-spectrum as ~̀ = (((`1, . . . , `R))). By Kraft’s
thm, there is a PC-code with the same spectrum
hence, when assigned to the same probabilities, has
the same ECL. And part (i) shows there is a HC with
the same ECL. �

Exer. E11. Posting race: (Dis)Prove: If prefix code
C is a PC-MECL, then C is a Huffman code. �

Solution to E11. False. Consider frequency-tuple
(((2:A 2:B 3:C 3:D))). Its only Huffman-tree is

10
4

2 A

2 B

6
3 C

3 D

7c:

(This admits eight HCs, since at each of the three nodes we can
choose which edge is labeled 0 and which is 1.) This codetree
has ECL = 2. But so does this tree,

10
5

2 A

3 C

5
2 B

3 D

7d:

which is not a Huffman code. �

Filename: Problems/NumberTheory/jk-codes.latex

Page 10 of 15 Entropy/Distropy Prof. JLF King

Entropy/Distropy

Define η:[0, 1]→[0,∞) by η(x) := x · log2(1/x), and
extend by continuity, so that η(0) = 0. (Use l’Hôpital’s
rule, if you like.)

The distribution entropy , which I call distropy ,
of a probability-vector ~v is

H(~v) :=
∑

p∈~v
η(p) .

For a probability-distr P() on a code♥5 C, then, H(P)
equals

∑
v∈C η

(
P(v)

)
.

8: Distropy UD-code Inequality. Fix a binary code C
and probability distribution P:C→(0, 1). If C is
uniquely decodable, then

ECL(C) ≥ H(P) .8a:

There is equality in (8a) IFF

∀v ∈ C : P(v) = 1
/

2v̂ ,8b:

where, here, v̂ means Len(v). ♦

Pf of (8a). Let “
∑

v” mean “
∑
v∈C

”.

With L () := log2(), note ECL(C) equals∑
v P(v)·v̂, which equals

∑
v P(v)L (2v̂). Con-

sequently, we can write H(P)− ECL(C) as[∑
v

P(v) L
(

1
P(v)

)]
−
[∑

v
P(v) L

(
2v̂
)]

=
∑

v
P(v) L

(
1

P(v) ·
1

2v̂

)
.

Since L () is strictly convex-down, Jensen’s inequality,
(12), applies to say

H(P)− ECL(C) ≤ L
(∑

v
P(v) · 1

P(v)
1

2v̂

)
note
=== L

(∑
v

1
/

2v̂
)
.

†:

By (2a) the Kraft-McMillan inequality,
∑

v 1/2v̂ ≤ 1.
And L () is order-preserving. Thus the above yields

H(P)− ECL(C) ≤ L (1) = 0 ,

as desired. �
♥5For comparison with (binary) distropy/entropy, we will usu-

ally be examining a binary code; a code over a 2-symbol al-
phabet, B. (Typically, B = {0, 1}.) So a binary code is a sub-
set C ⊂ B+.

Pf of (8b). Suppose ECL(C) = H(P). This forces
equality in Kraft, so

∑
v 1/2v̂ = 1, and in Jensen’s, so

the map v 7→ 1
P(v) ·

1

2v̂
is constant; say κ.

Thus P(v)·κ = 1/2v̂, for each v. Summing over
all v ∈ C implies that 1·κ = 1. Hence κ = 1. �

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Entropy/Distropy Page 11 of 15

Convention. For p ∈ [0, 1], let pc mean 1− p, in
analogy with P(Bc) equaling 1 − P(B) on a proba-
bility space. [See Appendix for independence, ⊥, defns.]

9: Distropy fact. For partitions P,Q,R on probability
space.

a: H(P) ≤ log(#P), with equality IFF P is an equi-
mass partition.

b: H(Q ∨ R) ≤ H(Q) + H(R), with equality IFF
Q ⊥ R.

c: For p ∈ [0, 1
2], the function p 7→ H(p, pc) is strictly

increasing. ♦

Proof. Use the strict concavity of η(), together with
Jensen’s Inequality. �

10: Binomial Lem. Fix p ∈ [0, 1
2] and letH := H(p, pc).

Then for each n ∈ Z+:∑
j∈[0 .. pn]

(n
j

)
≤ 2H·n .10′: ♦

Proof. Let X ⊂ {0, 1}n be the set of x with
#{i ∈ [1 .. n] | xi = 1} ≤ p · n. OnX, let P1,P2, . . . be
the coordinate partitions; e.g P7 = (((A7, A7

c))), where
A7 := {x | x7 = 1}. Weighting each point by 1

|X| , the
uniform distribution µ() on X, gives that µ(A7) ≤ p.

So H(P7) ≤ H , by (9c).
Finally, the join P1 ∨ . . . ∨ Pn separates the points

of X. So

log(#X) = H(P1 ∨ . . . ∨ Pn)

≤ H(P1) + . . .+H(Pn) ≤ Hn ,

making use of (9a,b). And #X equals LhS(10′). �

Note: Below, several quantities need to be natnums, and so some
floor or ceiling symbols are needed. I have omitted them, to show the
overall idea of the proof.

11: Shannon source-coding thm. Fix probability
0 < p < 1

2 , and set H := H(p, pc). Consider the
iid-process on alphabet {0, 1} with P(1) = p (hence
P(0) = 1− p). Fix ε>0. Then ∀largeN , there exists a
block-code, mapping

N bits → [H + ε]·N bits ,

with error-probability <ε. ♦

Pf. Pick δ>0 so small that H(p+δ, [p+δ]c) < H + ε.
Define

XN :=
{
~x ∈ {0, 1}N

∣∣∣ p− δ < Freq(1 in ~x) < p+ δ
}
,

where the frequency is 1
N times the number of 1s in

bit-string ~x. Courtesy the Binomial Lemma (10),

|XN | ≤ 2[H+ε]·N , for all N ∈ Z+.

And WLLN (13b) allows us to fix a large enough N
such that

P(XN) ≥ 1− ε . Henceforth, X := XN .

Codemap. Let K :=
⌈
[H + ε]N

⌉
. Our Nbit→Kbit

code, maps X [enumerated in, say, lexicographic order] to
bit-strings

K︷ ︸︸ ︷
0 . . . 00,

K︷ ︸︸ ︷
0 . . . 01,

K︷ ︸︸ ︷
0 . . . 10,

K︷ ︸︸ ︷
0 . . . 11, · · · .

And the code maps each ~x ∈ Xc to, say, 1 K. . . 1.
Every word in X is decoded correctly, so the prob-

ability of error is <ε. �

Filename: Problems/NumberTheory/jk-codes.latex

Page 12 of 15 Error-correcting codes Prof. JLF King

Error-correcting codes
Hamming codes, distance, weight, bound.

Shannon’s Noisy-channel Thm . . .

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King Probability Page 13 of 15

§A Appendix

Various general tools.

12: Jensen’s inequality. On an interval J ⊂ R, consider
points Qv ∈ J , for each v in a countable indexing-
set C. We have a probability-distr P() on C. Then for
each convex-down fnc L :J→R

L
(∑
v∈C

P(v) ·Qv

)
≥
∑
v∈C

P(v)·L
(
Qv
)
.12a:

Now suppose L is strictly convex-down. Then:

Equality in (12a) IFF the probability-distr is
concentrated on a single point.

12b:

IOWords, having removed all zero-probability ele-
ments from C, the map v 7→ Qv is constant.

Proof. Exercise. [Or see picture on blackboard.] ♦

Probability

A random variable [r.var] is a measurable map
Y:Ω→R where Ω is a probability space. [Can take Ω to
be [0, 1).] Unless both the positive and negative parts
of Y have infinite integral, the “expectation of Y” ,
E(Y) :=

∫
ΩY, is a value in [∞, ∞].

When finite, it is common to call µ := E(Y) the
mean of Y. Then variance Var(Y) := E([Y − µ]2)
is well-defined, and could be ∞.

Independence. Events A,B are independent ,
written A⊥B, if P(A ∩B) = P(A)P(B). A family C

of events is independent, written⊥(C) or⊥({A}A∈C),
if each finite subset A1, . . . , AN has P(A1 ∩ . . . ∩AN)
equalling

∏N
j=1P(Aj). This property of C is much

stronger than pairwise independence, where each
pair of events in C is independent.

Random variables X,Y are independent , X ⊥ Y,
if for each pair of measurable sets S,T ⊂ R, events
{X ∈ S} and {Y ∈ T} are independent. It turns out
that this is equivalent to saying, for each pair x,y ∈ R,
that events {X ≤ x} ⊥ {Y ≤ y}. When X⊥Y have
finite expectations, then E(X·Y) = E(X)·E(Y).

Extend notions of independence and pairwise
independence to collections of random variables.

13a: Markov Lemma. Consider posint n and random
variable Y. For each ε ∈ R+:

P
(
|Y| ≥ ε

)
≤ E(|Y|n)

εn
; Markov Inequality.†:

When n is even,

P
(
|Y| ≥ ε

)
≤ E(Yn)

εn .
In particular, if Y has
finite mean µ := E(Y),
then

P
(
|Y − µ| ≥ ε

)
≤ Var(Y)

ε2
; Chebyshev Inequality.

‡:

Proof. Exercise. ♦

13b: Weak Law of Large Numbers (WLLN). Con-
sider an identically-distributed pairwise-independent
sequence X1,X2, . . . where both mean µ := E(X) and
variance v := Var(X)

def
== E([X− µ]2) are finite. Then

lim
N→∞

P
(∣∣XN − µ

∣∣ ≥ ε) = 0 ,

where XN := 1
N

∑N
j=1 Xj . ♦

Proof. WLOG µ = 0. Then N2·Var(XN) equals

E
([∑N

j=1
Xj

]2)
=
[∑N

i=1
E(Xi

2)
]

+
∑N

j 6=k
E(XjXk)

= Nv +
∑N

j 6=k
E(Xj)·E(Xk) = Nv,

since each E(Xj) = 0. Thus Var(XN) = v
N . Hence

P
(∣∣XN

∣∣ ≥ ε) ≤ Var(XN)

ε2
=

1

N
· v
ε2
,

by the Chebyshev Inequality. �

Filename: Problems/NumberTheory/jk-codes.latex

Page 14 of 15 INDEX FOR “JK CODES NOTES” Prof. JLF King

§Index for “JK Codes notes”

This is a test of the pre-note.

C-parsing, 3
., see concatenation
|·|, see word, length
4,≺, see word, prefix
ε, see nullword
L?,L+, see Kleene star/plus

alphabet, 2

bi-infinite-UD property, 3
BI-UD, 3
block code (constant-length), 2

cipher, 7
code, 2
codemap, 7
complete code, 5
concatenation, ., 2

distribution entropy, 10
distropy, 10

entropy, 10
expectation, 13
expected coding-length, ECL, 7
extension of a language, 2

full tree, see tree, Γ-full

HC, Huffman code, 8

idempotent, 2
independent events, 13

Kleene star/plus, 2
Kraft-sum, 5

language, 2
leaf-node, 3

left-infinite-UD–code, 3
LI-UD–code, 3

MECL, 7

nullishcode, 2
nullword ε, 2
nullword language, 2

Posting race, 4–6, 9
prefix code, 2
prefix/suffix-code, 5
probability distribution, 7

random variable, 13
redundant code, 5
restriction of a language, 2
RI-UD property, 2

source alphabet, 7
spectrum, 5, 9
suffix code, 3

tree, 3
Γ-complete/redundant, 5
Γ-full/deficient, 3
Γ-bounded, 3
isomorphism, 3
surgery, 9

UD, uniquely decodable, 2

void language, 2

weak-BI-UD, 3
weakly-UD, 4
word, 2

length |·|, 2
prefix of 4 ≺, 2

Filename: Problems/NumberTheory/jk-codes.latex

Prof. JLF King INDEX FOR “JK CODES NOTES” Page 15 of 15

Filename: Problems/NumberTheory/jk-codes.latex
As of: Saturday 30Mar2019. Typeset: 10May2023 at 11:10.

Filename: Problems/NumberTheory/jk-codes.latex

	Formal languages
	Words
	Languages
	Star
	Prefix/Suffix

	Codes
	Trees

	Inequalities
	redKraft-McMillan Inequality
	redCompleteness Lemma
	redK-M Completeness corollary
	Sardinas-Patterson Algorithm
	Decoding-delay for UD-codes

	Cryptography
	Data compression
	Expected coding-length
	Probability distr.
	Codemap
	ECL
	MECL

	Huffman codes
	redHC-same-ECL Thm
	Induction step

	redDepth Lemma
	redHuffman's theorem
	Induction step

	Entropy/Distropy
	redDistropy UD-code Inequality
	Convention

	redBinomial Lem
	Codemap

	Error-correcting codes
	Appendix
	redJensen's inequality
	Probability
	Independence

	redMarkov Lemma
	redWeak Law of Large Numbers

	Index for ``JK Codes notes''

