

Codes

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage <http://squash.1gainesville.com/>
10 May, 2023 (at 11:10)

(Folks, help me proofread and correct this.)

§An Overview

Formal languages	2
Words	2
Languages	2
Star	2
Prefix/Suffix	2
Codes	2
Trees	3
Inequalities	4
Kraft-McMillan Inequality	4
Completeness Lemma	5
K-M Completeness corollary	5
Sardinas-Patterson Algorithm	5
Decoding-delay for UD-codes	5
Cryptography	5
Data compression	6
Expected coding-length	6
Probability distr.	7
Codemap	7
ECL	7
MECL	7
Huffman codes	8
HC-same-ECL Thm	8
Induction step	8
Depth Lemma	9
Huffman's theorem	9
Induction step	9
Entropy/Distropy	10
Distropy UD-code Inequality	10
Convention	11
Binomial Lem	11
Codemap	11
Error-correcting codes	12
A Appendix	13
Jensen's inequality	13
Probability	13
Independence	13
Markov Lemma	13
Weak Law of Large Numbers	13
Index for “JK Codes notes”	14

Formal languages

Words. Use \emptyset for the empty set. An *alphabet* \mathbf{G} is a non-empty set, whose members are called *letters*; usually $2 \leq |\mathbf{G}| < \infty$. A *word* (over an alphabet \mathbf{G}) is a *finite* string of letters; Use \mathbf{G}^* for the set of all words, and use ϵ for the *nullword* ϵ , the unique length-zero word. E.g if $\mathbf{G} = \{\mathbf{a}, \mathbf{b}\}$, then \mathbf{G}^* equals

$$\{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \mathbf{aaa}, \mathbf{aab}, \dots\}.$$

Write \mathbf{G}^+ for $\mathbf{G}^* \setminus \{\epsilon\}$.

Concatenation of words $\mathbf{v}, \mathbf{z} \in \mathbf{G}^*$ is written $\mathbf{v} \triangleright \mathbf{z}$ or just $\mathbf{v}\mathbf{z}$. Thus $\mathbf{cat} \triangleright \mathbf{nip} = \mathbf{catnip}$. So \mathbf{G}^* is a semigroup under concatenation, with ϵ the identity element. Use $\text{Len}(\mathbf{v})$ or $|\mathbf{v}|$ for the *length* of word \mathbf{v} , and have $\mathbf{v} \triangleright \mathbf{z}$ mean that $|\mathbf{v}| > 3$. For n a natnum, let \mathbf{v}^n mean the concatenation $\mathbf{v}\mathbf{v} \dots \mathbf{v}$. So $\mathbf{v}^0 = \epsilon$.

Languages. A “*language* over alphabet \mathbf{G} ” is a subset $\mathcal{L} \subset \mathbf{G}^*$. Here are six distinct languages over alphabet $\{\mathbf{a}, \mathbf{b}, \dots, \mathbf{z}\}$:

$$\begin{aligned} \emptyset &= \{\}, \{\epsilon\}, \{\mathbf{catnip}\}, \{\mathbf{cat}, \mathbf{nip}\}, \{\epsilon, \mathbf{cat}, \mathbf{nip}\} \\ \text{and } & \{\mathbf{bc}, \mathbf{bac}, \mathbf{baac}, \mathbf{baaac}, \dots\} = \{\mathbf{ba}^n \mathbf{c}\}_{n=0}^{\infty}. \end{aligned}$$

The first five are finite languages, having cardinalities 0, 1, 1, 2, 3. Call \emptyset the *void language* and call $\{\epsilon\}$ the *nullword language*. The “concatenation of languages” $\mathcal{K}, \mathcal{L} \subset \mathbf{G}^*$ is

$$\mathcal{KL} = \mathcal{K} \triangleright \mathcal{L} := \{\mathbf{v} \triangleright \mathbf{w} \mid \mathbf{v} \in \mathcal{K} \text{ and } \mathbf{w} \in \mathcal{L}\}.$$

[So $\emptyset \triangleright \mathcal{L} = \emptyset = \mathcal{L} \triangleright \emptyset$ and $\{\epsilon\} \triangleright \mathcal{L} = \mathcal{L} = \mathcal{L} \triangleright \{\epsilon\}$.] Let \mathcal{L}^n mean $\mathcal{L}\mathcal{L} \dots \mathcal{L}$. Hence $\mathcal{L}^0 = \{\epsilon\}$, since the nullword language is the identity element for language-concatenation. ^{♥1}

For languages $\mathcal{K} \subset \mathcal{L}$, language \mathcal{L} is an *extension* of \mathcal{K} , and \mathcal{K} is a *restriction* of \mathcal{L} .

^{♥1} Aside: We already knew that $(\mathbf{G}^*, \triangleright, \epsilon)$ is a [non-commutative] semigroup. And letting $\mathbb{L} = \mathbb{L}_{\mathbf{G}}$ denote the set of *all* languages over \mathbf{G} , this generalizes to a [non-commutative] semigroup

$$(\mathbb{L}, \triangleright, \{\epsilon\}).$$

Of course, we also have the two commutative semigroups $(\mathbb{L}, \cup, \emptyset)$ and $(\mathbb{L}, \cap, \mathbf{G}^*)$.

Star. Define the *Kleene star* operator by

$$\mathcal{L}^* := \bigcup_{n=0}^{\infty} \mathcal{L}^n.$$

[Language \mathcal{L}^* is the minimal extension of \mathcal{L} which is sealed (closed) under finite concatenation of words. Since \mathcal{L}^* contains the concatenation of zero-many words, \mathcal{L}^* owns ϵ .] In particular $\emptyset^* = \{\epsilon\} = \{\epsilon\}^*$. Similarly, the *Kleene plus* operator is

$$\mathcal{L}^+ := \bigcup_{n=1}^{\infty} \mathcal{L}^n.$$

Hence $[\epsilon \in \mathcal{L}^+] \Leftrightarrow [\epsilon \in \mathcal{L}] \Leftrightarrow [\mathcal{L}^+ = \mathcal{L}^*]$. Each Kleene op is *idempotent*: $[\mathcal{L}^*]^* = \mathcal{L}^*$ and $[\mathcal{L}^+]^+ = \mathcal{L}^+$.

Prefix/Suffix. For words, say “ \mathbf{v} is a *prefix* of \mathbf{w} ” if there exists a word \mathbf{z} with $\mathbf{v}\mathbf{z} = \mathbf{w}$; write $\mathbf{v} \preceq \mathbf{w}$ for this relation. If, also, $\mathbf{v} \neq \mathbf{w}$, then \mathbf{v} is a *proper prefix* of \mathbf{w} , written $\mathbf{v} \prec \mathbf{w}$.

If $\exists \mathbf{z} \in \mathbf{G}^*$ with $\mathbf{z}\mathbf{v} = \mathbf{w}$, then “ \mathbf{v} is a *suffix* of \mathbf{w} ”. [However, we have no special symbol for the relation.]

Codes

For the time being, a *code* \mathcal{C} means a non-void subset $\mathcal{C} \subset \mathbf{G}^+$; usually $2 \leq |\mathcal{C}| < \infty$. [Occasionally it is convenient to consider collections \mathcal{C} which *might* own ϵ . So if all we know is that $\mathcal{C} \subset \mathbf{G}^*$, then we call \mathcal{C} a *nullishcode*. If we can later on prove that $\mathcal{C} \not\ni \epsilon$, then we’ll have shown \mathcal{C} to be a code.]

Call \mathcal{C} a *block code* if all its codewords have the same length. E.g. $\{\mathbf{FBI}, \mathbf{CIA}\}$ is a blockcode, whereas $\{\mathbf{Go}, \mathbf{Gators}\}$ is *not* a blockcode, –although it *is* (see below) a prefixcode. [Caveat: “block code” is used with slightly different meanings in the literature. Perhaps *constant-length code* is a more accurate term.]

A code \mathcal{C} is *uniquely decodable* (a *UD-code*) if each code-message $\mathbf{z} \in \mathcal{C}^*$ has a unique decomposition w.r.t \mathcal{C} . That is, if words $\mathbf{v}_j, \mathbf{w}_k \in \mathcal{C}$ satisfy

$$\begin{aligned} 1.1: \quad & \text{If } \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_J = \mathbf{z} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_K \\ & \text{then } J = K \text{ and } \forall i: \mathbf{v}_i = \mathbf{w}_i. \end{aligned}$$

A *prefix code* \mathcal{C} (more accurately called a “prefix-free code”) has no codeword being a proper prefix of another. Prefix-codes are UD-codes since, stronger than (1.1), they have the *RI-UD property* (the “right-infinite-UD property”) that

$$1.2: \left[\begin{array}{l} \mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3 \cdots = \mathbf{w}_1 \mathbf{w}_2 \mathbf{w}_3 \cdots \\ \text{with each } \mathbf{v}_j, \mathbf{w}_k \in \mathcal{C} \end{array} \right] \Rightarrow \left[\begin{array}{l} \forall i \in \mathbb{Z}_+: \\ \mathbf{v}_i = \mathbf{w}_i \end{array} \right].$$

We have these non-reversible implications

$$1.2': \text{Block} \implies \text{Prefixcode} \stackrel{*1}{\implies} \text{RI-UD} \stackrel{*2}{\implies} \text{UD}.$$

A code showing (*2) non-reversible has these words

$$1.2'': \mathbf{v} := \mathbf{b}, \mathbf{w} := \mathbf{ba}, \mathbf{z} := \mathbf{aa}.$$

It is uniquely decodable (Exer. E1), yet fails (1.2), since $\mathbf{vzzz} \cdots$ equals $\mathbf{wzzz} \cdots$. Finally, that (*1) is non-reversible will be shown by (1.5), the “Chris code”.

A **suffix code** (no codeword is a proper suffix of another) is automatically a UD-code. Dually to (1.2') we have non-reversible implications

$$1.3': \text{Block} \implies \text{Suffixcode} \implies \text{LI-UD} \implies \text{UD},$$

where a **left-infinite-UD-code** (a **LI-UD-code**) satisfies

$$1.3: \left[\begin{array}{l} \cdots \mathbf{v}_{-2} \mathbf{v}_{-1} = \cdots \mathbf{w}_{-2} \mathbf{w}_{-1} \\ \text{with each } \mathbf{v}_j, \mathbf{w}_k \in \mathcal{C} \end{array} \right] \Rightarrow \left[\begin{array}{l} \forall i \in \mathbb{Z}_-: \\ \mathbf{v}_i = \mathbf{w}_i \end{array} \right].$$

Note (1.2'') is an example of a suffixcode which is not a prefixcode.

Bi-infinite. A bi- ∞ **G**-string σ can be viewed as a map $\sigma: \mathbb{Z} \rightarrow \mathbf{G}$. A **C-parsing** of σ is a sequence

$$\cdots < k_{-2} < k_{-1} < k_0 < k_1 < k_2 < k_3 < \cdots$$

of integers st. each substring $\sigma|_{[k_\ell \dots k_{\ell+1}]}$ is a codeword, that is, lies \mathcal{C} . Write sequence $(k_\ell)_{\ell \in \mathbb{Z}}$ as \vec{k} .

Say that \mathcal{C} has the **bi-infinite-UD property** (is **BI-UD**) if

1.4: *Each bi- ∞ string σ which has a C-parsing, has only one C-parsing. I.e., with \vec{j} and \vec{k} two C-parsings of σ , then the sets $\{j_i\}_{i \in \mathbb{Z}}$ and $\{k_\ell\}_{\ell \in \mathbb{Z}}$ are equal.*

Slightly weaker, consider two parsings \vec{j} and \vec{k} , and let $\mathbf{v}_\ell := \sigma|_{[j_\ell \dots j_{\ell+1}]}$ and $\mathbf{w}_\ell := \sigma|_{[k_\ell \dots k_{\ell+1}]}$. The **weak-BI-UD** property asserts

For each σ and parsings as above, there exists a translation $T \in \mathbb{Z}$ so that:

$$1.4^{\text{weak}}: \forall \ell \in \mathbb{Z}: \mathbf{v}_{\ell+T} = \mathbf{w}_\ell.$$

(I.e, one parsing may be a shift of the other, but the codeword sequences are the same.)

Immediately,

$$1.4': \text{BI-UD} \stackrel{*3}{\implies} \text{weak-BI-UD} \stackrel{*4}{\implies} \left[\begin{array}{l} \text{Both LI-UD} \\ \text{and RI-UD} \end{array} \right].$$

The code $\{\mathbf{bbb}\}$ produces $\sigma := \cdots \mathbf{bbb} \cdots$, which is its only bi- ∞ string. This σ has *three* parsings, since the cutpoints \vec{j} can all be mod-3 congruent to -1 or 0 or 1. Yet each parsing yields the *same* codeword sequence, namely $\cdots \boxed{\mathbf{bbb}} \boxed{\mathbf{bbb}} \boxed{\mathbf{bbb}} \cdots$. Hence (*3) is *not reversible*.

The “Pirate code” $\{\mathbf{OH}, \mathbf{HO}\}$ is trivially LI-UD and RI-UD, since it is a blockcode. Yet the Pirate code admits bi- ∞ string $\cdots \mathbf{HOHOHO} \cdots$, which can be parsed as $\cdots \boxed{\mathbf{OH}} \boxed{\mathbf{OH}} \boxed{\mathbf{OH}} \cdots$ or as $\cdots \boxed{\mathbf{HO}} \boxed{\mathbf{HO}} \boxed{\mathbf{HO}} \cdots$, two different codeword sequences. Yup; (*4) *ain't reversible either*.

The “Chris code” (evidently a cry for help)

$$1.5: \quad \{\mathbf{S}, \mathbf{SOS}\}$$

is BI-UD, since each occurrence of “ \mathbf{O} ” must lie in $\boxed{\mathbf{SOS}}$, and every other codeword must be $\boxed{\mathbf{S}}$. Not being a prefixcode, (1.5) proves (*1) not reversible. [So (1.5) is neither a prefix nor suffix code, yet is UD.]

Trees. Here, a (rooted) **tree** is a set T of nodes, equipped with two operators: $\text{Root}(T)$ is the root-node of T . For each node $v \in T$, let $\text{Kids}(v)$ be the set of children of v . A node w is a **leaf-node** if: The set $\text{Kids}(w)$ is empty. A tree has the property that, from the root-node, one can get to an arbitrary node, by applying the $\text{Kids}(\cdot)$ operator finitely-many times.

Trees T and S are (**tree-)****isomorphic** if there exists a bijection $f: T \rightarrow S$ such that:

$$\text{TI 1: } f(\text{Root}(T)) = \text{Root}(S).$$

$$\text{TI 2: For each } v \in T:$$

$$\{f(k) \mid k \in \text{Kids}(v)\} = \text{Kids}(f(v)).$$

For a $\Gamma \in \mathbb{Z}_+$, a tree is **Γ -bounded** if each node has at most Γ many children. The tree is **Γ -full** if every node is either has *no* children [is a **leaf-node**], or has precisely Γ many children; otherwise, the tree is **Γ -deficient**.

Inequalities

Kraft proved (2a) for *prefix-codes*, as well as its converse, (2b). McMillan strengthened (2a) to UD-codes.

2: Kraft-McMillan Inequality. Consider a countable code \mathcal{C} over finite alphabet \mathbf{G} . If \mathcal{C} is a UD-code then

$$2a: \quad \sum_{\mathbf{v} \in \mathcal{C}} 1/\Gamma^{\text{Len}(\mathbf{v})} \leq 1,$$

where Γ is the number of letters in \mathbf{G} .

Conversely, consider posints $\vec{\ell} = (\ell_1, \ell_2, \dots, \ell_R)$.

2b: If $\sum_{j=1}^R 1/\Gamma^{\ell_j} \leq 1$ then there exists a prefix \mathbf{G} -code $\mathcal{C} = (\mathbf{v}_1, \dots, \mathbf{v}_R)$ with each $\text{Len}(\mathbf{v}_j) = \ell_j$.

[The also result holds for infinite tuples $\vec{\ell} = (\ell_1, \ell_2, \ell_3, \dots)$ that satisfy $[\sum_{j=1}^{\infty} 1/\Gamma^{\ell_j}] \leq 1$.] \diamond

Exer. E2. Give an example of a code, \mathcal{X} , that violates (2a). [So \mathcal{X} must fail to be UD.] \square

Defn. A code \mathcal{C} is **weakly-UD** if the following holds. For each posint N and words $\mathbf{v}_i, \mathbf{w}_i \in \mathcal{C}$:

1.1': If $\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_N = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_N$ then $\forall i: \mathbf{v}_i = \mathbf{w}_i$.

Contrast this with the (1.1) defn of **UD**. \square

Exer. E3. POSTING RACE: Who can be the first to post a code which is weakly-UD, but not UD? \square

Preliminaries for (2a). The below proof uses $S_{n,\ell}$, the number of length- ℓ strings which are concatenations of n many codewords. E.g, consider a code $\mathcal{C} = \{\mathbf{v}, \mathbf{w}, \mathbf{z}\}$ have lengths 5, 7, 8, respectively.

$$\begin{aligned} S_{1,15} &= |\emptyset| = 0. & S_{2,15} &= |\{\mathbf{wz}, \mathbf{zw}\}| = ? \\ S_{3,15} &= |\{\mathbf{vvv}\}| = 1. & S_{4,15} &= |\emptyset| = 0. \end{aligned}$$

Indeed, $S_{n,15}$ is zero for each $n \geq 4$. As for $S_{2,15}$: If $\mathbf{wz} = \mathbf{zw}$ then $S_{2,15} = 1$, else $S_{2,15} = 2$. \square

Proof of (2a). WLOG generality, \mathcal{C} is finite. (Exer. E4)

With $\Gamma := |\mathbf{G}|$, our goal is

$$2a': \quad \sum_{\mathbf{v} \in \mathcal{C}} 1/\Gamma^{\text{Len}(\mathbf{v})} \stackrel{?}{\leq} 1.$$

WELOG, suppose the shortest and longest words in \mathcal{C} have lengths 3 and 7. For $n = 1, 2, \dots$, each string in \mathcal{C}^n has a length, ℓ , in $[3n..7n]$; let $S_{n,\ell}$ be the number of such strings. Certainly $S_{n,\ell} \leq \Gamma^\ell$, the number of all length- ℓ strings over \mathbf{G} . So the “generating function”

$$F_n(x) := \sum_{\ell=3n}^{7n} [S_{n,\ell} \cdot x^\ell]$$

satisfies, for $x > 0$, that $F_n(x) \leq \sum_{\ell=3n}^{7n} \Gamma^\ell \cdot x^\ell$. Thus

$$*: F_n\left(\frac{1}{\Gamma}\right) \leq \sum_{\ell=3n}^{7n} \Gamma^\ell \cdot \frac{1}{\Gamma^\ell} \stackrel{\text{note}}{=} 1 + 7n - 3n \stackrel{\text{note}}{\leq} 5n,$$

for each posint n .

Using uniqueness. Fix n and an $\ell \in [3n..7n]$.

The coefficient of x^ℓ in $[F_1(x)]^n$ is the number of \mathcal{C} - n -parsing of length- ℓ strings, whereas $S_{n,\ell}$ is the number of length- ℓ strings which admit a \mathcal{C} - n -parsing.

The UD-hypothesis [actually, only “weakly-UD” is being used] says these two numbers are equal. Hence our two polynomials are equal,

$$\begin{aligned} [F_1(x)]^n &= F_n(x). \quad \text{So } (*) \text{ implies} \\ \left[F_1\left(\frac{1}{\Gamma}\right)\right]^n &\leq 5n. \end{aligned}$$

The LHS is exponential in n , whilst the RHS is linear. Thus $F_1\left(\frac{1}{\Gamma}\right) \leq 1$. Finally, observe that $F_1\left(\frac{1}{\Gamma}\right)$ is a rewriting of LHS(2a). \spadesuit

Proof of (2b). We’ll show the idea for $\Gamma = 2$. Arrange the lengths as $\ell_1 \leq \ell_2 \leq \dots \leq \ell_R$. On the full binary-tree of depth $D := \ell_R$, put weight $1/2^D$ on each leaf-node. All the nodes start as **free**; we will iteratively mark some as **busy** as we create words $\mathbf{v}_1, \mathbf{v}_2, \dots$. Call a node **very-free** if it and all its descendants are free, i.e not **busy**.

Let \mathbf{v}_1 be the leftmost path down to depth ℓ_1 ; so $\mathbf{v}_1 = \text{000} \dots \ell_1 \text{0}$. Mark \mathbf{v}_1 and all its descendants as **busy**. This action creates busy *leaf*-nodes of total weight.

$$2^{D-\ell_1} \cdot \frac{1}{2^D} \stackrel{\text{note}}{=} 1/2^{\ell_1}.$$

With $d := \ell_1$, note that

*: Each free node at depth $\geq d$ is very-free.

Let \mathbf{v}_2 be the leftmost path to a free node at depth ℓ_2 . [So \mathbf{v}_2 has $\ell_1 - 1$ many 0s, then a 1, then $\ell_2 - \ell_1$ many 0s.] Mark \mathbf{v}_2 and its descendants as *busy*. Now the total weight of busy leaf-nodes is

$$\frac{1}{2^{\ell_1}} + \frac{1}{2^{\ell_2}}.$$

Moreover, with $\boxed{d := \ell_2}$, note (*) holds, since $\ell_2 \geq \ell_1$.

We'd like to continue using depth ℓ_3 , depth ℓ_4, \dots , depth ℓ_k, \dots . The only obstruction at a stage k , is if there is no free node at depth ℓ_k . But the total leaf-weight we've used up so far, is

$$W := \sum_{j=1}^{k-1} 1/2^{\ell_j}.$$

Since this sum is *strictly* less than 1, there exists a free-node at depth ℓ_{k-1} . (Indeed, the number of such free-nodes is precisely $[1 - W]/2^{k-1}$.) Finally, since $\ell_k \geq \ell_{k-1}$, there is certainly a free-node at depth ℓ_k . ♦

2c: **Defn.** For a Γ -code with lengths $\vec{\ell} = (\ell_1, \dots, \ell_R)$, use

$$\Sigma(\vec{\ell}) := \Sigma_{\Gamma}(\vec{\ell}) := \sum_{j=1}^R 1/\Gamma^{\ell_j}$$

for its **Kraft-sum**. Kraft's thm says –if the code is UD– that $\Sigma(\vec{\ell}) \leq 1$. If equality, then the code [ditto the tuple] is **complete**, otherwise it is **redundant**; more precisely, Γ -**complete** and Γ -**redundant**.

Given tuples $\vec{\ell} = (\ell_1, \dots, \ell_N)$ and $\vec{s} = (s_1, \dots, s_R)$, write $\vec{\ell} \preccurlyeq \vec{s}$ if $N=R$ and $\boxed{\forall j: \ell_j \leq s_j}$. Write $\vec{\ell} \prec \vec{s}$

if $\vec{\ell} \preccurlyeq \vec{s}$ yet $\vec{\ell} \neq \vec{s}$. [Ditto for ∞ tuples.] Note $\vec{\ell} \preccurlyeq \vec{s}$ implies $\Sigma(\vec{\ell}) \geq \Sigma(\vec{s})$ □

Exer. E5. A finite Γ -bounded tree T with R many leaves, yields a length-**spectrum** $\vec{\ell} = (\ell_1, \dots, \ell_R)$; so terms “ Γ -complete” and “ Γ -redundant” makes sense for the tree. Prove:

2d: **Completeness Lemma.** A finite Γ -bounded tree, T , is Γ -complete IFF it is Γ -full. □

In (2e), below, we first consider only binary prefix-codes; $\Gamma = 2$.

2e: K-M Completeness corollary. If finite tuple \vec{s} has $\Sigma(\vec{s}) \leq 1$, then there exists a complete prefix-code with tuple $\vec{\ell} \preccurlyeq \vec{s}$. ◇

Proof. We need but produce a complete $\vec{\ell} \preccurlyeq \vec{s}$, since Kraft's thm will hand us a prefix-code with lengths $\vec{\ell}$.

It suffices, given a redundant \vec{s} , to produce an $\vec{\ell} \prec \vec{s}$ with $\Sigma(\vec{\ell}) \leq 1$. After all, there are only finitely-many tuples $\prec \vec{s}$, so iterating will eventually halt, at a complete tuple.

WLOG, $T := s_1$ is a max-length in \vec{s} ; so each $1/2^{s_j}$ is a multiple of $1/2^T$, hence so is $\Sigma(\vec{s})$. As \vec{s} is redundant, the **gap** $1 - \Sigma(\vec{s})$ dominates $1/2^T$. So define $\vec{\ell}$ by $\ell_2 := s_2, \dots, \ell_R := s_R$, and $\ell_1 := s_1 - 1$. ♦

Exer. E6. POSTING RACE: Does (2e) hold for larger alphabet-sizes? If so, how does the proof need to be modified? □

Exer. E7. POSTING RACE: A block code is an example of a **prefix/suffix-code**, i.e, both. (Dis)Prove: There exists a complete prefix/suffix-code \mathcal{C} whose length-spectrum is not constant. □

Sardinas-Patterson Algorithm. An example of a UD-code [indeed, it is a suffixcode], for which the SarPat algorithm eventually cycles (as it must), but not with the empty prefix-list, is

$$\{\text{bc , b , Xc , cX}\}.$$

(On hold...)

Decoding-delay for UD-codes. Consider a long word \mathbf{w} which is the initial part...

(On hold...)

Cryptography

Affine codes. Breaking affine codes with known/chosen plaintext.

Diffie-Hellman and El Gamal.

RSA. Pollard- ρ algorithm and Floyd cycle-finding alg..

Data compression

[Huffman codes. Source coding. In Spring2019: Skipped Ziv-Lempel.]

Expected coding-length

The binary numeral for positint K has form $\text{Bits}(K)$, where $\text{Bits}(K)$ is a $\{0, 1\}$ -word. E.g, $\text{Bits}(23) = 0111$ because $\text{Binary}(23) = 10111$. Also $\text{Bits}(3) = 1$ and $\text{Bits}(2) = 0$ and $\text{Bits}(1) = \epsilon$, the nullword. Let

$$|K|_{\text{Bit}} := |\text{Bits}(K)|. \quad \text{So } |23|_{\text{Bit}} = 4, \quad |2|_{\text{Bit}} = 1 \\ \text{and } |1|_{\text{Bit}} = 0.$$

With $n := |K|_{\text{Bit}}$, then, $2^{n+1} > K \geq 2^n$.

Exer.E8. POSTING RACE: *Produce an infinite prefix-code $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots\}$ such that $\lim_{K \rightarrow \infty} \frac{|\mathbf{v}_K|}{|K|_{\text{Bit}}} = 1$.* \square

Exer.E8.1. Infinite prefix-code $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots\}$ has the property that each

$$\dagger: \quad |\mathbf{w}_K| \leq |K|_{\text{Bit}} + f(|K|_{\text{Bit}}),$$

where $f: \mathbb{Z}_+ \rightarrow \mathbb{N}$. Prove that $\lim_{n \rightarrow \infty} f(n) = \infty$, using that \mathcal{C} satisfies the Kraft inequality. \square

Exer.E8.2. (Dis)Prove: \exists prefix code $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots\}$ satisfying (\dagger) , with $f(n) \leq \text{Const} + [1.007] \cdot \log(n)$. \square

Exer.E8.3. (Dis)Prove: \exists prefix code $\{\mathbf{w}_1, \mathbf{w}_2, \dots\}$ with $\lim_{K \rightarrow \infty} \frac{|\mathbf{w}_K|}{|K|_{\text{Bit}}} = 1$ and subseq $K_1 < K_2 < \dots$ with each $|\mathbf{w}_{K_\ell}| \leq |K_\ell|_{\text{Bit}} + 99$. \square

Probability distr. A *probability distribution* on a codeword-set \mathcal{C} is a map $\mathcal{P}: \mathcal{C} \rightarrow [0, 1]$ st.

$$3a: \quad \sum_{\mathbf{v} \in \mathcal{C}} \mathcal{P}(\mathbf{v}) = 1.$$

We will usually discard from the code all probability-zero words. In practice, then, a “probability distribution” is a map $\mathcal{P}: \mathcal{C} \rightarrow (0, 1)$ fulfilling (3a)

The *expected² coding length* of \mathcal{C} is

$$3b: \quad \text{ECL}(\mathcal{C}) := \sum_{\mathbf{v} \in \mathcal{C}} \mathcal{P}(\mathbf{v}) \cdot \text{Len}(\mathbf{v}).$$

E.g, consider code $\mathcal{C} := \{\mathbf{w}_1, \dots, \mathbf{w}_4\}$ where

$$3c: \quad \mathbf{w}_1 := 00, \mathbf{w}_2 := 010, \mathbf{w}_3 := 011, \mathbf{w}_4 := 1,$$

where $\mathcal{P}(\mathbf{w}_4) = \frac{1}{2}$, and the other three words have probability $\frac{1}{6}$. Then $\text{ECL}(\mathcal{C})$ is then

$$\frac{1}{2} \cdot 1 + \frac{1}{6} \cdot [2 + 3 + 3] = \frac{11}{6}.$$

Codemap. A *source alphabet* Ω , also called a “message set”, might be

$$\{\text{a, b, \dots, z, ., Space}\},$$

or might be $\{\text{tank, ship, \dots, plane}\}$. Fixing a *code-alphabet* \mathbf{G} , a map $f: \Omega \rightarrow \mathbf{G}^+$ is a *codemap* (or *cipher*) if

i: f is injective, and

ii: $\mathcal{C} := \text{Range}(f)$ is a code. [Phrased this way, so that if we change our defn of “code” for a given context, then the defn of *codemap* changes with it.]

Every adjective applying to a code, also applies to a codemap; e.g, “a *block/prefix/UD* codemap”.

ECL. Consider a [finite or countably-infinite] message set Ω and a probability distribution $\mathcal{P}: \Omega \rightarrow [0, 1]$. A codemap $f: \Omega \rightarrow \mathbf{G}^+$ puts a probability-distribution on $\mathcal{C} := \text{Range}(f)$ by assigning, for $\mathbf{w} \in \mathcal{C}$,

$$4a: \quad \mathcal{P}(\mathbf{w}) := \mathcal{P}(f^{-1}(\mathbf{w})).$$

Thus the code has an *expected coding-length*, which we may write as

$$\text{ECL}(\mathcal{C}) \text{ or } \text{ECL}(f).$$

²“Expected” is what probabilists use for “average”.

MECL. Use *MECL* for Minimum ECL. Consider a *finite* prob-vector $\vec{\mathbf{p}} = (p_1, \dots, p_L)$. A code [for the moment, assume a binary code] $\mathcal{C} = (\mathbf{v}_1, \dots, \mathbf{v}_L)$ has

$$3b': \quad \text{ECL}(\mathcal{C}) = \sum_{j=1}^L p_j \cdot \text{Len}(\mathbf{v}_j).$$

The minimum of (3b') taken over *all* prefix-codes, or over all UD-codes, we will call

$$4b: \quad \text{PC-MECL}(\vec{\mathbf{p}}) \text{ and } \text{UD-MECL}(\vec{\mathbf{p}}),$$

respectively. Evidently

$$4c: \quad \text{PC-MECL}(\vec{\mathbf{p}}) \geq \text{UD-MECL}(\vec{\mathbf{p}})$$

since, for UD-codes, we are taking a minimum over the larger collection of codes. By the way, I'll sometimes use *MECL*($\vec{\mathbf{p}}$) as a synonym for *UD-MECL*($\vec{\mathbf{p}}$).

The minimum in (3b') depends on $\Gamma := |\mathbf{G}|$, the number of letters in our code alphabet. [We can compress English more by coding into a 3-letter alphabet, rather than a 2-letter alphabet.] To indicate the dependency on cardinality Γ , we may write

$$4d: \quad \text{PC-MECL}_\Gamma(\vec{\mathbf{p}}) \text{ and } \text{UD-MECL}_\Gamma(\vec{\mathbf{p}}).$$

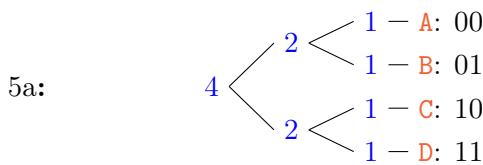
Huffman codes

[Binary HCs will be described in class.]

Interpret a tuple such as $(3:A\ 1:B\ 5:C)$ as putting prob-distribution $(\frac{3}{9}, \frac{1}{9}, \frac{5}{9})$ on letters (A, B, C) ; the 9 is the sum of the *weights*, $3 + 1 + 5$.

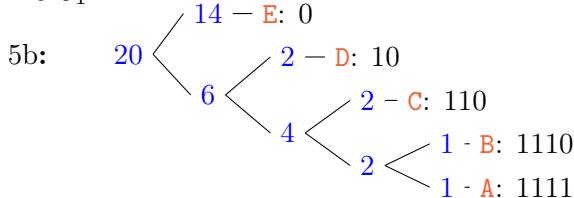
Our convention is that the branch going *up-right* is labeled with bit 0; the *down-right* with bit 1. [On exams, all coalescings will be of *distinct* probabilities, and I'll ask that you put the *smaller* probability on the 0-branch.]

Non-uniqueness of Huffman Codes. Frequency-tuple $F := (1:A\ 1:B\ 1:C\ 1:D)$ admits HC



But F also admits each other permutation of $\{A, B, C, D\}$ being attached to those leaves. So this Freq-tuple admits several HCs.

For a more interesting example, consider Frequency-tuple $F' := (1:A\ 1:B\ 2:C\ 2:D\ 14:E)$. This admits HC \mathcal{C}_1 :

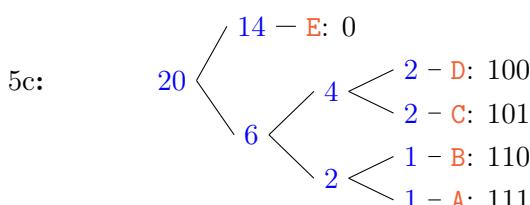


So $20 \cdot \text{ECL}(\mathcal{C}_1)$ equals [Weight \cdot WordLen \cdot Count]

$$\overbrace{1 \cdot 4 \cdot 2}^{\text{B,A}} + \overbrace{2 \cdot 3 \cdot 1}^{\text{C}} + \overbrace{2 \cdot 2 \cdot 1}^{\text{D}} + \overbrace{14 \cdot 1 \cdot 1}^{\text{E}} = 32.$$

Thus $\text{ECL}(\mathcal{C}_1) = \frac{32}{20} = \frac{8}{5}$ bits-per-letter.

Our F' also admits HC \mathcal{C}_2 :



Thus $20 \cdot \text{ECL}(\mathcal{C}_2)$ equals

$$\overbrace{1 \cdot 3 \cdot 2}^{\text{B,A}} + \overbrace{2 \cdot 3 \cdot 2}^{\text{D,C}} + \overbrace{14 \cdot 1 \cdot 1}^{\text{E}} = 32.$$

We see that $\text{ECL}(\mathcal{C}_2) = \text{ECL}(\mathcal{C}_1)$. It is worth noticing that codes \mathcal{C}_1 and \mathcal{C}_2 are not only different, they are not even tree-isomorphic. \square

6: HC-same-ECL Thm. Fix a probability L -vec \vec{p} , with $L \geq 2$. Then all \vec{p} -HCS have the same ECL. \diamond

Proof. We proceed by induction on L , with proposition $R(L)$: For every prob. L -vec \vec{q} : Each two \vec{q} -HCS have the same ECL.

The base $L=2$ case is easy, since the only Huffman-tree is $\text{Root} \leqslant \frac{\text{Prob.}}{\text{Prob.}}$ whose ECL is 1.

Induction step. Fix an $L \geq 3$ st. $R(L-1)$.

Let $J := L-2$. Given \vec{p} , let α, β denote its two lowest probabilities, \heartsuit^3 and write \vec{p} as $(\alpha, \beta, p_1, p_2, \dots, p_J)$.

Consider two HCs, \mathcal{C} and \mathcal{X} , with length-spectra that I have written above and below \vec{p} , here.

$$\begin{aligned} \mathcal{C} : & D\ D\ d_1\ d_2\ \dots\ d_J \\ & (\alpha, \beta, p_1, p_2, \dots, p_J) \\ \mathcal{X} : & Y\ Y\ y_1\ y_2\ \dots\ y_J. \end{aligned}$$

So code \mathcal{C} assigns length- D codewords to the first two nodes it joins, which have probs α and β . Computing

$$\begin{aligned} \text{ECL}(\mathcal{C}) &= D \cdot \alpha + D \cdot \beta + \sum_{i=1}^J [d_i \cdot p_i]; \\ \dagger: \quad \text{ECL}(\mathcal{X}) &= Y \cdot \alpha + Y \cdot \beta + \sum_{i=1}^J [y_i \cdot p_i]. \end{aligned}$$

After joining two nodes, the codes now recursively act on $\vec{q} := (\alpha+\beta, p_1, p_2, \dots, p_J)$ and assign length-spectra as follows:

$$\begin{aligned} \mathcal{C} : & D-1\ d_1\ d_2\ \dots\ d_J \\ & (\alpha+\beta, p_1, p_2, \dots, p_J) \\ \mathcal{X} : & Y-1\ y_1\ y_2\ \dots\ y_J. \end{aligned}$$

Since \vec{q} is an $[L-1]$ -vector, proposition $R(L-1)$ says that the above two ECLs are equal, i.e

$$\begin{aligned} \dagger: \quad [D-1] \cdot [\alpha+\beta] + \sum_{i=1}^J [d_i \cdot p_i] \\ &= [Y-1] \cdot [\alpha+\beta] + \sum_{i=1}^J [y_i \cdot p_i]. \end{aligned}$$

And this implies equality in the two RhSs of (\dagger) . \diamond

\heartsuit^3 They might be equal; indeed, perhaps $\beta = \alpha$, with 8 nodes all having probability α . We are not picking two *nodes*; we are picking two **probabilities**. In particular, I am not assuming that HCs \mathcal{C} and \mathcal{X} join the same two nodes, at the first step.

7a: **Depth Lemma.** Fix a probability L -vector \vec{p} , and a \vec{p} -PC-MECL. Consider two leaf-nodes with probabilities α and α' , at depths D and D' , respectively. If $\alpha > \alpha'$, then necessarily $D \leq D'$. \diamond

Exer. E9. Prove the above Depth Lemma. \square

7b: **Huffman's theorem.**

i: *HCs are PC-MECLs.*

ii: *HCs are UD-MECLs.* \diamond

Pf of (i). We induct on L , with proposition

$\text{HUFF}(L)$: Each probability L -vector \vec{q} , admits a Huffman Code which is a PC-MECL.

The base $L=2$ case is immediate, since the only tree is $\text{Root} \leftarrow \frac{\text{Prob.}}{\text{Prob.}}$, which is a Huffman-tree.

Induction step. Fix an $L \geq 3$ st. $\text{HUFF}(L-1)$. Fix \vec{p} , a prob. L -vector, and consider a \vec{p} -PC-MECL, viewed as a tree.

Let $\alpha \leq \beta$ denote the two smallest probabilities of \vec{p} . At the tree's deepest level, D , consider two joined leaf-nodes, and call their probabilities x and y . It suffices to show:

We can permute the probabilities of the leaves, *: without changing the ECL, so that, now, these two nodes have probabilities α and β .

For then, we collapse these two into a single node, producing prob.-vec $\vec{q} := (\alpha + \beta, p_2, p_3, \dots, p_{L-1})$. By the induction hypothesis, there is a \vec{q} -HC which is a \vec{q} -PC-MECL. Expanding the collapsed node back into $\leftarrow \frac{\alpha}{\beta}$ automatically produces a Huffman-tree⁴, which is a \vec{p} -PC-MECL. And all HCs have the same ECL, by (6).

⁴The permuting of probabilities, because it is done recursively, can permute interior-nodes of the tree. So the final Huffman-tree can be non-isomorphic to the original PC-MECL tree. This kind of argument is called *tree surgery*.

Establishing (*). If $x = \alpha$, then leave that leaf-node alone. Otherwise, $x > \alpha$. Our Depth Lemma, (7a), says that no α -node can be shallower than x , so [since x is at max depth], every α -node has to be at D , the deepest level. Switch some α -leaf with our x -leaf.

This does not change the ECL, since the nodes are at the same depth.

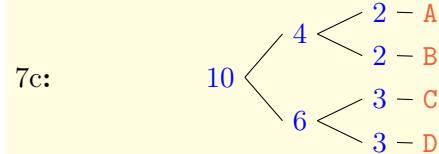
Now our joined-pair is $\leftarrow \frac{\alpha}{y}$. Do the same operation with y w.r.t β . Now our joined-pair is $\leftarrow \frac{\alpha}{\beta}$, as desired. \diamond

Exer. E10. Prove (ii), that every HC is a UD-MECL. \square

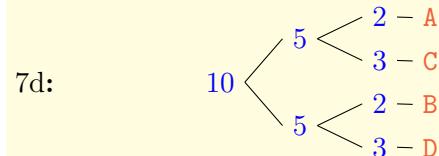
Pf of (ii), (E10). Fix \vec{p} and a \vec{p} -UD-MECL; write its length-*spectrum* as $\vec{\ell} = (\ell_1, \dots, \ell_R)$. By Kraft's thm, there is a PC-code with the same spectrum hence, when assigned to the same probabilities, has the same ECL. And part (i) shows there is a HC with the same ECL. \diamond

Exer. E11. POSTING RACE: (Dis)Prove: If prefix code \mathcal{C} is a PC-MECL, then \mathcal{C} is a Huffman code. \square

Solution to E11. False. Consider frequency-tuple $(2:A\ 2:B\ 3:C\ 3:D)$. Its only Huffman-tree is



(This admits eight HCs, since at each of the three nodes we can choose which edge is labeled 0 and which is 1.) This codetree has $\text{ECL} = 2$. But so does this tree,



which is *not* a Huffman code. \diamond

Entropy/Distropy

Define $\eta: [0, 1] \rightarrow [0, \infty)$ by $\eta(x) := x \cdot \log_2(1/x)$, and extend by continuity, so that $\eta(0) = 0$. (Use l'Hôpital's rule, if you like.)

The *distribution entropy*, which I call *distropy*, of a probability-vector \vec{v} is

$$\mathcal{H}(\vec{v}) := \sum_{p \in \vec{v}} \eta(p).$$

For a probability-distr $P()$ on a code⁵ \mathcal{C} , then, $\mathcal{H}(P)$ equals $\sum_{\mathbf{v} \in \mathcal{C}} \eta(P(\mathbf{v}))$.

8: Distropy UD-code Inequality. Fix a binary code \mathcal{C} and probability distribution $P: \mathcal{C} \rightarrow (0, 1)$. If \mathcal{C} is uniquely decodable, then

$$8a: \quad \text{ECL}(\mathcal{C}) \geq \mathcal{H}(P).$$

There is equality in (8a) IFF

$$8b: \quad \forall \mathbf{v} \in \mathcal{C}: P(\mathbf{v}) = 1/2^{\hat{v}},$$

where, here, \hat{v} means $\text{Len}(\mathbf{v})$. \diamond

Pf of (8a). Let “ $\sum_{\mathbf{v}}$ ” mean “ $\sum_{\mathbf{v} \in \mathcal{C}}$ ”.

With $\mathcal{L}() := \log_2()$, note $\text{ECL}(\mathcal{C})$ equals $\sum_{\mathbf{v}} P(\mathbf{v}) \cdot \hat{v}$, which equals $\sum_{\mathbf{v}} P(\mathbf{v}) \mathcal{L}(2^{\hat{v}})$. Consequently, we can write $\mathcal{H}(P) - \text{ECL}(\mathcal{C})$ as

$$\begin{aligned} & \left[\sum_{\mathbf{v}} P(\mathbf{v}) \mathcal{L}\left(\frac{1}{P(\mathbf{v})}\right) \right] - \left[\sum_{\mathbf{v}} P(\mathbf{v}) \mathcal{L}(2^{\hat{v}}) \right] \\ &= \sum_{\mathbf{v}} P(\mathbf{v}) \mathcal{L}\left(\frac{1}{P(\mathbf{v})} \cdot \frac{1}{2^{\hat{v}}}\right). \end{aligned}$$

Since $\mathcal{L}()$ is strictly convex-down, Jensen's inequality, (12), applies to say

$$\begin{aligned} \dagger: \quad \mathcal{H}(P) - \text{ECL}(\mathcal{C}) &\leq \mathcal{L}\left(\sum_{\mathbf{v}} P(\mathbf{v}) \cdot \frac{1}{P(\mathbf{v})} \frac{1}{2^{\hat{v}}}\right) \\ &\stackrel{\text{note}}{=} \mathcal{L}\left(\sum_{\mathbf{v}} 1/2^{\hat{v}}\right). \end{aligned}$$

By (2a) the Kraft-McMillan inequality, $\sum_{\mathbf{v}} 1/2^{\hat{v}} \leq 1$. And $\mathcal{L}()$ is order-preserving. Thus the above yields

$$\mathcal{H}(P) - \text{ECL}(\mathcal{C}) \leq \mathcal{L}(1) = 0,$$

as desired. \diamond

⁵For comparison with (binary) distropy/entropy, we will usually be examining a *binary code*; a code over a 2-symbol alphabet, \mathbb{B} . (Typically, $\mathbb{B} = \{0, 1\}$.) So a *binary code* is a subset $\mathcal{C} \subset \mathbb{B}^+$.

Pf of (8b). Suppose $\text{ECL}(\mathcal{C}) = \mathcal{H}(P)$. This forces equality in Kraft, so $\sum_{\mathbf{v}} 1/2^{\hat{v}} = 1$, and in Jensen's, so the map $\mathbf{v} \mapsto \frac{1}{P(\mathbf{v})} \cdot \frac{1}{2^{\hat{v}}}$ is constant; say κ .

Thus $P(\mathbf{v}) \cdot \kappa = 1/2^{\hat{v}}$, for each \mathbf{v} . Summing over all $\mathbf{v} \in \mathcal{C}$ implies that $1 \cdot \kappa = 1$. Hence $\kappa = 1$. \diamond

Convention. For $p \in [0, 1]$, let p^c mean $1 - p$, in analogy with $P(B^c)$ equaling $1 - P(B)$ on a probability space. [See APPENDIX for independence, \perp , defns.]

9: Distropy fact. For partitions P, Q, R on probability space.

a: $\mathcal{H}(P) \leq \log(\#P)$, with equality IFF P is an equi-mass partition.

b: $\mathcal{H}(Q \vee R) \leq \mathcal{H}(Q) + \mathcal{H}(R)$, with equality IFF $Q \perp R$.

c: For $p \in [0, \frac{1}{2}]$, the function $p \mapsto \mathcal{H}(p, p^c)$ is strictly increasing. \diamond

Proof. Use the strict concavity of $\eta()$, together with Jensen's Inequality. \diamond

10: Binomial Lem. Fix $p \in [0, \frac{1}{2}]$ and let $H := \mathcal{H}(p, p^c)$. Then for each $n \in \mathbb{Z}_+$:

$$10': \sum_{j \in [0..pn]} \binom{n}{j} \leq 2^{H \cdot n}. \quad \diamond$$

Proof. Let $X \subset \{0, 1\}^n$ be the set of \mathbf{x} with $\#\{i \in [1..n] \mid x_i = 1\} \leq p \cdot n$. On X , let P_1, P_2, \dots be the coordinate partitions; e.g. $P_7 = (A_7, A_7^c)$, where $A_7 := \{\mathbf{x} \mid x_7 = 1\}$. Weighting each point by $\frac{1}{|X|}$, the uniform distribution $\mu()$ on X , gives that $\mu(A_7) \leq p$.

So $\mathcal{H}(P_7) \leq H$, by (9c).

Finally, the join $P_1 \vee \dots \vee P_n$ separates the points of X . So

$$\begin{aligned} \log(\#X) &= \mathcal{H}(P_1 \vee \dots \vee P_n) \\ &\leq \mathcal{H}(P_1) + \dots + \mathcal{H}(P_n) \leq Hn, \end{aligned}$$

making use of (9a,b). And $\#X$ equals LhS(10'). \diamond

NOTE: Below, several quantities need to be natnums, and so some floor or ceiling symbols are needed. I have omitted them, to show the overall idea of the proof.

11: Shannon source-coding thm. Fix probability $0 < p < \frac{1}{2}$, and set $H := \mathcal{H}(p, p^c)$. Consider the iid-process on alphabet $\{0, 1\}$ with $P(1) = p$ (hence $P(0) = 1 - p$). Fix $\varepsilon > 0$. Then $\forall_{\text{large } N}$, there exists a block-code, mapping

$$N \text{ bits} \rightarrow [H + \varepsilon] \cdot N \text{ bits},$$

with error-probability $< \varepsilon$. \diamond

Pf. Pick $\delta > 0$ so small that $\mathcal{H}(p + \delta, [p + \delta]^c) < H + \varepsilon$.

Define

$$X_N := \left\{ \vec{x} \in \{0, 1\}^N \mid p - \delta < \text{Freq}(1 \text{ in } \vec{x}) < p + \delta \right\},$$

where the frequency is $\frac{1}{N}$ times the number of 1s in bit-string \vec{x} . Courtesy the Binomial Lemma (10),

$$|X_N| \leq 2^{[H + \varepsilon] \cdot N}, \quad \text{for all } N \in \mathbb{Z}_+.$$

And WLLN (13b) allows us to fix a large enough N such that

$$P(X_N) \geq 1 - \varepsilon. \quad \text{Henceforth, } X := X_N.$$

Codemap. Let $K := \lceil [H + \varepsilon]N \rceil$. Our $N\text{bit} \rightarrow K\text{bit}$ code, maps X [enumerated in, say, lexicographic order] to bit-strings

$$\overbrace{0 \dots 00}^K, \overbrace{0 \dots 01}^K, \overbrace{0 \dots 10}^K, \overbrace{0 \dots 11}^K, \dots$$

And the code maps each $\vec{x} \in X^c$ to, say, $1^K 1$.

Every word in X is decoded correctly, so the probability of error is $< \varepsilon$. \diamond

Error-correcting codes

Hamming codes, distance, weight, bound.

Shannon's Noisy-channel Thm ...

§A Appendix

Various general tools.

12: **Jensen's inequality.** On an interval $J \subset \mathbb{R}$, consider points $Q_v \in J$, for each v in a countable indexing-set \mathcal{C} . We have a probability-distr $P()$ on \mathcal{C} . Then for each convex-down fnc $\mathcal{L}: J \rightarrow \mathbb{R}$

$$12a: \quad \mathcal{L}\left(\sum_{v \in \mathcal{C}} P(v) \cdot Q_v\right) \geq \sum_{v \in \mathcal{C}} P(v) \cdot \mathcal{L}(Q_v).$$

Now suppose \mathcal{L} is strictly convex-down. Then:

12b: Equality in (12a) IFF the probability-distr is concentrated on a single point.

IOWords, having removed all zero-probability elements from \mathcal{C} , the map $v \mapsto Q_v$ is constant.

Proof. Exercise. [Or see picture on blackboard.] \diamond

Probability

A **random variable** $[r.var]$ is a measurable map $Y: \Omega \rightarrow \mathbb{R}$ where Ω is a probability space. [Can take Ω to be $[0, 1]$.] Unless both the positive and negative parts of Y have infinite integral, the “**expectation** of Y ”, $E(Y) := \int_{\Omega} Y$, is a value in $[-\infty, +\infty]$.

When finite, it is common to call $\mu := E(Y)$ the **mean** of Y . Then **variance** $\text{Var}(Y) := E([Y - \mu]^2)$ is well-defined, and could be $+\infty$.

Independence. Events A, B are *independent*, written $A \perp B$, if $P(A \cap B) = P(A)P(B)$. A family \mathcal{C} of events is independent, written $\perp(\mathcal{C})$ or $\perp(\{A\}_{A \in \mathcal{C}})$, if each finite subset A_1, \dots, A_N has $P(A_1 \cap \dots \cap A_N)$ equalling $\prod_{j=1}^N P(A_j)$. This property of \mathcal{C} is much stronger than **pairwise independence**, where each pair of events in \mathcal{C} is independent.

Random variables X, Y are *independent*, $X \perp Y$, if for each pair of measurable sets $S, T \subset \mathbb{R}$, events $\{X \in S\}$ and $\{Y \in T\}$ are independent. It turns out that this is equivalent to saying, for each pair $x, y \in \mathbb{R}$, that events $\{X \leq x\} \perp \{Y \leq y\}$. When X, Y have finite expectations, then $E(X \cdot Y) = E(X) \cdot E(Y)$.

Extend notions of *independence* and *pairwise independence* to collections of random variables.

13a: **Markov Lemma.** Consider posint n and random variable Y . For each $\varepsilon \in \mathbb{R}_+$:

$$\dagger: \quad P(|Y| \geq \varepsilon) \leq \frac{E(|Y|^n)}{\varepsilon^n}; \quad \text{Markov Inequality.}$$

When n is even,

$$\ddagger: \quad P(|Y| \geq \varepsilon) \leq \frac{E(Y^n)}{\varepsilon^n}. \quad \text{In particular, if } Y \text{ has finite mean } \mu := E(Y), \text{ then}$$

$$P(|Y - \mu| \geq \varepsilon) \leq \frac{\text{Var}(Y)}{\varepsilon^2}; \quad \text{Chebyshev Inequality.}$$

Proof. Exercise. \diamond

13b: **Weak Law of Large Numbers (WLLN).** Consider an identically-distributed pairwise-independent sequence X_1, X_2, \dots where both mean $\mu := E(X)$ and variance $\mathbf{v} := \text{Var}(X) \stackrel{\text{def}}{=} E([X - \mu]^2)$ are finite. Then

$$\lim_{N \rightarrow \infty} P(|\bar{X}_N - \mu| \geq \varepsilon) = 0,$$

$$\text{where } \bar{X}_N := \frac{1}{N} \sum_{j=1}^N X_j. \quad \diamond$$

Proof. WLOG $\mu = 0$. Then $N^2 \cdot \text{Var}(\bar{X}_N)$ equals

$$\begin{aligned} E\left(\left[\sum_{j=1}^N X_j\right]^2\right) &= \left[\sum_{i=1}^N E(X_i^2)\right] + \sum_{j \neq k}^N E(X_j X_k) \\ &= N\mathbf{v} + \sum_{j \neq k}^N E(X_j) \cdot E(X_k) = N\mathbf{v}, \end{aligned}$$

since each $E(X_j) = 0$. Thus $\text{Var}(\bar{X}_N) = \frac{\mathbf{v}}{N}$. Hence

$$P(|\bar{X}_N| \geq \varepsilon) \leq \frac{\text{Var}(\bar{X}_N)}{\varepsilon^2} = \frac{1}{N} \cdot \frac{\mathbf{v}}{\varepsilon^2},$$

by the Chebyshev Inequality. \diamond

§Index for “JK Codes notes”

This is a test of the pre-note.

\mathcal{C} -parsing, 3
 \triangleright , *see* concatenation
 $|\cdot|$, *see* word, length
 \preccurlyeq, \prec , *see* word, prefix
 ϵ , *see* nullword
 $\mathcal{L}^*, \mathcal{L}^+$, *see* Kleene star/plus

 alphabet, 2

 bi-infinite-UD property, 3
 BI-UD, 3
 block code (constant-length), 2

 cipher, 7
 code, 2
 codemap, 7
 complete code, 5
 concatenation, \triangleright , 2

 distribution entropy, 10
 distropy, 10

 entropy, 10
 expectation, 13
 expected coding-length, ECL, 7
 extension of a language, 2

 full tree, *see* tree, Γ -full

 HC, Huffman code, 8

 idempotent, 2
 independent events, 13

 Kleene star/plus, 2
 Kraft-sum, 5

 language, 2
 leaf-node, 3

left-infinite-UD-code, 3
 LI-UD-code, 3

 MECL, 7

 nullishcode, 2
 nullword ϵ , 2
 nullword language, 2

 Posting race, 4–6, 9
 prefix code, 2
 prefix/suffix-code, 5
 probability distribution, 7

 random variable, 13
 redundant code, 5
 restriction of a language, 2
 RI-UD property, 2

 source alphabet, 7
 spectrum, 5, 9
 suffix code, 3

 tree, 3
 Γ -complete/redundant, 5
 Γ -full/deficient, 3
 Γ -bounded, 3
 isomorphism, 3
 surgery, 9

 UD, uniquely decodable, 2

 void language, 2

 weak-BI-UD, 3
 weakly-UD, 4
 word, 2
 length $|\cdot|$, 2
 prefix of \preccurlyeq, \prec , 2

Filename: `Problems/NumberTheory/jk-codes.latex`
As of: *Saturday 30Mar2019*. Typeset: *10May2023 at 11:10*.