
Mathematical induction, PHP, invariance,
extremal arguments . . . and Thinking

J.L.F. King

IMO is ‘International Mathematical Olympiad’.

USAMO is ‘United States of America Mathematical Olympiad’.

HMMT is ‘Harvard-MIT Mathematics Tournament’.

MC is ‘Mathcamp’.

Problems from these and from the Putnam competition,

are labeled as such.
Each class has had an Amanuensis, Problem Czar, Royal Scribe,

whom I thank. Some were: Knight Max Redmond, Sir Alexan-
der Widom, Prime Minister James Cherry, Lady Lindsey Grigsby,
Nicholas Campo, Bhaskar Mishra.

What does this mean?
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Quantifiers ∀ and ∃ (“for all” and “there exists”) are
like nitroglycerin, in that one little mis-step leads
to the whole thing blowing up in your face.

There is no partial credit when it comes to
Explosives and Quantifiers.
–JLF King
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Pigeon-Hole Principle (PHP)

1.1: PHP: How’s my hair? Prove that some two people
on Earth have the same # of hairs on their heads. ♦

Proof. With H the maximum number of head-hairs a
person could have, we have H+1 PHs: A box labeled “0”,
for all the bald folk. A box labeled “1”, for all the the 1-haired
people . . . A box labeled “H”, for all the max-hair folk.

With U denoting the current Earth-popUlation, the
PHP says that there is at last one box with at least⌈

U
H+1

⌉
people in it.

It seems that the max-number of head hairs is about
150,000. Conservatively, take H+1 := 2×105 hairs.
As of Oct.2020, the human pop. is estimated at
U := 7.8×109 . Ratio

7.8× 109

2× 105
= 3.9× 104.

So, on average, about N := 3.9×104 people have the
same number of head-hairs that you do. In particular,
there is some number h, where at least N people have
exactly h head-hairs. �

1.2: PHP: Martian socks.Marty the Martian is dressing
for his date; he’ll meet her at the restaurant. [As we
all know] Martians have 3 feet. In his sock drawer,
jumbled up, are 500 socks; 100 apiece of five colors.
He wants to wear matching socks on his date. Alas
there is a power failure and he can’t see the colors.
What is the minimum number of loose socks he can
grab, to guarantee he has 3 socks of the same color?♦

Proof. With 10 socks, he might have 2 of each color;
no matching triple. Marty needs 11 socks.

With C:=5 the number of colors [i.e, the #
of pigeon-holes], and D:=3 the desired number of
matching socks, the max-number of socks without a
monochromatic D-set is TooFew := [D−1]C.

Therefore, the min-# of socks needed is TooFew+1,
i.e
[
[D−1]C

]
+ 1. �

Filename: Problems/Misc/induction-SELO-jk.latex
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2.1: ??N -friends Problem. In each set of N≥2 people,
some two of them have the same number of friends.
(View friendship as an anti-reflexive, symmetric relation.) ♦

Solved
by: Jeremy S., 2011t. Caleb S., 2014g. Patrick B. & IsaacK., 2017g.

Aerin B. & JeremyM., 2018t. Riley B., 2018t. Everybody, 2019t.
Morgan F. & ??, 2020t. Chris C., 2021g. Luke C., 2021t.

Nate B., 2022g. Alexa M., 2022t. Zhengmao Z., “Bill”, 2023t.

Melanie R., Sarah B. & Andrey N., 2024g.

Learn from the mistakes of others. You can’t
live long enough to make them all yourself.

–Eleanor Roosevelt

Filename: Problems/Misc/induction-SELO-jk.latex
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3.1: ??Points-in-a-square. In square C := [0, 1]×[0, 1],
there are 10 “special” points. Prove that some two of
them are no-further-apart than

√
2/3. ♦

Solved
by: Diego R., 2014g. Yifei L., 2017g. Daniel ?, 2018t.

Bhaskar M., 2019t. Julia A., 2020t. Bill Z., 2021t. Noah K., 2022g.

Aidan H., Noah K., 2022g. Edward G., 2022t. Abhinav P. &

Olivia J., 2023t. Rohit D., Luke L., 2024g.

Malaphors

It’s not rocket surgery.

We’ll burn that bridge when we come to it.

You can beat a dead horse, but you can’t make him drink.

4.1: ??2N -Subset-Problem. Let JN := [1 .. 2N ],
where N∈Z+. If subset S⊂JN is big, i.e has
|S|≥N+1, then:

Appetizer: There exist distinct numbers x,y ∈ S
with x ⊥ y.

Entrée: There exist distinct u,d ∈ S with
u |• d. [Such a (((u, d))) is a divisibility-pair.]♦

Solved
by: Hannah P. & Patrick W., 2011t. Zach N., 2012t. Mor-

gan W., 2014g.

Appetizer: CJ [Charles F.], 2017g. Entrée: Jessie C., 2017g.

Anthony M., Joey F. & Kailey S., 2018t. App: Bhaskar M., 2019t.

Noam A., 2020g. Junhao Z., 2020t. App: Shi Z., 2020t. Ent: Bran-
don A., 2021g.

Luke C., 2021t. App: Nate B., 2022g. Ent: Alejandro L., 2022g.

App: Anneka H., 2022h. Appetizer-by Olivia J., 2023t. Entree-by

Faythe Corr, 2023t. Sam C., 2024g.

4.2: ??Generalized 2N -Subset-Prob. If |S| ≥ N+2,
must S have at least two divisor-pairs? How does the-
above result generalize? �

Unhyphenated English pentasyllabic noun.
Hyphenated monosyllabic long paragraph.

Filename: Problems/Misc/induction-SELO-jk.latex
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5: ??Monochromatic rectangle (USAMO1976.1).

a: Suppose that each cell of a 7×4 chessboard is col-
ored either red or green. Prove, for each such color-
ing, that the board must contain a rectangle [formed
by the horizontal and vertical lines of the board] whose
four distinct corner-cells are all of the same color;
a monochromatic rectangle.

b: Exhibit a red-green coloring of the 4×6 board with
no monochromatic rectangle.

c: Produce an improvement of part (a). ♦

Solved
by: James C. & Caleb S., 2014g. Ken D., 2017g. Alex K., 2018t.

Part (b) by Yukai H., Vanessa W., 2020g. Part (a) by Noam A., 2020g.

Part (b) by Morgan F., Hani S., 2020t. Part (b) by Alex T., 2021g.

Bill Z., 2021t. Part (b) by Nate B., 2022. Diego P., 2022t.

Andrey N., 2024g.

Measure twice, cut once. –Proverb

6.1: ??Lattice coloring. Each point of the lattice
quadrant N×N is colored one of 50 colors. Prove that
N×N admits a monochromatic rectangle. [I.e, the
four corner lattice-pts have the same color.] ♦

Solved
by: Yuhan B. & Hao Z., 2019g. Teegan B., Chris P., Caden C.,

Jessica V., 2020g. Junhao Z., 2020t. Nicholas V.N., Alex T.,

Max W., 2021g. Andrey N., 2024g.

I am always ready to learn although I do
not always like being taught.
–Winston Churchill

Filename: Problems/Misc/induction-SELO-jk.latex
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7.1: ??Triangle Existence. Sticks of lengths a, b, c can
form a (non-degenerate) triangle IFF the sum of each
two lengths exceeds the third. [A length is a posreal.]

Initially, let “upper bnd” U := 32 and “number of
sticks” N := 13. A bag B is a multiset of lengths with
|B|=N , where each length ` ∈ B satisfies 1 ≤ ` < U.
We say that N -bag B is “U-bounded” .

a: Prove that each bag has some 3 sticks which can
form a triangle; this, using a simple PHP argument.
[I.e, prove each 32-bounded 13-bag admits a triangle.]

b: With the same argument, to what value can we
lower N and retain the conclusion?

c: Fix posint N≥3. There is a largest real UN st.: Ev-
ery UN -bounded N -bag admits a (non-degenerate)
triangle. Compute each UN . [Hint: Note U3 = 2.] ♦

Solved
by: Justin K., 2020t.

Nicholas V.N., Alex T., Max W., Aubrey S. & Haritha K., 2021g.

Ben R., 2021t. Alexa M., 2022t. Amogh A. and Abhinav P., 2023t.

This next problem is similar, although I don’t see
how to solve it with PHP.

8.1:Cute ???Acute triangle (USAMO .2012.1). A tuple
~̀ := (((`1, `2, . . . , `N))) of posreals is cute if there are
distinct indices i,j,k whose lengths `i, `j , `k form the
sides of an acute triangle [each angle <90◦]. An N≥3 is
good if every N -tuple satisfying

Max
(
`1, `2, . . . , `N

)
≤ N ·Min(`1, `2, . . . , `N )†:

is cute. Find all good integers. ♦

Filename: Problems/Misc/induction-SELO-jk.latex
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Rooks

Let 7×7 denote the 7×7 chessboard, viewed as a set of
49 cells. A subset S ⊂ 7×7 is friendly if its elements
lie in distinct rows, and in distinct columns. [I.e, no
rook in S could capture another S-rook.]

9.1: ??Non-attacking rooks Thm. Say a subset Γ ⊂ 7×7

is large if |Γ| ≥ 22. Then: Each large Γ admits a
friendly 4-subset. ♦

Solved
by: Alisa M., 2015g. Nathan T., 2019t. Jessica V., 2020g.

Luke C., 2021t. Mason ??, 2022g. Abhinav P., 2023t.
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Prof. JLF King Counting in Two Ways (Double
counting ) Page 9 of 111

Counting in Two Ways (Double
counting)

One type of proof counts a (usually finite) set in two
different ways. Here is an example:

Eg: Mult-is-commutative.Integer 2 · 3 equals 3 · 2. ♦

Double-count pf. Make a 2×3 array of dots. Counting
the # of dots row-wise, gives 2 rows of 3 dots apiece.

Counting column-wise yields 3 columns of 2 dots.�

Now for something more substantial. . .

10.1: DC: Fermat’s Little Thm. Fix P prime. For each
integer n, difference nP − n is a multiple of P. ♦

[See (18a) proving this by Induction.]

Double-count pf. [WLOG n>0.] The idea is illustrated
by n=4. Let S comprise those P-tuples of stones,
colored from G,R,O,B, that are not monochromatic.
Thus |S| = 4P − 4. We now count S a different way.

Connecting the ends of a tuple forms a necklace.
Group together those tuples that form identical neck-
laces, up to rotation. [We are not allowed to turn-over a
necklace.] It suffices to show

Each necklace-group comprises Pmany tuples.∗:

For then,
∣∣S∣∣ = [# of necklace-groups] · P.

If a necklace-group comprised only d many tuples,
where d<P, then the corresponding necklace is peri-
odic with period d. Hence, d is a proper divisor of P.
Our P is prime, whence d = 1. But that means that
the necklace is monochromatic, hence was not in S.�

Filename: Problems/Misc/induction-SELO-jk.latex
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11.1: ??Candy-store identity. The store has an un-
limited supply of 4 types of candy [MMs, lemon-drops,
twizzlers, jelly-beans]. From the 4 types, compute the
number of ways of picking 5 candies, total.

I use
q

4
5

y
, read as “4 types pick 5” , for this number.

For T∈N and K∈Z, use
q
T
K

y
for “T types pick K

(objects)” ♦

Solved
by: Samantha-S., 2017g. Ken D., 2017g. Daniel Z., 2018t.

Hani S., 2020t. Andrew L. & Isabel del-C., 2021t. Ben R., 2021t.

Kevin J. & Noah K., 2022g. Edward G., 2022t. Zhengmao Z., 2023t.

Ivy Z., Rohit D., 2024g.

Being a mathematician means never
having to comb your hair.
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12.1: ??Scheherazade’s Stratagem. On each of the
1001 nights, as Scheherazade tells a tale to King Tut
(yes, I know!) she flips a coin; as does he. But on the
final night, Scheherazade has so mesmerized him that
he forgets to flip. [She flipped 1001 times; he, only 1000.]
She wins if she counted strictly more Heads than he;
else, he wins.

What is Scheherazade’s probability of winning? ♦

Solved
by: Justin K. & Matthew C., 2020g. (Lively ideas contributed by

Hani S., Junhao Z. & Sydney E.)

Jeremy G. & Emily Y., 2022g. Abhinav P., 2023t. Sam C., 2024g.

A Flea and a Fly in a Flue

Were imprisoned, so what could they do?
Said the fly, “let us flee!”
Said the flea, “let us fly!”
So they flew through a flaw in the flue.

–Ogden Nash
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13: ??Binomial-product-PoT Lemma. Consider
natnums N ≥ E. Then∑

k∈[E ..N ]

(N
k

)(k
E

)
= 2N−E ·

(N
E

)
.∗: ♦

Solved
by: Mike C., 2014g. Ross P., 2015g. Ken D., 2017g.

Daniel Z., 2018t. Nathan T., 2019t. Hani S., 2020t. Bill Z., 2021t.

Gabriel G., 2022t. Zhengmao Z., 2023t. Sarah] B., 2024g.
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Combinatorial counting

The Candy-store problem was an example of using
double counting [stars-and-bars], and binomial-coeffs to
prove an identity. Here we look at a related counting
problem.

Tuples. Below, N , L and each aj is a natnum. With
various restrictions, we count the number of tuples
~a = (((a1, a2, . . . , aL))) satisfying[∑L

j=1
aj
]

= N .∗∗:

For posint-tuples, use V+(N) to count all of them,
whereas F+(N,L) counts those of length exactly L.
Finally, use F0(N,L) to count all L-tuples of natnums.
[Symbol V counts Variable-length; F counts Fixed-length.]

These (((1,1,1))),(((1,2))),(((2,1))),(((3))) are the only posint-tu-
ples summing to 3. So V+(3) = 4. And F+(3, 2) = 2,
as only (((1,2))),(((2,1))) have length 2. Allowing natnum
entries (((0,3))),(((1,2))),(((2,1))),(((3,0))), shows that F0(3, 2) = 4.

In contrast, F0(2, 3) = 6, as witnessed by these six
tuples: (((2,0,0))),(((0,2,0))),(((0,0,2))),(((0,1,1))),(((1,0,1))),(((1,1,0))). �

14.1: ??Counting tuples. Allowing factorials, what
are the simplest formulas you can find for

V+(N) = ? , F+(N,L) = ? , F0(N,L) = ? .

Can you avoid summations? Is N=0 a special case?♦

Solved
by: Matthew C. & Sydney E. & Hani S., 2020t. Partial soln

by Morgan F., 2020t. Bill Z., 2021t.
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Inclusion-Exclusion
The InEx pamphlet has a proof of InEx, and several
examples, a few of which appear below.

15: InEx: Counting limited candy. The store sells jelly-
Beans and Chocolate squares and Dates. Mom allows
you a total of 20 candies.

Alas!, the store only has 8B and 5C and 13D.
Stars-and-Bars counts how to pick out of mul-
tiset {∞B,∞C,∞D}. The relevant multiset is
{8B, 5C, 13D}; so how do we count? ♦

Candy soln. Let Ω be the set of natnum triples
(((B, C,D))) with B+C+D = 20. We’ll count the “good ”
[B≤8 & C≤5 & D≤13] triples, using Incl-Excl.

Let AB be the set of natnum-triples that are
“Awful ” because B > 8. Hence,

|AB|
Why?
====

s
3

20− [8+1]

{
=

(
2 + 11

2

)
= 78.

So |AC | =
q

3
20−[5+1]

y
=
(2+14

2

)
= 120, and |AD| = 28.

For pairwise intersections

|AB ∩AC |
Why?
====

s
3

20− [8+5+2]

{
=

(
2 + 5

2

)
= 21.

Also, |AB ∩AD| =
q

3
20−[8+13+2]

y
=

q
3

negative

y Why?
==== 0,

and |AC ∩AD| =
q

3
20−[5+13+2]

y
=

q
3
0

y
= 1.

For the sole three-fold intersection

|AB ∩AC ∩AD| =
s

3

20− [8+5+13+3]

{
=

s
3

neg

{
= 0.

Since
q

3
20

y
= 231, the number of good triples is

|Ω| −
(
|AB| + |AC | + |AD|

)
+
(
|AB ∩AC | + |AB ∩AD| + |AC ∩AD|

)
− |AB ∩AC ∩AD|

= 231 −
[
78+120+28

]
+
[
21+0+1

]
− 0 .

This equals 27. �

Doubting Thomas. Here are the 27 good triples:

(2 5 13) (3 4 13) (3 5 12) (4 3 13) (4 4 12) (4 5 11)
(5 2 13) (5 3 12) (5 4 11) (5 5 10) (6 1 13) (6 2 12)
(6 3 11) (6 4 10) (6 5 9) (7 0 13) (7 1 12) (7 2 11)
(7 3 10) (7 4 9) (7 5 8) (8 0 12) (8 1 11) (8 2 10)
(8 3 9) (8 4 8) (8 5 7)

�
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Prelim. Below, sets D (Domain) and C (Codomain)
have cardinalities D := |D| and C := |C|; both finite.
Thus CD, the set of fncs D→C, has cardinality CD.
Easily:

[The # of injections D→C] = JC ↓ DK.∗:

Let’s compute Sur(D,C), the number of surjections.�

16a: InEx: Counting surjective fncs. With notation
from above

Sur(D,C) =
C∑
k=0

[ 1]k ·
(C
k

)
·[C − k]D .†: ♦

Sur. For point y ∈ C, let Ay comprise those functions
h() which Avoid y; i.e, Range(h) 63 y. Thus

CD r
[⋃

y∈C
Ay
]

‡:

is the set of surjections.
For I ⊂ C, let AI comprise those fncs which miss

each member of I. With k := #I , then,

AI =
{
h ∈ CD

∣∣ Range(h) u I
}

and
∣∣AI

∣∣ = [C− k]D.

The number of subsets I⊂C with #I = k is
(C
k

)
. Con-

sequently, Inclusion-Exclusion yields (†). �

When D<C. There are no surjections, when D<C.
As a (†)-example, Sur(2, 3) equals(3

0

)
·32 −

(3
1

)
·22 +

(3
2

)
·12 −

(3
3

)
·02

= 1·9 − 3·4 + 3·1 − 1·0 = 9− 12 + 3 ,

which indeed equals zero. �

[A Curious Corollary of Counting sur-fncs.]

16b: A Curious Corollary. For N = 0, 1, 2, . . .

N ! =
N∑
k=0

[ 1]k ·
(N
k

)
·[N − k]N .£N : ♦

Proof. When |D| = |C| =: N , then we can identify
D with C and view each surjection as a permutation.
There are N ! permutations. And RhS(£N ) equals
RhS(†) when D= C = N. �

When |D| = |C| = 3. Computing, Sur(3, 3) equals(3
0

)
·33 −

(3
1

)
·23 +

(3
2

)
·13 −

(3
3

)
·03

= 1·27 − 3·8 + 3·1 − 1·0 = 27− 24 + 3 = 6,

which, happily, equals 3-factorial. �

TwoStirling numbers. For natnums D,C, the number
of partitions of a D-set into C many non-void-atoms,
is a “Stirling # of the 2nd kind ” , (or Stirling partition num-
ber). Here, I’ll write it as S(D, C).

Were the C many atoms labeled, then we could view
a partition as a surjective [each atom is non-empty] func-
tion from the D-set into the label-set. Consequently,

S(D, C) =
Sur(D,C)

C !
=

C∑
k=0

[ 1]k· [C − k]D

k! · [C− k]!

(((k,n))) ∈ N×N
==========

∑
k+n=C

[ 1]k · nD

k! · n!

16c:

is the nifty formula we obtain. �
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17.1: ??Random digits (USAMO1972.3). A ran-
dom number selector selects one of the nine integers
1, 2, ..., 9, and it makes these selections independently
and with equal probability. Determine the probabil-
ity, DN , that after N∈N selections, the product of the
N numbers selected is divisible by 10. ♦

Solved
by: Hani S., 2020t. Haritha K. & Alex T., 2021g. Aryaan V., 2022t.

Zhengmao Z., 2023t. Rohit D., 2024g.

Suggestion.Write 1 = v+e+r where, at one selection,

v := [Probability of five] ;

e := [Probability of an even] and

r is the rest of the probability. Use InEx to com-
pute 1−DN . �

Psychic shop closed due to
unforeseen circumstances.
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Induction
For the next thm and two lemmas, P is a fixed prime,
and ≡ means ≡P . [See (10.1) for a double-count proof.]

18a: Ind: Fermat’s Little Thm. Each n∈Z has nP ≡ n.

Induction pf of (18a). WLOGenerality, n ≥ 0.
Base case: 0P = 0 ≡ 0.
Induction: Fix n st. nP ≡ n. The Prime-binomial

lemma 123 gives
(P
k

)
≡ 0, for each k=1, 2, . . . ,P−1.

Hence

[n+1]P =
P∑
k=0

(P
k

)
·nk ·1P−k =

k=P︷︸︸︷
nP +

k=0︷︸︸︷
1 +

P−1∑
k=1

(P
k

)
·nk

≡ nP + 1 ,

by the Binomial thm, Thus [n+1]P ≡ n+ 1, courtesy
the ind.hypothesis. �

See (123a) for a related result.

How Do You Know When You’re Middle Aged?
The Four Warning Signs. . .
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Fixable inequality? Suppose I ask you to demon-
strate the following assertion.

19.1: Error: (Busted base) Statement A. For each
posint n:

5 · 2n < 3n .∗: ♦

You would detect the error and write:

Dear Prof. King:
Something is amiss; assertion (∗) fails for n = 1,

since 5 · 2 6< 3. [Inequality (∗) also fails for n=2 and
n=3.] I, Bubba, correct the statement below, and
prove my correction.

19.2: Theorem A′. For each n ∈ [4 ..∞):

5 · 2n < 3n .P(n): ♦

Proof. Let L(k) := 5·2k and R(k) := 3k.

Base case: Note that

L(4) = 5 · 16 = 80 < 81 ,

which equals R(4). Hence P(4).

Induction: Fix an index n ∈ [4 ..∞). [Henceforth,
“n” plays the role of a constant.]

Assuming P(n), my goal is to establish P(n+1). So
I want to examine how L(n+1) relates to L(n), and
ditto for R().

Easily

L(n+1)
def
== 2 · L(n)

< 2 ·R(n) ,

courtesy P(n) and that 2 is positive. [Multiplication by
a positive number is order-preserving.] Thus

L(n+1) < 2 ·R(n)

< 3 ·R(n) , since R(n) is positive,
def
== R(n+1) ,

as desired. �

Autopsy. Of course, your proof used this elementary
tool.

19.3: Lemma. For all reals α<β, and “multiplier”
M ∈ R: If M is positive, then αM < βM . ♦

Exer.:You used this lemma twice in your proof of
Thm A′; where are the two occurrences?

( How Do You Know You’re Middle Aged? )

1: You don’t understand what on earth the young
peasants are talking about.
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20: Ind:∞ly-many-Primes Thm (Euclid).There are∞ly
many primes. ♦

Pf. Given primes p1, . . . , pN (not-nec. distinct), we
construct a new prime. Let Q :=

[
p1 · p2 · . . . · pN

]
;

this Q is at least 1. [Even for N=0; the void-product is 1.]
Now add 1; let R := Q+ 1. Necessarily, R ⊥ Q.

Thus
�� ��R is coprime to each pj . Moreover, R ≥ 2, so

R has at least one prime factor (which might be R itself).
And each of these prime factors is new. �

Algorithm. Becoming precise, at each stage let the
new prime, call it pn+1, be the smallest prime-factor
of Rn. Then we will generate the Euclid–Mullin sequence,
which is A000945 in OEIS.

Let’s compute the beginning of the sequence.
[Looking into the future: 1807 = 13·139; 23479 = 53·443.]

Primesn Qn Rn pn+1

{} 1 2 2
{2} 2 3 3
{2, 3} 6 7 7
{2, 3, 7} 42 43 43
{2, 3, 7, 43} 1806 1807 13
{2, 3, 7, 43, 13} 23478 23479 53
{2, 3, 7, 43, 13, 53} ? ? + 1 ??

(Exercise: Write down the rest of the table. . . ) �

20a: Joke (Hendrik Lenstra). There are ∞ly many com-
posite numbers. ♦

Proof. To obtain a new composite number, multiply
together the first N composite numbers, then don’t
add 1. �

( How Do You Know You’re Middle Aged? )

2: You struggle to read Chaucer in weak candlelight.
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21.1: Valid?: All horses have the same color.

Prelim. For n ∈ N, we will use induction to prove

Each collection of n horses
is monochromatic (Mcr).Pn: �

Poof. Base case: The emptyset is Mcr, hence (P0).
[Alternatively, we could start with (P1), as singletons are Mcr.]

Induction: Our goal is to show that if each n-set of
horses is monochromatic, then each [n+1]-set is too.
Let’s illustrate the idea with n = 50:

Take an arbitrary collection, C, of 51 horses. Gen-
tly lead one of the horses, say, Abby , out of the cor-
ral, then close the gate, leaving 50 horses in the cor-
ral. [Abby is comfortably munching Kentucky bluegrass in
the field.] Using (P50), the 50-set in the corral is nec-
essarily monochromatic say, brown. Now lead Abby
back in the corral, but take Bert-the-horse out to
the Kentucky bluegrass. Appealing to (P50) again,
the 50 horses currently in the corral must also be
a monochromatic collection, hence also brown. Now
bring Bert-the-horse back in, reforming collection C,
an all-brown 51-set of horses. The argument was ap-
plies to an arbitrary starting collection, C, so our proof
is complete. �

( How Do You Know You’re Middle Aged? )

3: You grumble that the Crusaders look younger
every single year!
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22.1: Ind: General Triangle-Inequality. For each
natnum N , and sequence s1, . . . , sN of complex num-
bers, this inequality holds:∣∣∣∑N

j=1
sj
∣∣∣ ≤

∑N

j=1

∣∣sj∣∣ .QN : ♦

Remark. Looking ahead, our tool will be (Q2). �

22.2: Weak Tri-Ineq. For all complex numbers α,β:∣∣α+ β
∣∣ ≤ |α|+ |β| .∗: ♦

Rem. For α,β real, this follows by a case-by-case
argument [Both negative? Mixed sign?] For complexes,
this takes a bit of development of the complex plane.�

Proof of Gen. Tri-Ineq. We use the vacuous base-case.

Base case: Evidently (Q0), since 0 ≤ 0. [And (Q1),
since |s1| ≤ |s1|. However, we don’t need this argument, since
the induction gets the same result.]

Induction: Fix a natnum N , and sequence
s1, . . . , sN , sN+1. Assuming (QN ), our goal is to es-
tablish (QN+1).

Applying (22.2∗) with α :=
∑N
j=1 sj and β := sN+1,

gives ∣∣∣∑N+1

j=1
sj
∣∣∣ ≤ |α|+ |β| .

And (QN ) yields |α| ≤
∑N
j=1

∣∣sj∣∣. Adding these gives∣∣∣∑N+1

j=1
sj
∣∣∣ ≤ [∑N

j=1

∣∣sj∣∣] + |β| ,

which equals RhS(QN+1), as was sought. �

( How Do You Know You’re Middle Aged? )

4: And you constantly worry about testing positive
for Black Death. . .

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Prelim lemmas, sqrt-harmonic sum Page 22 of 111

Prelim lemmas, sqrt-harmonic sum

By looking ahead in our induction proof, we may find
a result that we wish to prove as a separate lemma.

23.1: Ind: Recip-Squareroot thm. For each N ∈ Z+,

1 + 1√
2

+ 1√
3

+ . . .+ 1√
N

< 2
√
N .†: ♦

Hmmm [Bubba thinks to her/him-self]: After playing
with (†) for a bit, I realize I need a little inequality
involving square-roots. Let me state and prove that
separately, to be nice to those reading my proof.

23.2: Lemma. For each real x ≥ 1, we have that

1√
x

< 2[
√
x −
√
x−1] .∗:

(We needed x≥1 for
√
x−1 to make sense in R.) ♦

Proof of (23.2). Since
√
x > 0, our (∗) is implied by

1
?
< 2[x −

√
x2 − x ] ,

hence by 2
√
x2 − x

?
< 2x − 1. Both sides are non-

negative, so this follows from the squared-version,

4[x2 − x]
?
< 4x2 − 4x + 1 .

And this last is trivially true. �

Proof of Recip-Squareroot thm.Let LN and RN denote
the left/right-hand sides of (23.1†).

Base case. Since L1 = 1 < 2 = R1, we can start
♥1our induction at N=2.

Induction: ISTEstablish, for each N∈[2 ..∞), that
LN − LN−1 < RN −RN−1, i.e, that

1√
N

?
< 2[

√
N −

√
N−1] .‡:

Happily, this is implied by Lemma 23.2. �

♥1Actually, in a sense we could use N=0 as our base case.
True, L0 = 0 = R0, so we do not have the strict inequality
of (†). But as (‡) is strict, we would obtain (†) for N = 1, 2, . . ..

Après-proof. In developing our induction argument,
at (‡) we realized we needed another result. Not only
is it clearer to split the result out to a separate lemma,
but we got a slightly stronger result, since (23.2) holds
for reals, not just integers. �

23.3: Alternative. We can sharpen (23.1), using cal-
culus. For an arbitrary decreasing fnc f :R+→R+ and
integer N ∈ [2 ..∞), a picture easily shows♥2 that

N∑
j=2

f(j) <

∫ N

1
f(x) · dx .U:

Applying this with f(x) := 1/
√
x yields that

LN − 1 < 2x1/2
∣∣∣x=N

x=1
= 2[

√
N −

√
1] .

Adding 1 to each side yields LN <
[
2
√
N
]
− 1, for

N = 2, 3, 4, . . .. �

Precaution is called the Mother of Wisdom;
the father was never known.
That should prove to you, at at glance,

that even Precaution once took a chance.

–Paul von der Porten, translated from the German
by his son, Arnold von der Porten.

♥2Specifically: The inequality in (U) is strict unless f is the
step-function which mimics the summation.
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Defn. For numbers, recall that ABC means A[BC ].
The nth Fermat number is Fn := 22n + 1. E.g

F0 = 3 and F3 = 1 + 223
= 1 + 28 = 257. �

24: ??Coprime Fermat. For each pair K < N of
natnums, Fermat numbers FK and FN are coprime.
(Coro: There are infinitely many prime numbers. [How does
this follow? ]) ♦

Hint. How is Gn := Fn − 2 related to Fn? �

Caveat: The Wikipedia page has a proof.
Solved

by: 2013t & 2015g classes, on a takehome.

Patrick T., 2018t. Hani S., 2020t. Joseph M., 2021g.

The Stalled-Induction ditty
. . . Ninety-nine bottles of beer on the wall.
Ninety-nine bottles of beer.
And if no bottles should happen to fall. . .
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We now discuss a sequence like the Fibonacci sequence.

25.1: Ind: Two-term recurrence. Sequence
~b := (((b0, b1, b2, . . .))) starts with b0 := 1 and b1 := 2.
Moreover, for each integer n ≥ 2,

bn := 5bn−1 − 6bn−2 .†:

Prove, for each natnum k, that♥3

bk = [4 · 3k]− [5 · 2k] .‡: ♦

Preliminaries. Define f :N→Z by

f(k) := [4·3k]− [5·2k] .‡‡:

Before starting work, do I even believe the out-
landish assertion of the thm? From (†) I can compute

b2
def
== 5·2 − 6·[ 1] = 10 + 6 = 16 .

And f(2) equals [4·9]− [5·4] = 36− 20, which indeed
equals 16. Also,

b3
def
== 5·16 − 6·[2] = 80− 12 = 68 .

And f(3) equals [4·27]−[5·8] = 108−40, which –wow!–
also equals 68. So now I [Bubba Student] think the stmt
is plausible, and I am willing to work on it. �

Observation.When k is large, the value 3k swamps 2k.
So a corollary of Two-term is that ~b grows like k 7→3k,
in the sense that ratio

[
bk
/

[4·3k]
]
→ 1, as k↗∞.

And that is not obvious from the recursive defini-
tion of ~b, in (†). �

Proof of Two-term. Since (†) needs the two previous
values in ~b in order to determine the next, we’ll need
to check two base cases.

Base cases: Firstly [or should I say “Zerothly”?],

f(0) = [4·1]− [5·1] = 1
Hooray!
====== b0 .

And secondly [“firstly”?],

f(1) = [4·3]− [5·2] = 12− 10 = 2
note
=== b1 ,

as was needed.
♥3Do you see why (†) uses “:=”, but (‡) uses the “=” relation?

Induction: We just need to show that fnc f() be-
haves like (†). So say that a fnc g:N→Z is good if

∀k ∈ N: g(k+2) = 5g(k+1) − 6g(k) .∗:

Restated,
�� ��our goal is to show that f is good .

We can, of course, show goodness directly, but let’s
“look ahead”, and see if we can shorten our work.

We glance at (‡‡) and note that f is built from two
simpler fncs, namely

H(k) := 3k and W (k) := 2k .

[“H” is for tHree, and “W” is for tWo.] Our beloved f is
simply the linear combination

f() = 4·H() − 5·W () .

Evidently, if a fnc g() is good, then for α an arbi-
trary real, the product αg() is also good; this follows
from (∗) since mult distributes-over addition.

Moreover, the sum of two good fncs is good; this,
since addition is associative and commutative. So
we’ve established:

Linear combinations of good
functions are good.∗∗:

Hence our task has simplified to the following.

Goal: Fnc H() is good, and so is W (). Letting
Y := 3, in order to show H() good, we covet

∀k ∈ N: Y k+2 = 5Y k+1 − 6Y k .

But this is implied by establishing

Y 2 ?
= 5Y − 6 ,

simply by multiplying by Y k. And this nice quadratic
equality (we could just compute that 9 equals [5·3] − 6, but let’s

take an approach that illustrates how the problem was created) is
the same as saying that Y=3 is a root of polynomial

P (x) := x2 − 5x+ 6 .

Similarly, showing W () good is equivalent to show-
ing that P (2) = 0. So we could simply check that
both P (3) and P (2) are each zero. Or note that

P (x) = [x− 3] · [x− 2] ;

i.e, we simply factor the P () polynomial. Elegant! �
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Autopsy. Indeed, to create the problem, Prof.K
simply started with the factored poly [x− 3] · [x− 2],
then multiplied to get x2 − 5x+ 6. This gave him the
coeffs for (†).

The Upshot?: We learn a lot about a sub-
ject/technique by creating problems with that tech-
nique. So I encourage you to create and post induc-
tion problems, and to post solns to others’ posted
problems.

We adults tend to learn by synthesis, more than
by analysis. [Or at least, we retain more.] �

25.2: Exercise. For distinct reals α,β, define
a sequence ~b by (25.1†) together with b0 := α and
b1 := β. Derive formulas for numbers Hα,β and Wα,β

so that:

∀k ∈ N: bk =
[
Hα,β · 3k

]
−
[
Wα,β · 2k

]
.25.3: ♦
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26.1: ??Favorite-Toy Problem (HMMT2013.7). There
is a set K of n kids, and a set Ω of n toys. Each
child has a (strict) preference ordering on the toys. A
distribution of the toys, is a bijection f :K↪�Ω; it
indicates that child c gets toy f(c). A distribution is
disappointing if no child gets his favorite toy.

Distribution h dominates f , written h < f , if each
child likes his h-toy at least as much as his f -toy.
[Further, say “h exceeds f ”, written h � f , if h<f and h 6=f .]
The goal is to prove:

Suppose f is a disappointing n-distribution.
Then there exists an h with h � f .‡[n]: ♦

Solved
by:

Tarantulas tarantulas
Everybody loves tarantulas
If there’s just fuzz where your hamster was
It’s probably because of tarantulas

–chorus of “The Tarantula Song” –Bryant Oden
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27: ??Modsum-zero Problem.Given a posint V (initial
Value), define a sequence ~b by b1 := V and, for each
n ∈ [2 ..∞), let bn be the unique value in [0 .. n) for
which sum

Sn := b1 + b2 + . . .+ bn

is divisible by n. Prove that ~b is eventually-constant.

E.g.
bn: 31 1 1 3 4 2 0 6 6 · · ·
n : 1 2 3 4 5 6 7 8 9 · · · ♦

Solved
by: Alex K., Christopher P., Reid 0., 2012g. Bhaskar M., 2019t.

Bill Z., 2021t. Amogh A., 2023t.

28.1: ???Difference-divider (USAMO1998.4). Each
N≥2 admits a set S of N integers such that [s− ŝ ]2

divides product s·ŝ, for each distinct s,ŝ ∈ S. ♦

Thoughts. The N≥2 restriction is irrelevant; the result vacu-
ously holds for N = 0,1.

Temporarily remove squaring, seeking just that each differ-
ence s− ŝ divides s·ŝ. A soln might generalize to squares.

For S comprising posints s1<s2< · · ·<sN , what simple con-
dition forces s` − sk to divide sks`, whenever N>`>k≥1 ?

Fabricate {sj}N1 to iteratively satisfy the condition. Try both
going up from s1, and going down from sN �
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29.1:Visual ???Blue trails (IMO2002.1). Fix posint N . Let
∆ be the set of all natnum-pairs (((x, y))) st. x+y < N .
Each element of ∆ is colored pink or blue, so that if
(((x, y))) is pink and x′ ≤ x and y′ ≤ y, then (((x′, y′))) is
also pink.

8 •
7 • •
6 • • •
5 • • • •
4 • • • • •
3 • • • • • •
2 • • • • • • •
1 • • • • • • • •
0 • • • • • • • • •

0 1 2 3 4 5 6 7 8

An example of pink-
blue ∆ for N = 9.

An X-trail is an N -set of blue points in ∆ of form{
(((0, y0))),(((1, y1))),(((2, y2))), . . . ,(((N−1, yN−1)))

}
;

one blue point per-column of ∆.
A Y-trail is also an N -set of blue pts, but has form{

(((x0, 0))),(((x1, 1))), . . . ,(((xN−1, N−1)))
}
; one blue per-row.

Prove |X| = |Y|; equal numbers of X and Y trails.♦

A better proof? While the PList has an induction
proof, a more elegant demonstation would be to pro-
duce a natural bijection X↪�Y. I don’t have one, but
perhaps an ES [Energetic Student] can find one? �

Hint. These two examples. . .
•
�� An X-trail.
• • •
• • � •
• • • • �
• • • � • �
• • • • • • •
• • • • • • ��
• • • • • • • • �

�
� • A Y-trail.
• • �
• • � •
• • • • �
• • • • • �
• • • • � • •
• • • • • • � •
• • • • • • • • �

show that an X-trail need not be a Y-trail.
This legal coloring • •• • of a square board, has one

X-trail, but no Y-trails. Board-shape matters. . . �

“Happy trails” (to you)
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30: ??Coloring subsets (USAMO2002.1). An element of

J := {1, 2, 3, . . . , 2002}

is a token. A set-of-tokens is a blip. A “coloring
over J ” is a map, C, which assigns to each blip either
green or red such that

The union of each two red blips is red, and
the union of each two green blips is green.†:

Let R(C) denote the number of red blips. Prove:

∀n ∈ [0 .. 22002], there exists an n-coloring,
C, i.e, a coloring with R(C) = n.‡: ♦

Solved
by: I think this was solved by former student.
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Defn. For each natural number M , let JM := [1 ..M ].
Use TAP for “3-term arithmetic progression”; a

triple (((τ , τ +G, τ + 2G))) of numbers, with G > 0.�

31.1: ??3Term integer AP (precursor of USAMO1980.2).
Compute f(M), the number of TAPs in JM . ♦

[Suggestion: Inclusion-exclusion. Induction.]
Solved

by: Daniel Z., 2018t. Daniel S., 2019t. Atharva P., 2019t.

31.2: ??3Term real AP (USAMO1980.2). Determine
g(M), the maximum number of three-term arithmetic
progressions which can be chosen from a sequence
of M real numbers [which we’ll call tokens]

τ 1 < τ 2 < · · · < τM .∗:

[I.e, g(M) is the max taken over all M -sequences of tokens.]♦

[Suggestion: Induction.]
Solved

by: Atharva P., 2019t.

32: ??Stable-table Conundrum (USAMO2005.4). Legs
L1, L2, L3, L4 of a square table each have length n,
where n ∈ N. For how many ordered 4-tuples
(((k1, k2, k3, k4))) of natnums can we cut a piece of
length ki from the end of leg Li, and still have a stable
table? Let An denote this number. (The table is
stable if it can be placed so that all four of the leg-ends touch
the floor. Note that a cut leg of length 0 is permitted.) ♦

A stable table need not be level.
Solved

by: Cameo L. & Diego R., 2014g. Ken D., 2017g.
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33.1:New ???Sealed-set (USAMO2004.2). Con-
sider posint N and Z-tuple ~α = (((α1, . . . , αN))) with
GCD

(
~α
)

= 1. A set Ω⊂Z owns each αj , and satis-
fies:

i : ∀i, j (not nec. distinct): αi − αj ∈ Ω.

ii : ∀x, y ∈ Ω: If x+ y ∈ Ω then x− y ∈ Ω.

Prove that Ω = Z. ♦

Solved
by: (No one, so far.)

Defn. A (finite or infinite) sequence ~n = (((n1, n2, . . .)))
of posints is cute if, for each j, product njnj+1 is
divisible by sum nj + nj+1, �

34.1: ??Cute sequences (USAMO2002.5).
For a,b≥ 3, prove there exists a cute-sequence
~n = (((n1, n2, . . . , nK))) with n1 = a and nK = b. ♦

Solved
by: Hani S., 2021t.
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Induction, abstractly

Seeking to prove some proposition P on N, weak in-
duction and strong induction are

∀n ∈ Z+: Pn−1 ⇒ Pn ;Weak:

∀n ∈ N :
[
P0 ∧ P1 ∧ . . . ∧ Pn−1

]
⇒ Pn .Strong:

Strong-ind says: If all the descendants of n are P,
then so is n. In principle, strong-ind has no base
case. Note, however, that n=0 has no descendants,
so sometimes P0 needs to be treated separately.

Strong-ind can be converted to weak-ind at the ex-
pense of adjoining a quantifier to the proposition. Let

Qn :=
[
∀k < n: Pk holds

]
.

Then weak-ind for Q is the same as strong-ind for P.

General induction. This takes place on a well-
founded [each non-void subset has a minimal element] poset
(((Ω,≺ ))). For β∈Ω, the “descendants of β ” comprise
the set

Ω≺β := {ω ∈ Ω | ω ≺ β} .

To prove that all of Ω is, say, blue, ISTEstablish:

∀β∈Ω: If each descendant of β is blue,
then β is blue.†:

To see that this is strong-induction on Ω, FTSOCon-
tradiction suppose the CEX set [the set of non-blue elts]
is non-void. Since Ω is well-founded, CEX has a min-
imal element; call it Mindy. Since Mindy is minimal
non-blue, all of its descendants are blue. But this
contradicts (†). [Possibly Mindy has no descendants; fine.]

Say that α is a “child of β ” if α ≺ β and there
is no elt ω with α ≺ ω ≺ β. Suppose your poset has
each elt β satisfying:

Each descendant of β is less-equal some
child of β.∗:

Then proving Ω blue can be done by weak-induction:

∀β∈Ω: If each child of β is blue, then β is blue.‡:

[In practice, one might have a separate “base case” argument,
showing that all the “childless” Ω-minima are blue.]

Notation. Induction on a poset Ω more compli-
cated than (((N, < ))) is called transfinite induction.
Typically, transfinite induction is done on a totally-
ordered [i.e, well-ordered ] set.

Infinite descent. Induction by Infinite descent
is when, initially, you don’t know well-founded set to
induct on. But you discover it while exploring prop-
erties of the problem.
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Infinite descent

I describe Proof by infinite descent as “Induction, when you
don’t know what you are inducting on.”

P∞↓ [Proof by infinite descent] starts with “For the
sake of ### , suppose. . . ” In the process of manipulat-
ing the parts in problem, you discover something get
smaller, in a context where it can’t get smaller forever;
thus, ### . [By “smaller”, here, I mean that a quantity moves
in some direction, where that direction is eventually blocked.]
Here is an example.

Golden ratio.Break a stick into a long piece, length L,
and a short piece, S. Suppose we have that ratios
Total len

long and long
short are equal, i.e L+S

L = L
S . The com-

mon ratio is called the golden ratio, λ. [For future
reference: A golden rectangle is a W×H rectangle where
long side
short side is λ. ] �

36:∞↓ : The Irrationality of Gold. Golden λ is irra-
tional. (The Menendez Proposition) ♦

Proof by ∞↓. FTSOC, suppose there exist positive
integers T>L with T

L = λ. From the defining prop-
erty of λ, letting S := T−L gives this new pair L>S
of posints, whose L

S ratio is golden. Hence we can
(supposedly) descend in the positive integers ad infini-
tum, getting golden-ratio pairs; ### . (contradiction) �

Alt.Making S = 1, relation L+1
L = L

1 says that λ is the
positive root of g(x) := x2 − x− 1, so λ = 1+

√
5

2
.

Hence irrationality of λ is equivalent to irrationality
of
√

5 . However, proof of the latter seems to need
higher-powered stuff like the uniqueness of factoring-
into-primes, whereas the above ∞↓ argument used
nothing. (Discussion? Objection?) �

The downloaded movie got 3.1415 stars.
It’s a π-rated movie. . .

–transmitted by Ruth King
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37.1:∞↓ : Root-flipping example (IMO1988.6). A posi-
tive integer R is nice if there exist posints b, c such
that ratio

b2 + c2

bc + 1
= R .∗:

Then each nice R is a perfect square. ♦

NB. Allowing R negative ruins the perfect-square

conclusion. E.g
[ 1]2 + 32[

1·3
]

+ 1
=

10

2
= 5. �

The below proof is from Wikipedia’s Vieta jumping.

Root flipping.FTSOC, fix a non-square niceR. Among
all posint-pairs (((b, c))) satisfying (∗), pick a pair mini-
mizing sum b+c, and call it (((B,C))). WLOG, B ≥ C.

Our contradiction shall be to produce a

Posint β<B such that
β2 + C2

βC + 1
= R.†:

Polynomial. Numbers, x, that satisfy x2+C2

xC+1 = R,
are the roots of quadratic

f(x) := x2 − CRx + [C2 −R]

= x2 − Sx + P ,

where S is the sum of the f -roots, and P is their
product. Our P6=0, since R is not a square.

The other f -root, β := S − B, is an integer , since
S and B are.

Is β
?
> 0: Ratio β2+C2

βC+1 is positive, so βC + 1 is
positive; thus βC ≥ 0. But β 6=0, since product P6=0.
Hence β > 0. Conclusion: β is a positive integer.

Is β
?
< B: Note βB = C2−R

note
< C2 ≤ B2, since

B ≥ C ≥ 0. Thus β < B2

B = B, yielding (†). ### �

Addenum. Let 〈b, c |R〉 mean (∗) where
�� ��b ≥ c and

R are three posints.

37.2: Obs. TFAEquivalent: ¬: 〈b, c |R〉 = 〈1, 1 | 1〉.
­: b = c. ®: c = 1 (or b = 1). ¯: R = 1. ♦

Proof of ­⇒®. Since [c2+1]R = 2c2, our R |• c2,
so R ≥ c2. Thus 0 = [c2+1]R− 2c2 ≥ c4+c2 − 2c2,
which is non-neg. Hence all are zero and thus c = 1.�

Pf ®⇒¯. We have b2+1 = [b+1]R, so R ≡b 1. Thus
b2+1 = [b+1][mb+1] for some natnum m, whence
b2 = mb2 + [m+1]. So m = 0 and thus R = 1. �

Proof of ¯⇒¬. We have b2+c2 by ¯
==== bc+1 ≤ b2+1.

Thus c2 ≤ 1, so c = 1. Hence b2+1 = b+1, so b2 = b,
whence b = 1. �

Families. Fixing R, when 〈b, c |R〉 minimizes b+c
[or just b] then our ∞↓ proved R

must
==== c2. Thus (∗)

gives b = c3. Hence

〈
b︷︸︸︷
n3 ,

c︷︸︸︷
n |

R︷︸︸︷
n2 〉

is an ∞ soln-family.
Another ∞-family is

〈
b︷ ︸︸ ︷

n5−n ,
c︷︸︸︷
n3 |

R︷︸︸︷
n2 〉 .

An example of both is n=2. Note that 25 − 2 = 30.
So. . .

302 + 82

[30·8] + 1
=

964

241
= 4 and

82 + 22

[8·2] + 1
=

68

17
= 4 .
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38: ??bcq-bc Problem (USAMO1976.3). Determine all
integral solutions of

b2 + c2 + q2 = b2·c2 .†0:

[Hint: ∞↓ , after preparation.] ♦

Solved
by: Lizzie [Donna] N-C., 2017g.

Alex T. & Allan D. & Isabel D. & Max W., 2021g. Bill Z., 2021t.

Aryaan V., 2022t. Abhinav P., 2023t.

39: ??Football Prob. (Research possibility: Tug-of-war).
A tuple ~w = (((w1, w2, . . . , w23))) represents the [real
number] weights of football players. Tuple ~w is a
football tuple if: No matter whom is chosen as
referee, there exists a partitioning of the remaining
players into two equal-cardinality, equal total-weight
teams.

Prove that the only football tuples are the constant
tuples. [Hint: First consider integer weights and use ∞↓ .]♦

Solved
by: Forrest K. (for integral weights), 2013t. Junhao Z. (for integral

weights), 2021t.
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40.1: ??Coalescing Robots. Consider an K×L chess-
board, which we’ll think of as the K·L many rooms
of a building. Initially, the walls are all the edges
of rooms. Remove some of the interior walls, so the
building is connected; it is possible to walk from any
room to any other room. Call a connected building a
house.

Put a robot mouse in each room. You can radio
commands N,E,S,W [North, East, South, West] to all the
robots. If you radio N, then each robot with a room
to his north and no wall between, rolls to that room;
otherwise, he doesn’t move. [Now, some rooms might
contain two robots; a room can hold any number of robots.]

A house is coalesceable if there exists a finite in-
struction sequence [e.g NNES. . .WWN] after which all
K·L robots are in a single room.
Prove that every (finite; foreshadowing) house is co-

alesceable. [Hint: Create a Lemma which, used repeatedly,
proves coalescence. Now use ∞↓ to establish the Lemma.] ♦

Solved
by: Isaac K., 2017g. Nathan T., 2019t. Atharva P., 2019t.

Ben R., 2021t. Nate B., 2022g. Faythe C. (The essential Idea), 2023g.

Example:
A 7×4 house.

40.2: Ans. Each (((K,L))) is good.
Tool: In a house, define the distance between

two rooms A,B as the length of a minimum length
walking-path [which need not be unique] between them.
For example, Dist(A,A) = 0 and, for A = (((3, 5))) and
B = (((3, 6))): If there is no wall between these rooms,
then Dist(A,B) = 1, else Dist(A,B) ≥ 2. �

40.3: Defn. Consider two robots (i.e, rooms) A,B
in a house H. Their Pair-coalescence Time ,
PTH(A,B), is the minimum time it takes to coalesce
A with B. For a finite house, it makes sense to define
the worst-case pair-coalescence-time,

P̂TH := Max
{
PTH(A,B)

∣∣ A,B ∈ H
}
. So(

K×L := Max
{
P̂TH

∣∣ H a K×L house
}

is

the worst-case over all houses with a given footprint.�

Every H has P̂TH ≥ [K−1] + [L−1], since that
many horizontal+vertical commands are need to unite

antipodal corners. In a house with a single path visit-
ing every room, its end rooms are distance Area(H)−1
apart. So the minimum time to coalesce those two
robots is at least ⌈

KL − 1
2

⌉ hence
≤

(
K×L︸ ︷︷ ︸

Where is the 2 from?
Is it necessary?

.

40.4: ??Pair-coalescence Time. What are interesting

upper and lower bounds for

(

K×L? ♦

40.5: MinCW. (CW=Coalescence-Word.) For a finite
house H, use ATH for the minimum time to to coa-
lesce All the robots into a single room. [There may be
several CWs of this min-length.] �

40.6: ??House-coalescence Time. By defn,
ATH ≥ P̂TH. Is there an interesting IFF condition for
equality? Are there houses where ATH ≥ 10 + P̂TH?
Where ATH ≥ 10·P̂TH? What is a nt–upper-bound
for ATH? ♦

40.7: Defn. For a N,E,S,W-word π, let B·π be the room
where π would bring a robot from room B. Say that
rooms A,B are exchangeable if ∃π st. A·π = B and
B·π = A. House H is universally exchangeable if
every pair A,B is exchangeable. �

40.8: ??Exchangeable Robots. Which K×L admit a
house with an exchangeable pair A6=B? Which K×L
admit a universally exchangeable house? ♦

Solved
by: Mason H. gave an example of an exchangeable-pair, 2022g.

[Questions await. Solve ho’, don’t be shmo; get on the Go!]

40.9: Defn. A tuple ~A := (((A1, . . . , Ak))) is full if the
k rooms are distinct. A building [finite or infinite] is
k-transitive if for every two k-tuples ~A and ~B, each
full, there exists a word π st. for every j: Aj ·π = Bj .

So “1-transitive” is a synonym for “connected”. If
a house is 2-transitive then it is certainly universally
exchangeable.

A house is weakly k-transitive if for each two k-
sets of rooms, there exists a word carrying one k-set
to the other.

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Infinite houses Page 37 of 111

A k-attractor is a k-set A={A1, . . . , Ak} to which
every k-set can be carried. [So “∃ a 1-attractor” is a syn-
onym for “house is coalesceable”.] �

Infinite houses

40.10: ??Word-of-Doom. [doomed=‘non-coalesceable’,
and coal=‘coalesceable’.] Does there exist a (necessarily∞)
house, rooms A,B and word ε [ε for “error”] s.t:

Pair (((A,B))) is coalesceable, but
pair (((A·ε, B·ε))) is doomed?

Does there exist an ∞-house with ∞ly many coal-
pairs, and ∞ly many doomed-pairs? ♦

40.11: ??Robots in Infinity-House. With all of Z×Z
being rooms, with each room having at least 2 walls,
produce a pair-coalescable house. ♦

40.12: ??Questions/Challenges.Is every finite house 2-
transitive? How about weakly? Produce an ∞-house
which is 2-transitive. Can you make one which is 3-
transitive? ♦

What’s a 1 “L” la-ma? A Tibetan monk.
What’s a 2 “L” la-ma? A South Amerian pack-animal.
What’s a 3 “L” la-ma? A Fire. . .
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Iterative/Algorithmic

Iteration can be viewed as a kind of induction. T.fol
are “programmable” problems.

41.1: ??Wizard-cards (USAMO2016.6). Fix integers
N,L ≥ 2. Cards are labeled c1, c2, . . . , cN, and the
deck has two copies of each. The Wizard shuffles the
2N cards and lays them face-down in a row, in places

1, 2, 3, . . . , 2N−2, 2N−1, 2N .

On your turn, you point at L places. [So
(

2N
L

)
pos-

sibilities.] Wiz turns those cards face-up, in place. If
some two of the revealed-cards match, you have won!
Else, you look away, and Wiz returns those cards,
face-down, to the L places, but permuted in any way
he wishes. [I.e, you now know the set of cards in those L
places, but not their order.] Now it is your turn again.

The game is winnable if there exists a posint
T=TN,L and strategy, that is guaranteed to win in at
most T moves, regardless of Wiz’s play.
Which (((N, L))) pairs are winnable? ♦

Solved
by: Junhao Z., 2021t.
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42.1: ???Thirteen coin problem. Thirteen coins, la-
beled 1, 2, . . . , 13, have standard-weight, except one
of them might be heavier or lighter than std-weight
(or they could all weigh the same). You also have a std-
weight coin, W.

Available is a scales-of-justice (SOJ) balance.
Putting some coins on the left-pan and on the right,
either SOJ balances, or tilts left or tilts right.

Using no more than three weighings, determine the
coin-situation. ♦

Solved
by: ?

42.2: ???SOJ conundrum. Consider std-weight coin
W, and mystery coins 1, 2, 3, . . . ,C−1,C which have
std-weight except one coin might be heavier or lighter.

Maximize C st. N many clever SOJ weighings can
determine the coin-situation. ♦

The four-year-old niece of a mathematician
was playing a game in which she was the con-
ductor on a train and her mother was a pas-
senger.
“Wait a minute,” said Nancy, “we have to get
some paper to make tickets.” “Oh,” said her
mother, who had probably had a long day, “do
we really need them? After all, it’s only a pretend
game with pretend tickets.” “No Mommy, you’re
wrong,” replied Nancy; “they’re pretend tickets,
but it’s a real game.”

–transmitted by David Gale
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Well-ordered set
See BoP or SaP or Wikipedia for definitions of: total-order,
partial-order (both strict and lax), well-ordered set, well-
founded poset.

Dictionary-order. Alphabet A = {a, b, . . . z} has
al bl cl . . . ordering. A word w = w1w2w3 . . . wL
has some finite length, L, with each wj ∈ A.

Let A? be the set of all words. Define a strict total-
order ≺ on A? by

u1u2u3 . . . uK ≺ w1w2w3 . . . wL

IFF Either: K < L and u1u2 . . . uK = w1w2 . . . wK ,
[i.e, u is an initial-segment of w] OR: Words u and w
disagree at some index and , letting d ≤ Min(K,L) be
the smallest disagreement-index, that ud l wd. �

43.1: ???Dictionary-order conundrum.
Is
(((
A? , ≺

)))
a well-order?

Is
(((
A? , �

)))
a well-order? ♦

Solved
by: ?

44: ???Well-founded conundrum. For binrel ≺ on
set Ω, define α� β by β ≺ α.

i : Suppose both (((Ω,≺ ))) and (((Ω,� ))) are strict well-
orders. Prove that Ω is finite.

ii : Weaken (((Ω,≺ ))) and (((Ω,� ))) to strict well-
founded partial-orders. Prove or give CEX to
statement “Set Ω is finite.” ♦

Solved
by: ?

Snowclones
To X or not to X.

X is the new Y.

In space, no one can hear you X.

It’s the mother of all X.

Y -ing while X.

If Eskimos have n words for snow, X surely
have m words for Y . [Wikipedia: In 2003, an ar-
ticle in The Economist stated, “If Eskimos have dozens of
words for snow, Germans have as many for bureaucracy.” ]
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The number you have reached is imaginary. Please
rotate your phone 90 degrees and dial again.

–David Grabiner

Complex numbers
The algebraic structure of R can be consistently ex-
tended to a larger field, by adjoining a sqroot of
negative 1. This is conventionally♥4 called i, so
i2 = 1 = [ i]2. Extending R by i produces field

C := {x1 + yi | where x and y are real} .

[I’ve written x1 + yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2 + 3i, not 2·1 + 3i.]

A geometric picture of C, with the real axis hor-
izontal, and the imaginary axis vertical, is called
the Argand plane or the complex plane.

Write real-part and imaginary-part extractors
as, e.g, for z := 2 − 3i, give

Re(z) = 2 and Im(z) = 3

since z = 2·1 + [ 3]·i. The absolute-value or mod-
ulus of z is its distance to the origin; so

|z| =
√

Re(z)2 + Im(z)2 .

[Here,
∣∣2 − 3i

∣∣ =
√

4 + 9 =
√

13 .] The complex conju-
gate of this z is z = 2 + 3i. For a general ω = x+ yi
with x,y∈R, observe that

Re(ω) := x = ω+ω
2 , Im(ω) := y = ω−ω

2i ;

ω = Re(ω) − Im(ω)i ;

|ω|2 Pythag. thm
========= x2 + y2 = ωω .

(Complex-)conjugation ω 7→ ω is an involution of C,

since ω = ω. For complex polynomial f(z) =
N∑
j=0

cjz
j ,

define f(z) :=
N∑
j=0

cj z
j , its conjugate polynomial.

Thus
f(z) = f(z) ,

♥4Electrical engineers use j rather than i, as “i” is used to
represent current/amperage in EE. Also, while boldface i is a
sqroot of 1, we still have non-boldface i as a variable. E.g, we
could [but wouldn’t] write 7i +

∑4
i=3 i

2 note
=== 7i + 32 + 42.

since µ+ ν = µ+ ν and µν = µ · ν for µ,ν ∈ C.
Multiplying complex numbers corresponds to mul-

tiplying their moduli and adding their angles.

To write a quotient ν
α in std x+ iy form, note

ν
α = να

αα = να
/
|α|2

So write να in std form, then divide by real |α|2.

See W: Complex number and W: Argand plane for arith-
metic with complex numbers.

See Appendix (F) for further C information.
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45.1:SVBuried Treasure Problem [BTP]. Floating in
the ocean you spy a bottle containing a pirate’s map
to fabulous treasure. You sell your possessions, pur-
chase a robot-crewed ocean-catamaran, and sail to the
island, discovering it is a vast plateau. The map says:

Arrrgh, Matey! Count your paces from the gallows
to the a quartz boulder, turn Left 90◦ and walk the
same distance; hammer a gold spike into the ground.

Count your paces from the gallows to the giant oak,
turn Right 90◦ and walk the counted distance; hammer
a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau [with the treasure
you can say bye bye to annoying Math classes! ] and immedi-
ately spot the giant oak, and quartz boulder. But the
gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? ♦

[Hint: Using B, K, w for the Bolder’s, oaK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tB,K(w)
by using C addition and multiplication.] Alphabetic-order
mnemonic: Boulder Left gold

oaK Right silver

Solved
by: Matthew C, Junhao Z., Hani S., 2020t. Nathan T., 2021t.

(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

46.1:New ???Telescoping polynomial (USAMO1977.1). De-
termine all pairs of positive integers (((K,N))) such
that [1 + xN + x2N + · · ·+ xKN ] is divisible by
[1 + x+ x2 + · · ·+ xK ]. ♦

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Tiling questions Page 43 of 111

Tiling questions

47: ??IFF Chess-domino-tiling criterion. Consider a
8×8 chess board with 1 black cell and 1 white cell
removed. We seek an IFF-condition, on the removed-
pair, for the board to be domino-tilable (by 62

2
= 31

dominos), under the assumption that the board is:

a: Toroidal: The top-and-bottom edges connect, and
the left-and-right edges connect.

b: Cylindrical: Just the the left-and-right edges con-
nect.

c: Normal: No edges connect.

d: For W,H ∈ Z+, how does this generalize to W×H
board? ♦

48: ??4mino-tilable rectangles. A four-mino is a
1×4 tile. Which 2N × 2K boards admit a four-mino
tiling? ♦

Solved
by: Keven H., 2013t. Abby T. & Kailey S., 2018t.

49: ??N -mino-tilable rectangles. An N-mino is a
1×N tile. For width,height pairs W,H ∈ Z+, does the
W×H board admit an N -mino tiling? ♦

50: ??Lmino puncture-tilable. An Lmino (pron. “ell-

mino”) comprises three
�
�� squares in an “L” shape (all

four orientations are allowed).
A board is “Lmino puncture-tilable” if: No mat-

ter which cell is removed, the resulting puntured-
board is Lmino tilable.

Which posint pairs N,K, with NK ≡3 1, are such
that the N×K board is Lmino puncture-tilable? ♦

51: ??Multi-dimensional Lminos. In class we showed,
for each n ∈ N, that the 2n × 2n board is Lmino
puncture-tilable.

Generalize this to a D-dimensional board,
2n × 2n × D. . . × 2n. You will first need to decide
what your D-dimensional generalization of an
Lmino should be. Are there several reasonable
possibilities? ♦
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Invariants
Underlying certain problems, is that some quantity or
some relation is preserved under the relevant opera-
tions.

Eg: Invariant quantity. Have B be the 8×8 chess-
board, but with the lower-right and upper-left cells
removed; so |B| = 62. We start laying down dominos.
Can we cover the board with 31 dominos? No!

Why? Initially, the uncovered part of the board (i.e,
all of B) has 32 black cells and 30 white cells. These
numbers are not invariant under placing a domino.
But the discrepancy, this difference

#
{
Uncovered
black cells

}
− #

{
Uncovered
white cells

}
,†:

is unaltered by placing a domino —it is invariant.
Since the discrepancy is 2 initially, it will always be 2,
no matter how many dominos we place. But a covered
board would have a discrepancy of 0, not 2.

Eg: Invariant relation. Our Lightning bolt alg.
chose “seeds” for the s- and t- columns, so that

rn = sn·r0 + tn·r1 ,‡:

for n = 0,1. [The nth: remainder, quotient, and Bé-
zout columns are called rn, qn, sn, tn.] The LBolt update
rule preserved relation (‡), in building row n from
rows n−2 and n−1. When we found the index K
where rK = GCD

(
r0, r1

)
, this invariance handed us

the GCD as a linear-combination of r0 and r1.

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Invariants Page 45 of 111

53.1: ??Coloring a 99-gon (USAMO1994.2). Let R,B,Y
denote the colors red, blue, yellow, respectively.

The sides of a 99-gon are initially colored so that,
traveling CW (clockwise), consecutive sides are

R, B, R, B, . . . , R, B, R, B, Y .†:

Is it possible, still traveling CW, to obtain

R, B, R, B, . . . , R, B, R, Y , B‡:

by a sequence of modifications? A modification
changes the color of one side (to one of R,B,Y) under
the constraint that at no time may two adjacent sides
have the same color. ♦

Solved
by: Tyler A., 2014g. Christopher P., Nate G., 2012g. Ken D., 2017g.

Pietro L., 2022t.

Fast is fine; accuracy is final.
–Wyatt Earp

(Also applies to pickleball)
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Rectangle. On a W×W chessboard, cells ABCD
form a rectangle if their coordinates have form
(((x,y))), (((x,y′))), (((x′,y′))), (((x′,y))), where x 6=x′ and y 6=y′.
[So A→B→C→D is traveling clockwise or counter-clockwise
around the corners of a rectangle.] �

54: ???Chip patterns (USAMO2015.4). Poker chips are
piled on the cells of aW×W chessboard. Use #A for the
number of chips on cell A=(((x, y))). The total number
of chips on the board is N∈N.

A move chooses a rectangle ABCD that has #A
and #C both positive. A chip is moved from A to B,
and a chip is moved from C to D. The move decre-
ments #A and #C, and increments #B and #D.

Two chip-patterns are move-equivalent if there is
a sequence of moves carrying one to the other.
How many move-equivalence classes are there? ♦

Solved
by: ?

Stopped at a traffic light, the car in front has
vanity plate ML8ML8 .

What color is the car?

55.1: ??Pentagon (USAMO2011.2). An integer is as-
signed to each vertex of a regular pentagon so that
they sum to 2011. A move of a solitaire game con-
sists of subtracting an integer β from each of the inte-
gers at two neighboring vertices and adding 2β to the
opposite vertex, which is not adjacent to either of the
first two vertices. (The amount β and the vertices chosen
can vary from move to move.)

The game is won at a certain vertex if, after some
number of moves, that vertex has the number 2011
and the other four vertices have the number 0. Prove
that for each choice of the initial integers, there is
exactly one vertex at which the game can be won. ♦
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56: ??Three aces expectation (USAMO1975.5). A deck
of N playing cards, with three aces, is shuffled “at
random” [i.e, the N ! many orderings are equally-likely]. The
cards are then turned up one-by-one from the top until
the second ace appears. Prove that T, the expected-
number of cards to be turned up, equals [N+1]/2. ♦

Solved
by: Lizzie [Donna] N-C., 2017g. Atharva P., 2019t. Alex T., 2021g.

Abhinav P., 2023t.

A Wonderful Bird is the Pelican
His bill holds more than his belican.
He can take in his beak,
Enough food for a week,
But I’m damned if I see how the helican.

–Dixon Lanier Merritt
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Boomerangs cannot tile a convex polygon

(Problem from David Gale.) A boomerang is a non-
convex quadrilat(eral); call its [>π] interior-angle
“thick” . Conversely, a quadrilat with each angle ≤π
(a “thin” angle) is a kite. [So a polygon is convex IFF all
its angles are thin.] A dissection of a polygon P into
finitely many quadrilats is a “quadritiling of P” .
[The tiles need not be congruent to each other.]

57.1: ???Boom-Kite Theorem. Each quadritiling of a
convex polygon P must use a kite. ♦

57.2: Fails with “Quad” replaced by “Penta”. Let P
be the square with vertices (((±2,±2))). Cut P with a
polygonal path going from/to

((( 2, 2)))→ ((( 1, 1)))→ ((( 1, 1)))→ ((( 2, 2))) .

This cuts P [which is convex] into two non-convex pen-
tagons [which are congruent to each other].

Exer: Each polygon Q, convex or not, admits a
(finite) tiling by non-convex pentagons. �
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Combinatorial Graphs
[Some, but not all, of these problems use induction.]

For these problems, you should draw pictures
of your combinatorial graphs.

58.1: Eg: Gregariousity (USAMO1982.1). In a party
with 1982 persons, among every group of four there is
at least one person who knows each of the other three.
What is the minimum number of people in the party
who know everyone else? ♦

Proof. For N≥3 people, the min-number of gregari-
ous (someone who knows everyone) people is N − 3.

Consider the complete graph on N vertices (people);
color an edge green/red as the two people do/don’t
know each other.

WLOG there is a red edge u v. Every other edge
w x must share a vertex with u v [otherwise, the
4-set {u,v,w,x} is bad ; nobody knows the other three].

A red-degree–3 vertex is also ruled out; were u v,
u v2, u v3 distinct edges, then {u,v,v2,v3}
would be bad.

Thus, distinct from u v, the red subgraph has at
most two other edges, u û and v v̂ ; WLOG it has
both. These two edges must not be vertex-disjoint,
hence û = v̂. So Non-gregarious = {u, v, û = v̂ }. �

59: ??Desegregation problem. A coloring of a graph
assigns to each vertex either “aqua” or “red”. It is de-
segregated, if each vertex has at least one neighbor
of the opposite color from his. [Two vertices are neigh-
bors IFF they are connected by an edge.] Prove that each
finite connected graph G with N≥2 vertices, admits a
desegregated coloring. ♦

Hint. This can be done by an Extremal or Induc-
tion argument; can you discover both proofs? (A third
proof?) What are generalizations of this graph-
theory problem? �
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60.1: ??N -towns Theorem. Consider a network of
N≥1 towns, each connected to every other town by a
one-way♥5 road. Then . . .
A: There exists at-least-one universal town. Town α

is universal if for each other town, β, you can
legally bicycle from α to β (possibly passing through
intermediate towns).

Solved
by: John P., 2011t. Zach N., 2012t. Michael E., 2013t.

Lizzie [Donna] N-C., 2017g. Noam A. & Riley B. & Caden C., 2020g.

Alex T., Nicholas V.N., Allan D., 2021g. Bill Z., 2021t.

B: There exists a 2-universal town; it can access
each town using at most two roads [i.e, at most one
intermediate town].

Solved
by: Michael V., Terry T., Alex H., Stephen H., 2011t.

Ken D., 2017g. Bill Z., 2021t.

C: In a network of N≥3 towns, it is always possible
to reverse at most one road so that, now, every
town is universal.

Solved
by: Ken D., 2017g. Bill Z., 2021t. ♦

♥5We have a directed graph ; a “digraph ” . This one is a
“complete digraph on N vertices” ; it has

(
N
2

)
directed-edges,

that is, 1
2
N [N−1] many oriented edges.
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61.1: ??Polygamy Problem. A polygamous com-
munity comprises 100 women and 101 men. Every
man has at least one wife. Prove that there is a
married couple such that the wife has more husbands
than the husband has wives. ♦

Solved
by: Matthew C., 2020t.
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Extremal arguments
Here is an example argument.

Defn. [Textbooks vary slightly in their precise defns of path,
walk, trail. I will use the defns from Miklos Bona’s text.] In
a (multi)graph G , a length-N trail is a sequence

v0
e1 v1

e2 . . .
eN−1 vN−1

eN vN ,†:

where edge ek runs between vertices vk−1 and vk
[possibly vk−1=vk, i.e the edge is a loop]. Edges (hence ver-
tices) may occur more than once.

A walk is a trail in which no edge is repeated (but
vertices may). A path is a trail in which no vertex is
repeated (hence no edge is either).

Say (†) is a trail/walk/path between v0 and vN ,
or connecting v0 and vN . “Graph G is connected ”
if each pair of vertices has a trail connected them. �

62: Ext: ∃ a path. Fix a connected (possibly infinite)
graph G. Then between each two vertices, u,w ∈ VG,
there exists a path [no repeated vertices]. ♦

Proof. Fix a minimun-length trail (†) between u=v0

and w=vN . If there were indices k<` in [0 .. N ] with
vk = v`, then

v0
e1 v1

e2 . . .
ek vk=v`

e` . . .
eN−1vN−1

eN vN ,‡:

would be a shorter trail; ### . Hence your min-length
trail was a path all along. . . . �

Note: The above Desegregation problem can be
done via an extremal argument.
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Bashful Boyfriends Story. For a natnum N we have two
sets of points, with |B| = N = |G|, and B ∪G comprises 2N
distinct points.

Set B comprises the boys’ homes, G the girls’ homes. Each
boy wants to build a straight sidewalk from his home to his
girlfriend’s. Boys are bashful, hence don’t want to meet other
boys when girlfriend-visiting. So the boys want their sidewalks
to be disjoint. Indeed, the boys are so bashful that they are
willing to change girlfriends in order to not meet another boy.�

63: ??Bashful Boyfriends. In the plane, con-
sider sets |B| = N = |G|, with |B ∪G| = 2N and no-
three-points-colinear. Then there exists a bijection
D:B↪�G such that the collection of line-segments{

Seg
(
b,D(b)

) ∣∣∣ b ∈ B
}
is pairwise-disjoint. ♦

[Notation: Boy b’s Date/girlfriend is D(b).]

Questions. Can you come up with an extremal
proof? An induction proof? Does the result hold
if |B| =∞ = |G| (the smallest infinity)? Can no-three-
points-colinear be weakened? �
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Number theory
The first few problems can be approached via factor-
ing, or by modular arithmetic.

64.1: Mod: The 14 Problem. Find all integer-tuples
~c := (((c1, c2, . . . , c14))) whose 4th-powers satsify

c4
1 + c4

2 + . . .+ c4
13 + c4

14 = 31, 999 .†: ♦

16 beats up 14. Trick: Reducing (†) mod-16 gives

c4
1 + c4

2 + . . .+ c4
13 + c4

14 ≡ 15 ,‡:

where ≡ denotes ≡16 . We’ll show eqn (†) has no soln
by showing: Congruence (‡) has no soln. This latter
will follow by proving:

Mod-16, each 4th-power is either 0 or 1.∗:

This is immediate for {0,±2,±4,±6, 8}, the even
residue-classes. Happily, this table,

r 〈r2〉16 〈r4〉16

±1 1 1
±3 9 ≡ 7 1
±5 25 ≡ 7 1
±7 49 ≡ 1 1

handles the odd residue-classes. �

You have to do your own growing no matter how
tall your grandfather was.

–Abraham Lincoln
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65.1: ??Digit-nine (USAMO1998.1). The set
{1, 2, · · · , 1998} has been partitioned into disjoint
pairs {an, bn} , for n = 1, . . . , 999, so that each
absolute-difference |an − bn| is 1 or 6. Prove that sum

S := |a1 − b1| + |a2 − b2| + . . .+ |a999 − b999|

ends in the digit 9. ♦

Solved
by: Bill Z., 2021t.
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66.1: ???Two linear-recurs (USAMO1973.2). Let ~x and
~y denote two sequences of integers defined as follows:

x0 := 1, x1 := 1, xn+1 := 2xn−1 + xn ;

y0 := 1, y1 := 7, yn+1 := 3yn−1 + 2yn .

Thus, the first few terms of the sequences are:

~x : 1, 1, 3, 5, 11, 21, . . .

~y : 1, 7, 17, 55, 161, 487, . . .

Prove that, except for the “1”, there is no term which
occurs in both sequences. ♦

Solved
by: Junhao Z., 2021t.

Addendum. Could a (possibly complex) number α have sequence
n 7→ αn satisfy the ~x-recurrence [but with possibly different initial
conditions]? Yes! . This happens exactly (exercise!) when α is a
root of polynomial

f(t) := t2 − t− 2
note
=== [t− 2][t− 1] .

So xn = P ·2n +Q·[ 1]n for numbers P,Q that will be de-
termined from the initial conditions.

Similarly, an α has n 7→ αn fulfill the ~y-recurrence IFF it is
a root of

g(t) := t2 − 2t− 3
note
=== [t− 3][t− 1] ,

whence yn = S·3n + T ·[ 1]n for some numbers S, T .
Solving for P ,Q,S,T gives

xn =
[
2·2n + [ 1]n

]
/3 and

yn = 2·3n − [ 1]n .
∗:

However, I don’t know how to use (∗) efficiently to solve the
problem. �
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67.1: ???Prime yelling (MC2012.3). With P an odd-
prime, P campers sit around a circle. They are la-
beled C1 [camper #1], C2, . . . ,CP , in clockwise order.
Camper C1 yells out “1 ”. One place clockwise, C2

yells “2 ”. Two places clockwise, C4 yells out “3 ”. Con-
tinuing forever, after the camper who yelled “n”, the
camper n-places clockwise from him now yells “n+1 ”

Each yell earns that camper a cookie.

a: Show there’s a camper who never gets a cookie.

b: Of the lucky campers [those who get a cookie], is there
one who at some point has at least tenmore cookies
than the other luckies?

c: Among the luckies, is there one who at some point
has at least ten fewer cookies than the others? ♦

Patient: I’ve had this recurring dream that I’m
a famous psychoanalyst.
Doctor: How long has this been going on?
Patient: Oh, –ever since I was Jung. . .
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68.1: ??a2 − b4 Problem (HMMT2009.1.alg). Posints a, b
have a2 − b4 = 2009. Compute a+ b. ♦

Solved
by: Yifei L., 2017g. James [Matt] B., 2020t. . Alex T., 2021g.

Matthew D., 2022g.

69.1: ??Power-sum Problem. For each odd n≥3, the
integer f(n) := 1

2 ·[15n + 19n] is composite. ♦

Solved
by: Class of, 2017g. Sydney E., 2020t. Allan D., Nicholas V.N.,

Alex T., Max W., 2021g.
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70.1: ??Power-4Term Problem. For natnum n, define

Sn := 3n + 7n + 11n − 6n .

Prove, for odd posints n, that Sn is composite. ♦

Solved
by: Ken D., 2017g. Sydney E., 2020t.

71.1: ??PoT-plus-Square Question.(Dis)Prove: There
are at least seven primes p such that sum

f(p) := 2p + p2

is prime. ♦

Non-examples.Note 5 is prime, but f(5) = 57 = 19 · 3
is composite. In the other direction, the composite
15 yields f(15) = 32993, which is prime. Finally,
f(1) = 3 is prime but the unit 1, alas, is not. �

Solved
by: Keven H., 2013t. Rabon M., 2017g.

Jeremy G. & Emily Y., 2022g.

72: ??The x + 1
x theorem. Consider a real [or com-

plex] number x that is good; sum x + 1
x is an inte-

ger. Prove, for each posint N , that xN is good, i.e,
xN + 1

xN
is integral. ♦

E.g: Let F :=
√

5 and y := 3+F
2 . Then 1

y equals

2
3+F = 2·[3−F ]

9−5 = 3−F
2 .

Hence y + 1
y = 3+F

2 + 3−F
2 = 3, so y is good. The the-

orem implies that y2 note
=== 7 + 3F

2 is good; is it? �

Pf of (72), start. For N ∈ N, let SN := [xN + 1
xN

].
Now . . . [Hint: The Appendix defines binomial coeffs.] �

Solved
by: John P., 2011t. Junhao Z., 2020t. Allan D., 2021g.

Nick K., 2021t.
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73: ??Recip-sum-is-one (USAMO1978.3). An integerG
is good if there exist posints σ1, . . . , σN (not necessarily
distinct) with

[ N∑
j=1

σj
]

= G and
[ N∑
j=1

1

σj

]
= 1 .∗:

Given that Γ ⊃ [33 ..73], prove that Γ ⊃ [33 ..∞),
where Γ ⊂ Z+ denotes the set of good numbers. ♦

Solved
by: Rabon M., 2017g.

Defn. Call (∗) a “(good) decomposition of G ” . �

74.1: ?? Squarish problem.Call ~ε = (((ε1, . . . , εL))) an L-
bit-tuple if each εk is 1 or 1. Integer T is squarish
if there exists a natnum L and an L-bit-tuple ~ε st.

T =
∑L

k=1

[
εk · k2] .

Prove that every integer is squarish. ♦

Solved
by: John P., 2011t.
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75a: ??? 2-to-2 Problem (USAMO1991.3). Sequence

~b :=
(((
1, 2, 22, 2[22], 2

[
2[22]

]
, . . .

)))
can be recursively defined as

b0 := 1, and b t+1 := 2 bt ,

for t = 0, 1, 2, . . .. Then for each modulusM , sequence
~b is eventually mod-M constant. ♦
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76: ???Odd-divisor Fibonacci (USAMO1993.4). Arbi-
trary posints f0 and f1 determine an oddish sequence
~f , defined thereafter by letting fn be the largest odd
divisor of fn−2 + fn−1.

Prove that ~f is eventually-constant, and determine
what this constant C = C(f0, f1) is. ♦

Remark. Given a posint F = 2e·D, where e ∈ N and
D is odd, define JF K to be this D. Thus

Jfn−2 + fn−1K =: fn

is the update rule. �
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77a: ???Integer-product seq. Thm (USAMO2009.6).
Suppose ~s = (((s0, s1, s2, . . .))) is an infinite, noncon-
stant sequence [i.e, not s0 = s1 = s2 · · ·] of rational num-
bers. Suppose ~t is also an infinite, nonconstant, ratio-
nal sequence with the property that

For all j and k: Product [sj − sk] · [tj − tk] is an
integer.

†:

Prove that there exists a rational number r 6=0 st.

For all j and k: Values [sj − sk]/r and
[tj − tk] · r are integers.‡: ♦
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78.1:Hard ???Power-of-Two composite (USAMO1982.4).
Prove that there exists a positive integer k such that
Vn := 1 + k·2n is composite for every posint n. ♦

[Ideas: Covering-systems. Mod-arithmetic.]

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Number theory Page 65 of 111

79.1: Example. The set of Threeish-numbers is

TTT := {1, 4, 7, 10, . . .} = {n ∈ Z+ | n ≡3 1} .

Ok, so TTT is not a ring. But TTT is sealed under mul-
tiplication, has no ZDs, and the only TTT -unit is 1; we
can make sense of “TTT -irreducible” and “TTT -prime”.

Factoring 100, these two Threeish-factorizations

4 · 25 = 100 = 10 · 10 ,

show that none of 4, 10, 25 is Threeish-prime. Yet each
is Threeish-irreducible. [This, as their only non-trivial N-
factorizations use non-Threeish numbers]. �

79.2: ??Threeish conundrum. Given a “target”
T ∈ [2 ..∞), write its usual N-prime factorization,

T = pE1
1 · p

E2
2 · . . . · p

EL
L ,79.3:

with p1, . . . , pL distinct, and each E` a posint.
In terms of (79.3), give an IFF-characterization of:

i: When T is Threeishian.

ii: When T is Threeish-irreducible.

iii: When T is Threeish-prime.

iv: Are there∞ly many Threeish-primes? –or any at
all? [Hint: Look up Dirichlet’s thm on arith.-progressions.]
♦

Solved
by: Keven H., 2013t.
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Calculus ideas
80.1: ??Tan-of-Sum (HMMT2009.4.gen). Angles x, y
satisfy that

tan(x) + tan(y) = 4 , and cot(x) + cot(y) = 5 .

Compute tan(x+ y). ♦

Solved
by: Ken D., 2017g. Hani S., 2020t. Alex T., 2021g.

There’s a delta for every epsilon

It’s a fact that you can always count upon.
There’s a delta for every epsilon

And now and again,
There’s also an N .

But one condition I must give:
The epsilon must be positive
A lonely life all the others live,

In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-
Tives that I might mention.
The matter merits our attention.
If an epsilon is a hero,
Just because it is greater than zero,
It must be mighty discouragin’
To lie to the left of the origin.

This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,

Have deltas
To call their own.

Words and Music by: –Tom Lehrer
Video of Lehrer performing the δ-ε song.
Lyrics, and audio of Lehrer performing.

81: ??Factorial-cosine limit (Domain specific).With n
taking on values 1, 2, 3, . . ., prove that limit

L := lim
n→∞

cos
(
n! · 2πe

)
exists, and compute it. ♦

Solved
by: Daniel B. & Rabon M., 2017g. Nick K., 2021t.

Eating too much cake is the sin of gluttony,
whereas Eating too much pi is a-ok, as the sin
of pi is zero.
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82.1: ??Graph-chords (Induction). Function
f :[0, 1]→R is good if f(0) = f(1) and f is continuous.
Length Λ∈(0, 1] is a “chord of f ” if there exists points
0 ≤ w < x ≤ 1 with f(w)=f(x) and w+Λ = x.

Our Λ is a universal chord, UC, if every good
function has Λ as a chord; by defn, length 1 is a UC.

Prove that each harmonic number, 1, 1
2 ,

1
3 ,

1
4 , . . ., is

universal. [An induction idea can work here.] ♦

Solved
by: Bill Z. & Alejandro T., 2021t.

Now we seek to establish the converse:

82.2:Creative ???Graph-chords, converse. Prove that a univer-
sal chord must be a harmonic number. ♦

Solved
by: ?
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Misc. Problems
These problems are “straightforward” given the right
tools, e.g, calculus, binomial coeffs, algebra identities,
complex numbers. [In contrast, some of the hidden problems
–that I reveal as you solve these– are challenging.]

83.1:Easy ??Can you spot the frog? Fred-the-frog jumps
on N={0,1,2,...}, with unknown hop-length h∈Z+. At
time t ∈ N, our friendly frog is at integer t·h.

At time t = 1, 2, 3, . . ., you shine a spotlight at posi-
tion F(t)∈Z+; if the frog is there at time t, then you’ve
caught him. Prove that there is a fnc F:Z+→Z+

which catches Fred, regardless of his hop-length. ♦
Solved

by: Sienna N. & Patrick O., 2019t. Junhao Z., 2020t. David R.,

Aubrey S. & Haritha K., 2021g. Kevin J., 2022g. Alexa M., 2022t.

83.2: ??More lily pads. Now Fred jumps on Z, with
non-zero hop-length h∈Z. He starts at lily-pad `∈Z.
At time t, doomed Fred is on pad `+ [th].

Although both ` and h are unknown, show there
exists a Fred-catcher G:Z+→Z. [I.e, G:Time→Space.]

Prove or disprove: There exists a Fred-catcher
M:Z+→Z with this weak-monotonicity:

For all times t ≤ u we have
∣∣M(t)

∣∣ ≤ ∣∣M(u)
∣∣.∗: ♦

Solved
by: Junhao Z., 2020t.

(A third problem awaits...)

How to punctuate
�� ��help spot the giraffe .

Help spot the giraffe. [Locate the giraffe.]
Help spot the giraffe. [Help me put spots on the giraffe.]
Help Spot, the giraffe. [We need to go to Spot’s aid.]
Help Spot! –the giraffe! [My dog Spot will protect me

from this crazy giraffe!]
Help! —Spot the giraffe [(signed) giraffe named Spot,

desperately requesting aid.]

Malaphor

That’s the way the cookie cries over spilled milk.
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84.1:Easy ??Counting idempotent fncs. Consider a set
Γ of cardinality N := |Γ| ∈ Z+. A map h:Γ→Γ is
idempotent if h ◦ h = h. Give a formula for IN , the
number of idempotent-maps. Compute I5. ♦

[Ideas: Get a formula ITOf binomial-coefficients.]

85.1:Easy-ish ???Circularly-composite (USAMO .2005.1). Deter-
mine all composite positive integers β for which it is
possible to arrange the non-one (positive) divisors of β
in a circle, so that no two adjacent divisors are rela-
tively prime. ♦

Convenience. Use bigdiv for “non-one divisor”. E.g,
the bigdivs of 6 are 2, 3, 6,

Use blip for integer≥2. Blip β is good if its big-
divs can be circularly arranged with adjacent-pairs
not coprime. For example, 12 is good as it admits
(good) cycle y2, 6, 3, 12, 4

y

. �

86.1: ??Irreducible fraction.For each natnum n, prove
that fraction 21n + 14

14n + 9 is irreducible. ♦

Contrast. Is Rn := 17n+ 14
2n + 9 , always irreducible?

Alas, R8 = 136 + 14
16 + 9 = 150

25 which is reducible. �

Solved
by: ? Morgan F. & Sydney E., 2020t.

Alex T. & Nicholas V.N. & Haritha K., 2021g.

Puzzle: There are twelve boxes, one of which
contains fabulous riches, and eleven of which
contain goats. There is also a large balance,
on which you can weigh the boxes. The bal-
ance is surrounded by 53 bicycles. Three Monty
Halls, one of whom always tells the truth, one
of whom always lies, and one of whom answers
randomly, will answer a single question. All
three say, “I do not know the two numbers”,
and then look at one another.

What happened to the other dollar?
–Ken Kaufman
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87.1: ??Coefficient-Sum (HMMT2009.2.algebra). Let S
be the sum of all the real coefficients of the expansion
of [1 + ix]2009. What is log2(S) ? ♦

Solved
by: Ken D., 2017g. James [Matt] B., 2020t. Alex T., 2021g.

88.1: ??Reciprocal Sum (HMMT2009.5.algebra).
With A,B,C denoting the roots of cubic
f(x) := x3 − x+ 1, compute the sum

1
A+1 + 1

B+1 + 1
C+1 . ♦

Solved
by: Yifei L., 2017g. Nicholas V.N. &, Max W., Alex T.,

Haritha K., 2021g.
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89.1: ???Does a+ 2b cover? (USAMO1996.6). Deter-
mine whether there exists a subset X ⊂ Z satisfying:

For each τ ∈ Z there is exactly one solution
to a+ 2b = τ with a,b ∈ X. ♦

Removing Foliage

90a: ??Polynomial-deriv-divisible (Putnam 2016.A1).
Find the smallest natnum J such that for every
intpoly p() and for every k ∈ Z, the integer

p(J)(k) [The J-th derivative
of p(), evaluated at k.

]
∗:

is divisible by 2016. ♦

Solved
by: Rabon M., 2017g.

Taylor D. & Hunter R., 2019t.

Alex T., 2021g.

zucchini, n. : What stylish menagerie
animals wear to the beach. –JK
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Counting/Probability
Sometimes we have a finite non-void set Ω, a “good ”
subset G ⊂ Ω. We pick an α ∈ Ω “at random”, i.e,
with uniform probability. The probability of α being
good is ratio |G|

/
|Ω|. Often we wish to compute car-

dinality |G| or to lower-or-upper bound it. To show
that two subset G,H ⊂ Ω have the same probability,
sometime we can produce an explicit bijection G↪�H.

In probability theory, the term expected value
means “average value”. E.g, if you roll a fair die, it
takes on the values 1, . . . , 6 equi-probably, so its ex-
pected value (expectation) is 1+2+3+4+5+6

6 = 7/2.
Earlier problems in these notes using related ideas:

Scheherazade’s Stratagem, Three aces expectation.

91.1:Easy-ish ???Disjoint Triangles (USAMO1983.1). On a cir-
cle, six points A,B,C,D,E, F are chosen at random,
independently and uniformly w.r.t arclength. Deter-
mine the probability that triangles ABC and DEF
are disjoint. ♦

92.1:Easy-ish ???Lattice-walk three (HMMT2019.5.Feb.Comb).
Contessa is taking a random lattice walk in the plane,
starting at (((1, 1))). [A random lattice-walk moves up, down,
left, or right 1unit equi-probably at each step.] If she lands
on a point of form (((6x, 6y))) for x,y ∈ Z, she Wins!;
but if she lands on a point of form (((6x+ 3, 6y + 3)))
she Loses. What is her probability, G, of winning? ♦

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King Counting/Probability Page 73 of 111

93.1: ??Expected Backtrack (HMMT 2020.7 Nov., Team).
Bob the ant walks on the coordinate plane, starting
at (((0, 0))). Every second, he moves from one lattice
point to a different lattice point at distance 1, chosen
equi-probably, independently. He continues until he
backtracks, reaching a point he could have reached
sooner. E.g, walking (((0, 0)))→(((1, 0)))→(((1, 1)))→(((1, 2)))→(((0, 2))),
he will stop at (((0, 2))) because he could have traveled
(((0, 0)))→(((0, 1)))→(((0, 2))). Compute E, Bob’s expected-
number of steps before stopping. ♦

Solved
by: Junhao Z. & Hani S., 2021t.
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94: ???Zero mod-3 (USAMO1979.3). From integers
k1, k2, . . . , kN , a term α is picked at random. A 2nd

term, β, is randomly picked, independently of the
first. Then a third, γ. Prove the probability that
α+ β + γ is divisible by 3 is at least 1

4 . ♦

[Ideas: Let x,y,z be probability that a term chosen from k1, k2, . . . , kN

has mod-3 residue 0, 1, 2, respectively. Compute the desired proba-

bility ITOf x,y,z, then use calculus to minimize that expression over

the appropriate set of (((x, y, z))) triples.]
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95.1: ???Collapse-abc (HMMT 2020.7 Feb., Comb). Alice
writes 1001 letters on a blackboard, each one chosen
independently and uniformly at random from the set
S := {a, b, c}. A move consists of erasing two distinct
letters from the board and replacing them with the
third letter in S. What is the probability that Alice
can perform a sequence of moves which results in one
letter remaining on the blackboard? ♦
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Challenging misc. Problems

96.1: ??Poly-permutation (USAMO1974.1).With A,B,C
three distinct integers, let f denote a polynomial hav-
ing integral coefficients. Show it is impossible that
f(A)=B, f(B)=C, and f(C)=A. ♦

Solved
by: ?, Semester.

Exploration? Does such an f exist if we allow it to be a Q-poly,
rather than Z-poly?

Or, keeping f a Z-poly but allowing A,B,C to be rational,
does that admit a soln? �

97.1: ???Decimal divisibility (USAMO1988.1). The
repeating decimal 0.ab · · · kpq · · ·u equals α

β , where
α ⊥ β are posints, and –necessarily– there is at least
one decimal before the repeating-part. Prove β is di-
visible by 2 or 5 (or both).

[E.g: 0.01136 = 0.01136363636 · · · = 1
88
, and 88 |• 2.] ♦
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98:Challenging ??Multiplicative-coloring (USAMO2015.3). A blip,
B, is a subset of token-set {1, 2, . . . , N}, where
N ≥ 1. A coloring colors each blip either green or
red (not both). Let g(B) count the green sub-blips
of B,

Determine Λ(N), the number of legal-colorings;
those which satisfy

∀ blipsB,C : g(B) g(C) = g(B ∪ C) g(B ∩ C).†: ♦
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99: ??Chessboard-config Problem. In some order,
put the numbers 1, 2, . . . , 64 on the cells (squares) of a
chessboard; call this a configuration. For a cell α,
let αG denote the number placed there by G. Two
cells α, β are adjacent if they touch vertically, hor-
izontally or diagonally. Define the worst-case differ-
ence,

Ĝ := Max
{
|αG − βG|

∣∣∣ Cells α and β
are adjacent.

}
99a:

What is the minimum (taken over all configurations G)
of Ĝ ? ♦

As Rousseau could not compose without his cat beside
him, so I cannot play chess without my king’s bishop.
In its absense the game to me is lifeless and void. The
vitalizing factor is missing, and I can devise no plan of
attack. –Siegbert Tarrasch

I had a toothache during the first game.
In the second game I had a headache. In
the third game it was an attack of rheuma-
tism. In the fourth game, I wasn’t feeling
well. And in the fifth game? Well, must
one have to win every game?
–Siegbert Tarrasch
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100.1: ???Hexagonal Game (USAMO2014.4). Abby and
Bert play the “k-game” on an infinite hexagonal grid
which, initially, is unmarked. Players alternate, with
Abby moving first. Abby marks two adjacent un-
marked hexagons. Bert then unmarks some marked
hexagon (anywhere on the board). If ever there are k con-
secutive marked cells in a line (a k-chain), then Abby
wins. Find the min value of k for which Abby cannot
win, or prove that no such minimum exists. ♦

101.1: ???Averaging polynomials (USAMO2002.3). Fix
natnum K. A good polynomial is monic with real
coefficients, and has degree-K. Prove that each good
F(x) is the average of two good polynomials with all
real roots. ♦

Never criticize a man until you’ve walked a
mile in his shoes . . .
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102.1: ??Rational 6×6 grid (USAMO2004.4). Alice and
Bob play a game on a 6×6 grid. On his turn, a player
chooses a rational number not yet in the grid and
writes it in an empty cell (i.e, square) of the grid. Al-
ice starts, then players alternate. After all cells have
numbers: In each row, color black the cell with the
greatest number in that row.

Alice wins if she can draw a (polygonal) line from the
top of the grid to the bottom of the grid that stays
in black cells; Bob wins if she can’t. [Defn: Two cells in
adjacent rows are connected IFF they share a vertex.] Find,
with proof, a winning strategy for one of the players.♦

. . . for then, you are a mile away —and,
you have his shoes.
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103.1: ??? 7-5-Prob. For n = 0, 1, . . ., let
Cn := 7n + 5n.

Produce a simple formula so that, for coprime
natnums L ≥ K,

GCD(CL, CK) = SimpleFormula(L,K) .

[Guessing a formula may be easy; our goal is a proof!] ♦

Valiant polynomial. A polynomial f is valiant♥6

if [w ∈ Z] ⇒ [f(w) ∈ Z]. Define the kth binomial
polynomial

BBBK(x) :=
x[x− 1][x− 2] · · · [x− [K−1]]

K!
,

which we can think of as
( x
K

)
.

104.1: ??Binomial-polys are Valiant. For each K ∈ N,
polynomial BBBK is valiant. ♦

104.2: ??Valiants are lin-combs. Each valiant poly
f can be written as a finite linear-combination, with
integer coefficients, of the binomial polys. [I.e, {BBBk}∞k=0

is a Z-basis for Valiant.] ♦

♥6I.e, its VALues are INTegers.
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105.1: ??Half-intersection Problem. Consider a set Λ
(tokens) with |Λ| = 4028, along with subsets (blips)
B1,B2, . . . ,B2014 ⊂ Λ, where each |Bj | = 2014. Prove
that there exist distinct indices i,j with

|Bi ∩ Bj | ≥ 1007 . ♦

Solved
by: Hani S., 2021t.

Attempting to park at any major university
–as anyone who has tried to do it will tell you–

is the 10th-ring of torment in Dante’s Inferno.

106.1: ??Polynomial fit (USAMO1975.3). Fix N ∈ Z+

and J := [0 ..N ). Let P () denote the unique poly-
nomial st. Deg(P ) ≤ N−1 and

∀k ∈ J : P (k) =
k

k+1
.†:

Determine the value of P (N ). ♦

Solved
by: Daniel S., 2019t.
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Defn. The geometric-mean of a set of m non-
negative numbers is the mth-root of their product. �

107.1: ??Integral geometric-mean (USAMO1984.2). A
subset G ⊂ N is good if: The geometric-mean of each
(non-void) finite subset of G is an integer.

i : Which posints N admit a good-set of cardinal-
ity N? (Such an N is also called good.)

ii : Is there an infinite good set? ♦

108.1: ??Heart-isomorphism. The f(x) := 2x map,
from R→R+, is a group-isomorphism from (((R,+, 0)))
onto (((R+, · , 1))). More than a group, the reals form a
ring. So f carries this ring

(((R, +, 0, ··· , 1))) to a ring,

(((R+, · , 1, ♥, @))) ,

where ♥ is a binary operation on R+, and @ is an
element of R+.

What is @ ? And what is the ♥ binop? What does
5♥ 8 equal? ♦

Solved
by: James [Matt] B., 2020t.
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King’s bad proofs
Here are problems where I did not find an elegant soln,
and hope some student can find a more elegant one.
To a man who has only a hammer, every problem
looks like a nail. –Mark Twain (paraphrased)

109.1: ??Non-negative polynomial. On R3, prove that

f(x, y, z) := z6 + x4y2 + x2y4 − 3x2y2z2 .†:

is non-negative. ♦

Solved
by: Junhao Z. & Hani S., 2021t. Jeremy G. & Emily Y., 2022g.

Student-created conundra
Can you solve your colleagues’ challenges?

Notation. For sets U,A ⊂ R, say “U avoids A” ,
written UnA, if: ∀x,y ∈ U: x+y /∈ A.

110: ???Sam’s Avoidance Problem. Does there exist
an uncountable U with UnQ? Prove or give CEX.♦
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Cardinality problems

111.1: ??Infinite hats. An infinite set, P, of peo-
ple, play a game; they either all win, or all lose. At
midnight, a white hat or a red hat will appear (Star
Trek transporter?) on each person’s head. Each sees
the color of everyone else’s hat, but he cannot see his
own hat. Simultaneously, each yells out a guess of his
hat-color.

Result: If ∞ly many are incorrect, then the team
loses. If only finitely-many are wrong, then the team
wins.

The Problem: They are told the rules in advance.
Either prove there is a method for them to win, or else
prove that there is no such method. ♦

Temporary addition to SeLoNotes:

A denumerable set P := {p1, p2, p3, . . .} of people
play a game; they either all win, or all lose. At mid-
night, a White hat or a Red hat magically appears on
each person’s head. Each sees the color of everyone
else’s hat, but he cannot see his own hat. Simultane-
ously, each yells out a guess of his hat-color.

Notation: WithW:=White, R:=Red, and color-set C:={W,R},
the Color-maps set is CP. For color-map f ∈ CP, value f(n)
is color of hat that f puts on pn.

Use Ŵ := R and R̂ := W.
Let fFlip

N be the color-map h which: Has h(N) = f̂(N), and
has h(k)=f(k) for each k ∈ Pr{N}.

Use A(n, f) for the color pn Announces (his “guess”) for his
hat-color, when the actual color-map is f . The condition that
an announcing scheme A can not have a person’s guess depend
on his hat-color, is this:

For each n∈P and each f∈CP, the scheme has
A(n, fFlip

n ) = A(n, f).
†:

Every announcing-scheme A you use must satisfy (†). You may
use the Axiom of Choice in any of your arguments.

i
If ∞ly many are incorrect, then the team loses.

If only finitely-many are wrong, then the team wins.
Prove there is a method for the team to always win.

You may use the Axiom of Choice: Suppose F is a collection
of non-void sets. Then there exists a choice function C

mapping F into
⋃

A∈F
A st. C(A) ∈ A, for each A ∈ F .

ii
The rules have changed. Now, the team wins

only if no more than 50 people guess wrong.
Prove there no method guaranteeing a win. [Hint:

Given a guessing scheme A, can you use PHP to show there is
coloring f causing more than 50 people to guess wrong.]

iii
A kind of converse to (ii): For each posint N :

Prove ∃ scheme AN so that for each color-map f , at
most

⌈
N
2

⌉
among {p1, p2, . . . , pN} guess wrong. [NB: P

is still infinite.]

360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800
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Difficulties mastered are opportunities won.
–Winston Churchill
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§A Appendix: Notation

Number Sets. Expression k ∈ N [read as “k is an
element of N” or “k in N”] means that k is a natural num-
ber; a natnum. Expression N 3 k [read as “N owns k”]
is a synonym for k ∈ N.
N = natural numbers = {0, 1, 2, . . . }.
Z = integers = {. . . ,−2,−1, 0, 1, . . . }. For the set
{1, 2, 3, . . . } of positive integers, the posints, use Z+.
Use Z− for the negative integers, the negints.
Q = rational numbers = {pq | p ∈ Z and q ∈ Z+}.

Use Q+ for the positive rationals and Q− for the neg-
ative rationals.
R = reals. The posreals R+ and the negreals R−.
C = complex numbers, also called the complexes.
For ω∈C, let “ω > 5” mean “ω is real and ω > 5”.

[Use the same convention for ≥, <,≤, and also if 5 is replaced
by any real number.]

Use R = [ ∞, ∞] := { ∞} ∪ R∪{ ∞}, the ex-
tended reals.

An “interval of integers ” [b .. c) means the inter-
section [b, c) ∩ Z; ditto for open and closed intervals.
So [e .. 2π] = {3, 4, 5, 6} = [3 .. 6] = (2 .. 6]. We allow
b and c to be ±∞; so ( ∞ .. 1] is Z−. And [ ∞ .. 1],
is { ∞} ∪ Z−.

Floor function: bπc = 3, b πc = 4.
Ceiling fnc: dπe = 4. Absolute value: | 6| = 6 = |6|
and | 5 + 2i| =

√
29 .

Mathematical objects. Seq: ‘sequence’.
poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff:
‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘pa-
rameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so
ratfnc: means rational function, a ratio of polynomials). trnfn:
‘transformation’. cty: ‘continuity’. cts: ‘continuous’.
diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’.
CoI: ‘Constant of Integration’. LoI: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Propo-
sition’. CEX: ‘Counterexample’. eqn: ‘equation’.
RhS: ‘RightHand side’ of an eqn or inequality. LhS:
‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the
sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as
in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.
FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-

Value Thm’. MVT: ‘Mean-Value Thm’.

The logarithm function, defined for x>0, is

log(x) :=

∫ x

1

dv

v
. Its inverse-fnc is exp().

For x>0, then, exp
(
log(x)

)
= x = elog(x). For real t,

naturally, log
(
exp(t)

)
= t = log(et).

PolyExp: ‘Polynomial-times-exponential’, e.g,
[3 + t2]·e4t. PolyExp-sum: ‘Sum of polyexps’. E.g,
f(t) := 3te2t + [t2]·et is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’.
IFF: ‘if and only if’. TFAE: ‘The following are equiv-
alent’. ITOf: ‘In Terms Of’. OTForm: ‘of the
form’. FTSOC: ‘For the sake of contradiction’. And
### =“Contradiction”.
IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.
Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: exempli gratia, ‘for example’. i.e: id
est, ‘that is’. N.B: Nota bene, ‘Note well’. inter alia:
‘among other things’. QED: quod erat demonstrandum,
meaning “end of proof”.

Prefix nv- means ‘non-void’, e.g “the cartesian prod-
uct of two nv-sets is non-void”. Prefix nt- means ‘non-
trivial’, e.g “the (positive) nt-divisors of 14 are 2, 7, 14,
whereas the proper divisors are 1, 2, 7”.

Operations on Sets. Use ∈ for “is an element of”.
E.g, letting P be the set of primes, then, 5 ∈ P yet
6 /∈ P. Changing the emphasis, P 3 5 [“P owns 5”] yet
P 63 6 [“P does-not-own 6”]

For subsets A and B of the same space, Ω, the
inclusion relation A ⊂ B means:

∀ω ∈ A, necessarily B 3 ω.

And this can be written B ⊃ A. Use A $ B for proper
inclusion, i.e, A ⊂ B yet A 6= B.

The difference set B rA is {ω ∈ B | ω /∈ A}. Em-
ploy Ac for the complement Ω rA. Use A 4 B for
symmetric difference [ArB] ∪ [B rA]. Further-
more

Au•B , Sets A &B have at least one point in
common; they intersect.

A uB , The sets have no common point; dis-
joint.

The symbol “Au•B” both asserts intersection and rep-
resents the set A ∩B. For a collection C = {Ej}j of
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sets in Ω, let the disjoint union
⊔
j Ej or

⊔
(C) rep-

resent the union
⋃
j Ej and also asserts that the sets

are pairwise disjoint.

On a set Ω, each subset B ⊂ Ω engenders 1B, the
“indicator function of B ” . It is the fnc Ω→{0, 1}
sending points in B to 1, and pts in its complement,
Bc := ΩrB, to 0. [So 1B + 1Bc is constant-1.] E.g,
1Primes(5)=1 and 1Primes(9)=0.

Seqs. A sequence ~x abbreviates (((x0, x1, x2, x3, . . .))).
For a set Ω, expression “ ~x ⊂ Ω” means [∀n: xn ∈ Ω].
Use TailN (~x) for the subsequence

(((xN , xN+1, xN+2, . . .)))

of ~x. Given a fnc f :Ω→Λ and an Ω-sequence ~x, let
f(~x) be the Λ-sequence

(((
f(x1), f(x2), f(x2), . . .

)))
.

Suppose Ω has an addition and multiplication. For
Ω-seqs ~x and ~y, then, let ~x+ ~y be the sequence whose
nth member is xn + yn. I.e

~x+ ~y =
[
n 7→ [xn + yn]

]
.

Similarly, ~x · ~y denotes seq
[
n 7→ [xn· yn]

]
.

Why did the chicken cross
the Möbius strip?

To get to the same side.

I dream of a better world where chickens can cross
the road without having their motives questioned.

Filename: Problems/Misc/induction-SELO-jk.latex



Prof. JLF King B BINOMIALS & FRIENDS Page 89 of 111

§B Binomials & Friends

Bi/Multi-nomial coeffs. For a natnum n, use “n!”
to mean “n factorial ” ; the product of all posints ≤n.
So 3! = 3 · 2 · 1 = 6 and 5! = 120. Also 0! = 1 = 1!.

For natnum B and arb. complex number α, define

Rising Fctrl: Jα ↑ BK := α·
[
α+ 1

]
·
[
α+ 2

]
· · ·
[
α+ [B−1]

]
,

Falling Fctrl: Jα ↓ BK := α·
[
α− 1

]
·
[
α− 2

]
· · ·
[
α− [B−1]

]
.

E.g, JB↓BK = B! = J1↑BK. Two further examples,
r

2
7

y 4
z

=
2

7
· 5

7
· 12

7
· 19

7
and J1 ↓ 3K = 1 · 0 · 1 = 0 .

In particular, for n ∈ N: If B > n then Jn ↓ BK = 0.
We pronouce J5 ↓ BK as “5 falling-factorial B”.

Binomial. The binomial coefficient
(7
3

)
, read

“7 choose 3”, means the number of ways of choosing
3 objects from 7 distinguishable objects. Emphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as

( 7
3,4

)
. [Read

as “7 choose 3-comma-4.”] Evidently(
N

j

)
with k := N− j
============

(
N

j, k

)
=

N!

j! · k!
=

JN ↓ jK
j!

.†:

Note
(7
0

)
=
( 7
0,7

)
= 1. Finally, the Binomial theorem

says

[x+ y]N =
∑

j+k=N

( N
j,k

)
· xjyk ,£:

where (((j, k))) ranges over all ordered pairs of natural
numbers with sum N.

For natnum N, binomials satisfy this addition law:

(
N+1

B+1

)
=

Pick last object.︷ ︸︸ ︷(
N

B

)
+

Avoid last object.︷ ︸︸ ︷(
N

B+1

)
.∗:

Extending this to all B∈Z forces:(
N

B

)
= 0,

when B > N
or B negative.

Case B>N is automatic in formula
(N
B

)
= JN↓BK

B! .

Multinomial. In general, for natural numbers
N = k1 + . . .+ kP , the multinomial coefficient( N
k1, k2, ..., kP

)
is the number of ways of partitioning

N objects, by putting k1 objects in pocket-one, k2

objects in pocket-two, . . . putting kP objects in the
P th pocket. Easily(

N

k1, k2, . . . , kP

)
=

N!

k1! · k2! · . . . · kP !
.‡:

Unsurprisingly, [x1+. . .+xP ]N equals the sum of terms( N
k1,...,kP

)
· x1

k1 · x2
k2 · · ·xP kP ,££:

taken over all natnum-tuples ~k=(((k1, . . . , kP))) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum S` := k1 + k2 + . . .+ k`. Then
multinomial LhS(‡) equals this product of binomials:(

N

k1

)
·
(
N− S1

k2

)
·
(
N− S2

k3

)
· . . . ·

(
N − SP−1

kP

)
·

[The last term is
(kP
kP

) note
=== 1.]
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112.1: Geo-power Lemma. Each posint L and every
complex |u| < 1 satisfies

1

[1 − u]L
=

∞∑
n=0

(
n+ L− 1

n, L−1

)
· un .†L: ♦

E.g. Whenever |u| < 1: For L = 2, we have

1

[1− u]2
=
∞∑
n=0

(n+1
1

)
·un = 1 + 2u+ 3u2+ 4u3+ 5u4+ . . .

Similarly, 1/[1− u]3 equals

∞∑
n=0

(n+2
2

)
·un = 1 + 3u+ 6u2 + 10u3 + 15u4+. . . �

Proof. The L=1 case simply says

1

1 − u
= 1 + u+ u2+ u3+. . . ,

summing a convergent geometric-series. Inducting
on L, we show (†L) ⇒ (†L+1) by applying 1

L ·
d
du

to (†L+1). For the lefthand-side,

1

L
· d
du

LhS(†L) =
1

L
· L

[1 − u]L+1
· [ 1] =

1

[1 − u]L+1
.

Term-by-term diff’ing gives

1

L
· d
du

RhS(†L) =
1

L
·
∞∑
k=1

(
k + L− 1

k, L−1

)
· k uk−1

n := k−1
========

∞∑
n=0

n+1

L
·
(
n+1 + L− 1

n+1, L−1

)
· un .

Conveniently,

n+1

L
·
(

n + L

n+1, L−1

)
=

(
n+ L

n, L

)
.

Thus

1

[1 − u]L+1
=

1

L
· d
du

LhS(†L)

=
1

L
· d
du

RhS(†L) =
∞∑
n=0

(
n+ L

n, L

)
· un .

Happily, this is the desired (†L+1). �
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Calculus applications

Bi/Multi-nomials appear in differentiation formulas.

113a: Product Rule. For natnum N , and N -times
differentiable functions f and g:[

f · g
](N)

=
∑

j+k=N

( N
j, k

)
· f (j)· g(k) ,∗:

where (((j, k))) ranges over all ordered pairs of natural
numbers with sum N . ♦

E.g:
[
f ·g
](4)

= fg(4) + 4f (1)g(3) + 6f (2)g(2) + 4f (3)g(1) + f (4)g.

113b: Lemma. For posints N, J,K with J+K = N+1,( N
J−1, K

)
+
( N
J, K−1

)
=

(N+1
J, K

)
.U: ♦

Proof. The LhS(U) equals

J
J ·

N !
[J−1]! K! + N !

J ! [K−1]! ·
K
K = [J+K] ·N !

J !K! ,

which equals RhS(U). �

Pf of (113a). At N=0, our (∗) says fg = fg; a
tautology. Fixing N for which (∗) holds, note

[
f ·

g
](N+1) equals

∑
j+k=N

(N
j,k

)[
f (j)· g(k)

]′, which equals

A︷ ︸︸ ︷∑
j+k=N

(N
j,k

)
f (j+1)g(k) +

B︷ ︸︸ ︷∑
j+k=N

(N
j,k

)
f (j)g(k+1) .

Letting J := j+1 and K := k, rewrite A as

A =
∑

J+K =N+1,
J ≥ 1

( N
J−1, K

)
· f (J)g(K) .†:

Similarly, with K := k+1 and J := j, rewrite B as

B =
∑

J+K =N+1,
K≥ 1

( N
J, K−1

)
· f (J)g(K) .‡:

Separating out theK=0 term from (†) and the J=0
term from (‡), says that A+B equals( N

N, 0

)
f (N+1)g(0) +

( N
0, N

)
f (0)g(N+1)

+
∑

J+K =N+1,
J,K≥ 1

[( N
J−1, K

)
+
( N
J, K−1

)]
· f (J)g(K) .

Use the lemma, (U), to rewrite the summand. Thus
A+B equals

f (N+1)g(0) + f (0)g(N+1) +
∑

J+K =N+1,
J,K≥ 1

(N+1
J, K

)
· f (J)g(K) .

And this equals
∑

j+k=N+1

(N+1
j, k

)
· f (j)g(k), as desired. �

Larger product. Given a tuple J = (((j1, . . . , jP))) of
natnums, let +++J := j1 + · · ·+ jP . With N := +++J ,
let

(N
J

)
mean multinomial coeff

( N
j1, j2, ..., jP

)
. Finally,

given a tuple ~f := (((f1, . . . , fP))) of differentiable fncs,

let ~f
(J)

abbreviate this product of derivatives:

~f
(J)

:= f
(j1)
1 · f (j2)

2 · . . . · f (jP )
P .

[When tuple J is used this way, it is called a multi-index.]

113c: Gen. Product Rule. Fix natnum N ,
posint P , and N -times differentiable functions,
~f := (((f1, . . . , fP))). Then[

f1 · . . . · fP
](N)

=
∑

J : +++J=N

(N
J

)
· ~f

(J)
.VP : ♦

Proof. Eqn (V1) asserts tautology f (N)
1 = f

(N)
1 . We

proceed by induction on P . Fixing P such that (VP ),
we now establish (VP+1).

Fix P+1 fncs f1, . . . , fP , g, and let Φ := f1 · . . . · fP .
Then

[
f1· . . . ·fP · g

](N) is
[
Φ · g

](N). By (∗), it equals∑
s+k=N

( N
s, k

)
· Φ(s)· g(k) ,∗1:

where (((s, k))) ranges over all natnum-pairs with sumN .
Courtesy (VP ), our Φ(s) equals∑

J : +++J= s

(s
J

)
· ~f

(J)
, where J = (((j1, . . . , jP))).

Plugging this in to (∗1) gives

∑
s+k=N

[ ∑
J:+++J= s

( N
s, k

)(s
J

)
· ~f

(J)
· g(k)

]
.∗2:
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But product
( N
s, k

)(s
J

)
equals multinomial

( N
j1,...,jP ,k

)
.

Renaming k to jP+1, and g to fP+1, writes (∗2) as∑
j1 +...+ jP + jP+1

=N

(
N

j1, . . . , jP+1

)
· f (j1)

1 · . . . ·f (jP )
P ·f (jP+1)

P+1 ,

which indeed is RhS of (VP+1). �

Deriv(product). Consider f(t):= 3t, g(t):= sin(5t)
and h(t) := e7t. The 6th-derivative, [f ·g·h](6), is a sum
of terms. What is the coeff of the f ′′ · g′ · h′′′ term?

Soln. By the generalized product rule, (113c), the
coefficient of f (2)g(1)h(3) is(

6

2, 1, 3

)
note
===

(
6

2

)(
4

1

)(
3

3

)
=

6·5
2·1
· 4

1
· 1 = 60 .

Continuing, note:

f (2) = [log(3)]2·f ; g(1)(t) = 5 cos(5t); h(3) = 73·h.

So one summand in the sum forming [f ·g·h](6), is

60 · log(3)2 · 5 · 73 ·
[
3t · cos(5t) · e7t

]
. �
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Number Theory

Use ≡N to mean “congruent mod N ”. Let n ⊥ k
mean that n and k are co-prime [no prime in common].

Use k •| n for “k divides n”. Its negation k �r| n
means “k does not divide n.” Use n |• k and nr|� k
for “n is/is-not a multiple of k.” Finally, for p a prime
and E a natnum: Use double-verticals, pE •|| n, to
mean that E is the highest power of p which di-
vides n. Or write n ||• pE to emphasize that this is an
assertion about n. [E.g, 23 •|| 40 since 8 •| 40 yet 16 �r| 40.]

Use PoT for Power of Two and PoP for Power of
(a) Prime.

Euler ϕ. For N a posint, use Φ(N) or ΦN

for the set {r ∈ [1 .. N ] | r⊥N}. The cardinality
ϕ(N) := |ΦN | is the Euler phi function. [So ϕ(N) is
the cardinality of the multiplicative group, ΦN , in the ZN ring.]
Easily, ϕ(pL) = [p−1]·pL−1, for prime p and posint L.
Less easily, when K⊥N , then ϕ(KN) = ϕ(K)·ϕ(N)

Use EFT for the Euler-Fermat Thm, which says:
Suppose that integers b ⊥ N , with N positive. Then
bϕ(N) ≡N 1.
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§C Polynomials

Use poly for “polynomial”. An integer-coefficient poly
is a Z-poly or an intpoly. With rational coeffs, it is
a Q-poly or ratpoly. An F-poly has its coeffs come
from a field F. (A commutative ring is ok too).

The poly Zip has all of its coefficients zero. Say
that a poly is 5-topped if its degree is strictly less
than 5. Over a field F, the set of (single variable) N -
topped polys forms an N -dimensional vectorspace.

(See also Prof.King’s Primer on Polynomials)

Discriminant. The discriminant of quadratic
[i.e, A 6=0] polynomial q(z) := Az2 +Bz + C is

Discr(q) := B2 − 4AC .114.1:
The zeros [“roots”] of q are

Roots(q) =
1

2A

[
B ±

√
Discr(q)

]
.114.2:

Hence when A,B,C are real, then the zeros of q form
a complex-conjugate pair. And q has a repeated root
IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

q(x) = x2 − Sx+ P = [x− Z] · [x− Z] ,114.3:

where Z ∈ CrR. Note S = Z + Z = 2Re(Z) is the
Sum of the roots. And P = Z · Z = |Z|2 is the Prod-
uct of the roots. The g discriminant, Discr(g), equals

S2 − 4P note
=== [Z − Z]2 = −4·[Im(Z)]2 .114.4:

Completing-the-square yields

q(x) =
[
x− S2

]2
+ F 2, where F := |Im(Z)| ,114.5:

which is easily checked. [Exercise]

115: List lemma. Fix h, a Z-poly [“intpoly”, a polyno-
mial with integer coeffs]. Then for each two integers k,`,
difference k − ` divides h(k)− h(k). Pf. Exercise.♦

116: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic C-polynomial

g(t) := tN +BN−1t
N−1 + . . . +B1t+B0 .

Then g factors completely over C as

g(t) = [t− Z1] · [t− Z2] · . . . · [t− ZN ] ,

for a list Z1, . . . , ZN ∈ C, possibly with repetitions.
This list is unique up to reordering.

If g is a real polynomial, i.e g = g, then g fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering.

Proof. A proof-sketch is in Primer on Polynomials
on my Teaching page.Also: A proof-sketch is in Primer on
Polynomials on my Teaching page. ♦
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Summation polynomials. Fnc f on N has sum-
mation function

f̂(N) :=
∑

`∈[0 .. N)

f(`) .117a:

If f is a polynomial of degree L ∈ N, then f̂ is a poly-
nomial of degree L+1.

To see this, define the Lth binomial polynomial ,
for L∈N, by

BBBL(x) :=
x·
[
x− 1

]
·
[
x− 2

]
· · ·
[
x− [L−1]

]
L!

,117b:

which we may also write as
(x
L

)
= Jx↓LK

L! . Rewrite the
binomial identity

( n
L+1

)
=
(n−1
L+1

)
+
(n−1
L

)
as(n−1

L

)
=
( n
L+1

)
−
(n−1
L+1

)
. So B̂BBL(N) equals

N∑
n=1

(n−1
L

)
=

N∑
n=1

[( n
L+1

)
−
(n−1
L+1

)]
=
( N
L+1

)
−
( 0
L+1

)
.

This last equals BBBL+1(N), since
( 0
L+1

)
= 0 [because

L+1 is positive]. Hence

B̂BBL = BBBL+1 .117c:

The binomial polys {BBBL}∞L=0 form a basis for the
vectorspace of polys. Since the f 7→ f̂ map is lin-
ear, we can compute the summation-poly of arbitrary
polynomials. [Aside: Stronger, collection {BBBL}∞L=0 is a
Z-basis for the set of Z-valued polynomials (the “valiant” polys);
however, this fact isn’t obvious.]

Low-degree summations. Here we go!:

1 + 2 + 3 + · · · + N =
N [N + 1]

2
=

N2 +N

2
.........

12 + 22 + 32 + · · ·+N2 =
N [N+1][2N+1]

6
=

2N3 + 3N2 +N

6
.........

13 + 23 + 33 + · · ·+N3 =
[N [N + 1]

2

]2
=

N4 + 2N3 +N2

4
.........

14 + 24 + 34 + · · ·+N4 =
N [N + 1][2N + 1][3N2 + 3N − 1]

30

=
6N5 + 15N4 + 10N3 −N

30
.........

15 + 25 + 35 + · · ·+N5 =

[
N [N + 1]

]2 · [2N2 + 2N − 1]

12

=
2N6 + 6N5 + 5N4 −N2

12
.........

Letting pL(x) := xL, the above LhS are p̂L(N+1).
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§D Theorem Grabbag

We start with just a touch of Linear Algebra.

Defn. A linear combination of two vectors ~v,~w is
a sum of form α~v + β~w where α,β are scalars.

[Abbr: linear-comb, lincomb.] A lincomb of a list
~v1, . . . , ~vN is a sum of form

∑N
j=1 αj~vj

An integer-lincomb (or Z-lincomb) means that
each scalar αj is an integer. �

118: Lemma. A common divisor d of integer-
list K1, . . . ,KN divides every integer-lincomb of the
list. In particular, GCD(K1, . . . ,KN ) divides every
integer-lincomb. Proof. Exercise. ♦

Application. Evidently 302 ⊥ 201 since

[2 · 302]− [3 · 201] = 1.

[Thus each common divisor of 302 and 201 divides 1.] �

119: Bézout’s lemma. Each N -tuple
(((K1, . . . ,KN))) of integers admits a Bézout
tuple: A tuple (((s1, . . . , sN))); of integers s.t∑N
j=1 [sjKj ] = GCD(K1, . . . ,KN ). ♦

Convexity. In V:=RN , or any R-vectorspace, it is
possible to define the line seqment between two
points p,r ∈ V:

Seg(p, r) :=
{
xp + [1− x]r

∣∣∣ 0 ≤ x ≤ 1
}
.†:

A subset Ω ⊂ V is convex if Ω is sealed under
line-segment, ie,

∀p,r ∈ Ω : Seg(p, r) ⊂ Ω .‡:

A point q ∈ Ω is an “interior point of Ω in V” if
there exists a radius ε>0 s.t ball Balε(q) ⊂ Ω; here

Balε(q) :=
{
u ∈ V

∣∣ Dist(u,q) < ε
}
.∗:

Finally, Ω is strictly convex if for each p 6=r in Ω,
each point q which is interior to Seg(p, r) is interior
to Ω, i.e,

When 0<x<1, then xp + [1− x]r is
an interior point of Ω in V.

‡‡:

Functions. Below, V is R or RN [or any R-vector-
space]. The graph of a function f :V→R is the set of
points (((u, f(u)))), for u∈V. So the graph is a subset of
vectorspace V×R. Define the set of point above and
below this graph, as

G+
f :=

{
(((u, y)))

∣∣∣ u∈V & y∈R & y≥ f(u)
}

;

G−f :=
{
(((u, y)))

∣∣∣ u∈V & y∈R & y≤ f(u)
}
.

Fnc f is (strictly) convex-up if G+
f is a (strictly)

convex set. And f is (strictly) convex-down if G−f
is (strictly) convex. [The older terms for convex-down and
convex-up were “concave fnc” and “convex fnc”.]

If f is defined on only a subset Ω ⊂ V, i.e f :Ω→R,
these definitions still apply as long as Ω is a convex
subset of V.

122: Jensen’s inequality. On an interval J ⊂ R,
consider points Qv ∈ J , for each v in a countable
indexing-set C. We have a probability-distr P() on C.
Then for each convex-down fnc L:J→R

L
(∑
v∈C

P(v) ·Qv

)
≥
∑
v∈C

P(v)·L
(
Qv
)
.122a:

Now suppose L is strictly convex-down. Then:

Equality in (122a) IFF the probability-distr
is concentrated on a single point.

122b:

IOWords, having removed all zero-probability ele-
ments from C, the map v 7→ Qv is constant.

Proof. Exercise. [Or see picture on blackboard.] ♦
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Misc. tools.

123: Prime-binomial Lem. Fix a prime p. Then each
k∈(0 .. p) satisfies

(p
k

)
≡p 0. I.e,

(p
k

)
|• p . ♦

See Pascal’s triangle , rows 2, 3, 5, 7.

Pf. Our k ≥ 1, so p •| Jp ↓ kK, the falling factorial.
And p does not divide k!, since k < p. Hence p
divides

(p
k

) note
=== Jp ↓ kK

/
k! . �

Here is an application.

123a: Lemma. Forx,y integers, [x+y]p ≡ xp + yp. ♦

Pf. Well, [x+ y]p
Bin.thm
======

p∑
k=0

(p
k

)
·xkyp−k, which equals

xp + yp +
p−1∑
k=1

(p
k

)
·xkyp−k

by (123)
≡≡≡≡≡≡≡ xp + yp + 0. �
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Prelim. Suppose a finite group G acts on a finite
set Ω. The stabilizer StabG(s) of a point s ∈ Ω is
{g ∈ G | g(s) = s}. So the G-orbit of s corresponds
1-to-1 with the (left-)cosets of subgroup StabG(s). In
particular ∣∣Orbit(s)

∣∣ divides |G| .∗:

This is part of the Orbit-Stabilizer thm.
For natnums λ>υ, recollect that binomial coeffi-

cient
(υ
λ

)
is zero. Recall also that

(0
0

)
= 1. �

124.1: Lucas’s binomial thm. Express natnums U ,L in
base p, where p is prime, as

U = υK·pK + υK−1·pK−1 +. . .+ υ2p2 + υ1p + υ0

and

L = λK·pK + λK−1·pK−1 +. . .+ λ2p2 + λ1p + λ0 ,

where each υn,λn ∈ [0 .. p). Then we have mod-p con-
gruence (

U
L

)
≡p

K∏
n=0

(
υn
λn

)
.†:

[Mnemonic: U for Upper number, L for Lower.] ♦

Proof (From Wikipedia). Fix a set, B, of cardinality U .
Partition B into υn many cycles of length pn. This
product of cyclic groups,

G := CpK × CpK−1 ×. . .× Cp × C1

acts on B by rotating the cycles.
Consequently, G acts on Ω, the collection of size-L

subsets of B. Since |G| =
∏K
n=0 p

n is a power of
prime p, each G-orbit has size a power of p, cour-
tesy (∗). Thus(U

L
) note

===
∣∣Ω∣∣ ≡p ∣∣{Set of G-fixed-points}

∣∣ .‡:

Our goal is now RhS(‡) ?
= RhS(†).

Fixed-pts. A size-L subset S⊂B is G-invariant IFF
S is a union of some of the cycles comprising B.

First suppose there is such a fixed-pt, S. Let αn
be the number length-pn cycles that it fills. As B
only has υn many pn-cycles, necessarily αn ≤ υn < p.
The uniqueness of base-p representations now asserts
that each

�� ��αn = λn , since
∑K
n=0 αnp

n = |S| = L.
Consequently each λn ≤ υn , and the number of such
fixed-points is precisely RhS(†). Conversely, if each
λn ≤ υn, then there are fixed-pts.

Finally, having no G-fixed-pts corresponds to
λn > υn for some index n, whence RhS(†) is zero. �
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AM-GM. The arithmetic and geometric means
of a list ~c := (((c1, . . . , cN))) of non-negative numbers,
are

AM(~c) :=
c1 + . . .+ cN

N
, GM(~c) := N

√
c1 · . . . · cN .

[The AM is well-defined in those rings where every sum
OTForm 1+1+ . . .+1 has a reciproval.] �

125.1: AM-GM inequality. For non-negative list ~c,

c1 + . . .+ cN
N

≥ N
√
c1 · . . . · cN‡:

with equality IFF c1 = c2 = . . . = cN . ♦

Pf N≤2. Cases N = 0,1 are trivial. For N=2, note

√
xy ≤ x+y

2

(∗)⇐⇒ 4xy ≤ [x+y]2 ⇔ 0 ≤ [x−y]2,�

since(∗) x,y ≥ 0.

Pf N>2. Fix S≥0. The simplex, ∆, of non-neg N -
tuples with

∑
(~c) =S, is compact. Hence

∏
(~c) attains

a maximum at, say, ~e. Were ~e non-constant, then
WLOG e1 6= e2. Thus S>0, so each ej > 0. Among
non-neg pairs (((c1, c2))) whose sum equals e1+e2, prod-
uct c1·c2 is uniquely maximized when c1 = c2. This
contradicts that pair (((e1, e2))) gave maximum product
[here, we are using that product

∏N
j=3 ej is positive.] �
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Reciprocal tables in Zp

Reciprocals

Modulo 2:
x 〈1/x〉2
1 1

Modulo 3:
x 〈1/x〉3
±1 ±1

Modulo 5:
x 〈1/x〉5 x 〈1/x〉5
±1 ±1 ±2 ∓2

Modulo 7:
x 〈1/x〉7 x 〈1/x〉7
±1 ±1
±2 ∓3 ±3 ∓2

Modulo 11:

x 〈1/x〉11 x 〈1/x〉11

±1 ±1
±2 ∓5 ±4 ±3
±3 ±4 ±5 ∓2

Modulo 13:

x 〈1/x〉13 x 〈1/x〉13

±1 ±1 ±4 ∓3
±2 ∓6 ±5 ∓5
±3 ∓4 ±6 ∓2

Modulo 17:

x 〈1/x〉17 x 〈1/x〉17

±1 ±1 ±5 ±7
±2 ∓8 ±6 ±3
±3 ±6 ±7 ±5
±4 ∓4 ±8 ∓2

Modulo 19:

x 〈1/x〉19 x 〈1/x〉19

±1 ±1
±2 ∓9 ±6 ∓3
±3 ∓6 ±7 ∓8
±4 ±5 ±8 ∓7
±5 ±4 ±9 ∓2

Modulo 23:

x 〈1/x〉23 x 〈1/x〉23

±1 ±1
±2 ∓11 ±7 ±10
±3 ±8 ±8 ±3
±4 ±6 ±9 ∓5
±5 ∓9 ±10 ±7
±6 ±4 ±11 ∓2

Multiplication

7 | 2 3
----|--------

2 | -3
3 | -1 2

11 | 2 3 4 5
----|-----------------

2 | 4
3 | -5 -2
4 | -3 1 5
5 | -1 4 -2 3

13 | 2 3 4 5 6
----|---------------------

2 | 4
3 | 6 -4
4 | -5 -1 3
5 | -3 2 -6 -1
6 | -1 5 -2 4 -3

17 | 2 3 4 5 6 7 8
----|-----------------------------

2 | 4
3 | 6 -8
4 | 8 -5 -1
5 | -7 -2 3 8
6 | -5 1 7 -4 2
7 | -3 4 -6 1 8 -2
8 | -1 7 -2 6 -3 5 -4

19 | 2 3 4 5 6 7 8 9
----|---------------------------------

2 | 4
3 | 6 9
4 | 8 -7 -3
5 | -9 -4 1 6
6 | -7 -1 5 -8 -2
7 | -5 2 9 -3 4 -8
8 | -3 5 -6 2 -9 -1 7
9 | -1 8 -2 7 -3 6 -4 5

23 | 2 3 4 5 6 7 8 9 10 11
----|-----------------------------------------

2 | 4
3 | 6 9
4 | 8 -11 -7
5 | 10 -8 -3 2
6 | -11 -5 1 7 -10
7 | -9 -2 5 -11 -4 3
8 | -7 1 9 -6 2 10 -5
9 | -5 4 -10 -1 8 -6 3 -11

10 | -3 7 -6 4 -9 1 11 -2 8
11 | -1 10 -2 9 -3 8 -4 7 -5 6
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§E Rings

Semigroups & Monoids. A semigroup is a pair
(((S, •))), where • is an associative binary operation
[binop] on set S. A special case is a monoid. It
is a triple (((S, •, e))), where • is an associative binop
on S, and e ∈ S is a two-sided identity elt.

Axiomatically:

G1: Binop • is associative, i.e ∀α,β,γ ∈ S, necessar-
ily [α • β] • γ = α • [β • γ].

G2: Elt e is a two-sided identity element, i.e
∀α ∈ S: α • e = α and e • α = α.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element :
∀α, ∃β such that α • β = e and β • α = e.

When the binop is ‘+’, addition, then write the
inverse of α as α and call it “negative α”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of α as α 1 and call it the “reciprocal of α” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes αβ for α•β.

For an abstract binop ‘•’, we often write α 1 for the
inverse of α [“α inverse”], and omit the binop-symbol.
If • is commutative [∀α,β, necessarily α • β = β • α] then
we call S a commutative group.

Rings/Fields. A ring is a five-tuple (((Γ,+, 0, ·, 1)))
with these axioms.

R1: Elements 0 and 1 are distinct; 0 6= 1.

R2: Triple
(((

Γ,+, 0
)))
is a commutative group.

R3: Triple
(((

Γ, · , 1
)))
is monoid.

R4: Mult. distributes-over addition from the left,
α[x+ y] = [αx] + [αy], and from the right,
[x+ y]α = [xα] + [yα]; this, for all α,x,y ∈ Γ.

Our Γ is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When Γ is commutative: Say that α •| β [α divides
β] if there exists µ ∈ Γ s.t αµ = β. This is the same
relation as β |• α [β is a multiple of α].

Zero-divisors. Fix α ∈ Γ. Elt β ∈ Γ is a “(two-
sided) annihilator of α” if αβ = 0 = βα. An α is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0 · 1 = 0 = 1· 0, and
1 6= 0. We write the set of Γ–zero-divisors as

ZDΓ or ZD(Γ) .

[E.g: In the Z15 ring, note 9 6≡ 0 and 10 6≡ 0, yet 9·10 is ≡ 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

An α ∈ Γ is a Γ-unit if ∃β ∈ Γ st. αβ = 1 = βα.
Use

UΓ or U(Γ)

for the units group. In the special case when Γ is ZN ,
I will write ΦN for its units group, to emphasize the
relation with the Euler-phi fnc, since ϕ(N) :=

∣∣ΦN

∣∣.
[Some texts use U(N) for the ZN units group.]

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
ZDΓ = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F in which every non-zero element
is a unit [i.e U(F ) = Fr{0}] is a field. That is to say, F
is a commRing where triple

(((
Fr{0}, · , 1

)))
is a group.

Examples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z12 comprise
{±2,±3,±4, 6}.

In Z the units are ±1. But in Z12, the ring of in-
tegers mod-12, the set of units, Φ(12), is {±1,±5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {±1,±i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Z12) is not cyclic. For which N is
Φ(N) cyclic?] �
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Irreducibles, Primes. Consider (((Γ,+, 0, ·, 1))), a
commutative ring♥7. An elt α ∈ Γ is a zero-divisor
[abbrev ZD] if there exists a non-zero β ∈ Γ st. αβ = 0.

In contrast, an element u ∈ Γ is a unit if ∃w ∈ Γ
st. u·w = 1. This w, written as u 1, is called the
reciprocal [or multiplicative-inverse] of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, α •| u, then α is a unit.

Exer 1b: If γ |• z with z ∈ ZD, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ, the set ZD(Γ) is disjoint from
Units(Γ).

An element p ∈ Γ is:

i : Γ-irreducible if p is a non-unit, non-ZD, such
that for each Γ-factorization p = x·y, either x or
y is a Γ-unit. [Restating, using the definition below:
Either x≈1, y≈p, or x≈p, y≈1.]

ii : Γ-prime if p is a non-unit, non-ZD, such that for
each pair c,d ∈ Γ: If p •| [c · d] then either p •| c
or p •| d.

Associates. In a commutative ring, elts α and β
are associates, written α ≈ β , if there exists a
unit u st. β = uα. [For emphasis, we might say strong
associates.] They are weak-associates, written
α ∼ β, if α •| β and α |• β [i.e, α ∈ βΓ and β ∈ αΓ].

Ex 3: Prove Assoc ⇒ weak-Assoc.

Ex 4: If α ∼ β and α /∈ ZD, then α, β are (strong) associates.

Ex 5: In Z10, zero-divisors 2, 4 are weak-associates. [This,
since 2·2 ≡ 4 and 4·3 = 12 ≡ 2.] Are 2, 4 (strong) associates?

Ex 6: With d •| α, prove: If α is a non-ZD, then d is a non-ZD.
And: If α is a unit, then d is a unit.

126: Lemma. In a commRing♥7 Γ, each prime α is
irreducible. ♦

Proof. Consider factorization α = xy. Since α •| xy,
WLOG α •| x, i.e ∃c with αc = x. Hence

α = xy = αcy .∗:

By defn, α /∈ ZD. We may thus cancel in (∗), yielding
1 = cy. So y is a unit. �

♥7More generally, a commutative monoid.

There are rings♥8 with irreducible elements p which
are nonetheless not prime. However. . .

127: Lemma. Suppose commRing Γ satisfies
the Bézout condition, that each GCD is a linear-
combination. Then each irreducible α is prime. ♦

Pf. Suppose α •| c·d. WLOG α �r| c. Let
g := GCD(α, c). Were g ≈ α, then α •| g •| c, a con-
tradiction. Thus, since α is irreducible, our g ≈ 1.

Bézout produces S,T ∈ Γ with

1 = Sα+ Tc . Hence

d = Sαd+ Tcd = Sdα+ Tcd .∗:

By hyp, α •| cd, hence α divides RhS(∗). So α •| d.�

128: Lemma. In commRing Γ, if prime p divides
product α1 · · ·αK then p •| αj for some j. [Exer. 7] ♦

129: Prime-uniqueness thm. In commRing Γ, suppose

p1·p2·p3 · · · pK = q1·q2·q3 · · · qL

are equal products-of-primes. Then L = K and, after
permuting the p primes, each pk ≈ qk. ♦

Pf. [From Ex.4, previously, for non-ZD, relations ∼ and ≈ are
the same.] For notational simplicity, we do this in Z+,
in which case pk ≈ qk will be replaced by pk = qk.

FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L≥1. Thus
K≥1. [Otherwise, qL divides a unit, forcing qL to be a
unit; see Ex.1a.] By the preceding lemma, qL divides
some pk; WLOG qL •| pK . Thus qL = pK [since pK

is prime and qL is not a unit]. Cancelling now gives
p1·p2 · · · pK−1 = q1·q2 · · · qL−1, giving a CEX with a
smaller [K−1] + [L−1] sum. �

♥8Consider the ring, Γ, of polys with coefficients in Z12.
There, x2 − 1 factors as [x− 5][x+ 5] and as [x− 1][x+ 1].
Thus none of the four linear terms is prime. Yet each is Γ-
irreducible. (Why?) This ring Γ has zero-divisors (yuck!),
but there are natural subrings of C where Irred 6⇒Prime.
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Example where ∼ 6= ≈. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs
on [ 2, 2]. Define E ,D ∈ Ω by: For t ≥ 0 :

E(t) = D(t) :=

{
t− 1 if t ∈ [1, 2]

0 if t ∈ [0, 1]

}
.

And for t ≤ 0 define

E(t) := E( t) and D(t) := −D( t) .

[So E is an Even fnc; D is odD.] Note E = fD and D = fE ,
where

f(t) :=


1 if t ∈ [ 1, 2]

t if t ∈ [ 1, 1]

1 if t ∈ [ 2, 1]

 .

Hence E ∼ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [ 2, 2] r {0}. Cty of g then forces g ≡ 0.]

Could there be a unit u ∈ Ω with uD = E? Well

u(2) = E(2)
D(2)

note
=== 1 , and u( 2) = E( 2)

D( 2)
note
=== 1 .

Cty of u() forces u to be zero somewhere on inter-
val ( 2, 2), hence u is not a unit. �

Addendum. By Ex.4, both E and D must be zero-
divisors. [Exer.8: Exhibit a function g∈Ω, not the zero-fnc,
such that E·g ≡ 0.] �
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§F C-exp-cos-sin

The algebraic structure of R can be consistently ex-
tended to a larger field, by adjoining a sqroot of
negative 1. This is conventionally♥9 called i, so
i2 = 1 = [ i]2. Extending R by i produces field

C := {x1 + yi | where x and y are real} .

[I’ve written x1 + yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2 + 3i, not 2·1 + 3i.]

A geometric picture of C, with the real axis hor-
izontal, and the imaginary axis vertical, is called
the Argand plane or the complex plane.

Write real-part and imaginary-part extractors
as, e.g, for z := 2 − 3i, give

Re(z) = 2 and Im(z) = 3

since z = 2·1 + [ 3]·i. The absolute-value or mod-
ulus of z is its distance to the origin; so

|z| =
√

Re(z)2 + Im(z)2 .

[Here,
∣∣2 − 3i

∣∣ =
√

4 + 9 =
√

13 .] The complex conju-
gate of this z is z = 2 + 3i. For a general ω = x+ yi
with x,y∈R, observe that

Re(ω) := x = ω+ω
2 , Im(ω) := y = ω−ω

2i ;

ω = Re(ω) − Im(ω)i ;

|ω|2 Pythag. thm
========= x2 + y2 = ωω .

(Complex-)conjugation ω 7→ ω is an involution of C,

since ω = ω. For complex polynomial f(z) =
N∑
j=0

cjz
j ,

define f(z) :=
N∑
j=0

cj z
j , its conjugate polynomial.

Thus
f(z) = f(z) ,

since µ+ ν = µ+ ν and µν = µ · ν for µ,ν ∈ C.
Multiplying complex numbers corresponds to mul-

tiplying their moduli and adding their angles.

♥9Electrical engineers use j rather than i, as “i” is used to
represent current/amperage in EE. Also, while boldface i is a
sqroot of 1, we still have non-boldface i as a variable. E.g, we
could [but wouldn’t] write 7i +

∑4
i=3 i

2 note
=== 7i + 32 + 42.

To write a quotient ν
α in std x+ iy form, note

ν
α = να

αα = να
/
|α|2

So write να in std form, then divide by real |α|2.

See W: Complex number and W: Argand plane for arith-
metic with complex numbers.

Let’s extend the exponential fnc to C.

130a: Defn. For z ∈ C, define

exp(z) := ez :=
∞∑
n=0

1

n!
·zn = 1 + z + 1

2z
2 + 1

6z
3 + . . . ;

cos(z) :=
∞∑
k=0

[ 1]k

[2k]!
·z2k = 1 − 1

2z
2 + 1

24z
4 − . . . ;

sin(z) :=
∞∑
k=0

[ 1]k

[2k + 1]!
·z2k+1 = z − 1

6z
3 + 1

120z
5 − . . . .

Each series has ∞-RoC. ♦

Since we have absolute convergence of each series,
we can re-order terms without changing convergence.

130b: Lemma. Fix α,β ∈ C. Then

eα · eβ = eα+β . ♦

Proof. For natnum N , recall the Binomial thm which
says that ∑

j+k=N

(N
j,k

)
· αjβk = [α+ β]N ,∗:

where the sum is over all ordered-pairs (((j, k))) of
natnums. By its defn [and abs.convergence], eαeβ equals

[ ∞∑
j=0

1

j!
·αj
]
·
[ ∞∑
k=0

1

k!
·βk
]

=
∞∑
N=0

[ ∑
j+k=N

1

j!

1

k!
· αjβk

]
.

But 1
j!·k! equals

1
N ! ·

N !
j!·k! . Hence eαeβ equals

∞∑
N=0

1

N !

[ ∑
j+k=N

(N
j,k

)
· αjβk

] by (∗)
=====

∞∑
N=0

1

N !
[α+ β]N ,

which is the defn of eα+β . �
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130c: Lemma. For θ,x,y,z complex numbers:

ei θ = [cos(θ) + i sin(θ)] =: cis(θ) . Hence

130.1:

ei θ + e i θ

2
= cos(θ) ,

ei θ − e i θ

2i
= sin(θ) . Also,

130.2:

ex± iy = ex · e±i y = ex · [cos(y) ± i sin(y)] ,

130.3:

since cos( y) = cos(y) and sin( y) = sin(y).
When θ is real, then,

Re(ei θ) = cos(θ) and Im(ei θ) = sin(θ) .130.4:

Since the coefficients in their power-series expan-
sions are all real, our exp(),cos(),sin() fncs each com-
mute with complex-conjugation, i.e

exp(z)=exp(z), cos(z)=cos(z), sin(z)=sin(z) ;130.5:

Translation-identities & addition-identities

cos(z − π
2 ) = sin(z) , sin(z + π

2 ) = cos(z) ,

cos(α±β) = cos(α) cos(β) ∓ sin(α) sin(β),
sin(α±β) = cos(α) sin(β) ± sin(α) cos(β).

130.6:

extend to the complex plane. Finally,

Range(exp) = Cr{0} is the punctured C.
And Range(cos) = C = Range(sin).

130.7:

All zeros of [complex] cos() lie in R. Hence
cos() has only one period, that of 2π.
Both statements hold for sin().

130.8: ♦

Pf of (130.7). For Range(cos)
?
= C, target τ

2∈C re-
quires z with cos(z) = τ/2. With R := eiz, then, we
need R+ 1

R = τ , i.e R2 − τR+ 1 = 0. This quad.eqn
has a solution R ∈ C. As R=0 is not a soln, necessar-
ily R ∈ Range(exp). �

Pf of (130.8). Fix a z = x+ iy st. cos(z) = 0. Thus

0 = 2cos(z) = exp(i · [x+ iy]) + exp( i · [x+ iy])

= exp( y + ix) + exp(y − ix)

= e ycis(x) + eycis( x) .

Since these summands cancel, they must have equal
abs.values. Since x and y are real, then,

e y = e y· |cis(x)| = ey· |cis( x)| = ey.∗:

But R-exp() is 1-to-1, so (∗) implies that y = y.
Hence y = 0, i.e z is real. �

130e: Lemma. Familar derivative relations, exp′ = exp
and cos′ = sin and sin′ = cos, continue to hold. ♦

Same-frequency cosines/sines. Consider a sum
of same-frequency cosines

h(t) :=
∑N

j=1
Aj ·cos(Pj + F·t) ,

where Aj∈ R is amplitude, Pj∈R is phase-shift and
F∈R determines the frequency. [Courtesy (130.6), we
could include sine fncs in the sum.] We seek a phase-shift
θ and amplitude R≥0 so that

h(t) = R · cos(θ + Ft) .

From (130.4), we have that h(t) equals

N∑
j=1

Aj ·Re(ei[Pj + Ft])
note
=== Re

( N∑
j=1

Aj · ei[Pj + Ft]
)

= Re
([ N∑
j=1

Aj · eiPj

]
· eiFt

)
.

Thus we are led to define SSS∈C and X,Y ∈ R by

SSS :=
[∑N

j=1
Aj · eiPj

]
=: X + iY .†:

Since each Aj and Pj is real,

X =
N∑
j=1

Aj ·cos(Pj) and Y =
N∑
j=1

Aj ·sin(Pj) .
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130f: Same-freq Lemma. [With notation from above.] Set
R := |SSS| note===

√
X2 + Y 2 .

If SSS = 0, then h() is the zero-fnc; so can set θ := 0.
Otherwise, if X = 0, then set θ to π

2 or π
2 as Y is

positive or negative.
Otherwise: If X > 0 then set θ := arctan(Y /X);

and if X < 0 then set θ := π + arctan(Y /X).
With R,θ defined as above[ N∑

j=1

Aj · cos(Pj + F·t)
]

= R· cos(θ + Ft).‡: ♦

130g: E.g. Compute reals R≥ 0 and phase-shift θ st.
Rcos(θ+8t) = cos(π

3
+8t) + cos( 5π

3
+8t) −

√
2cos( 7π

4
+8t).

Soln: Applying (†), above,

SSS = ei
π
3 + ei

5π
3 −

√
2ei

7π
4

Geometry
======= i .

Hence R = |i| = 1 and θ = Arg(i) = π
2 . �

Hyperbolic trig fncs

(Text commented-out.)
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§G Morphisms

Homomorphism. Given binrels (((X, R))) and (((Ω, Q))),
a map f :X→Ω is a binrel-homomorphism if

∀y,z∈X : y R z =⇒ f(y)Q f(z)131a:

This f can be many-to-one, and need not be surjec-
tive. [Two X-elts not R -related might nonetheless have their
f -images Q -related.] Call f a binrel-embedding if f is
injective with this IFF :

∀y,z∈X : y R z ⇐⇒ f(y)Q f(z) .131b:

IOWords, (((X, R))) is binrel-isomorphic (see below) to
a sub-structure of Ω.

When R and Q are lax partial-orders, (((X,6 ))) and
(((Ω,4 ))), then (131a) is an order-homomorphism
and (131b) is an order-embedding. �

Isomorphism. Consider Foo, an abstract class of
objects. [So Foo might be vector-space or group or ring or
field or topological-space or game or. . . ]. A map f :X→Ω is
a Foo-homomorphism (abbrev: Foo-hom) if f pre-
serves Foo-structure. [This f might be neither injective nor
surjective.]

E.g: When Foo is topological-space then a Foo-hom
is called a ‘continuous map’. When Foo is vector-space
then a Foo-hom is a ‘linear map’.

If f :X↪�Ω is a bijection, and both f and f 1 are
Foo-homs, then f is a Foo-isomorphism [E.g: The
map x 7→ 3x is a group-isomorphism from (((R,+, 0))) onto
(((R+, ·, 1))). When Foo is topological-space, a Foo-isomorphism
is called a homeomorphism.] N.B: Iso-morph means
Same-form. Homo-morph also means Same-form; in this case,
in a weaker form.

[Caveat: In Latin, homo means ‘Man’ or ‘Human’; e.g
homo sapien. In Greek , homo means ‘same’, ‘identical’; e.g the
arm of a human, the foreleg of a dog, the wing of a bat, and the
front-fin of a whale (all mammals) are homologous structures.]

An isomorphism f :X↪→Ω to a sub-structure of Ω
is sometimes called an embedding or an into-
isomorphism. [E.g: The R→R×R map x 7→ (((x, 3x))) is a
vector-space embedding. The R3→R2 map (((x, y, z))) 7→ (((5y, 0)))

is a vector-space hom that is neither 1-to-1 nor onto.] �

Automorphism. An isomorphism f :X↪�X
from a structure to itself could be called an ‘auto-
isomorphism’; but we contract it to automorphism.

[E.g: The map x 7→ x is a group-automorphism of additive
group (((Q,+, 0))). On C, the complex plane, the map z 7→ z

(the complex conjugate of z) is a field-automorphism.]
The set of Foo-automorphisms of a Foo-structure X

is an (algebraic) group under composition, ◦. [E.g: Let
Q6=0 denote the non-zero rationals. Each “multiplier” M ∈ Q6=0

engenders a group-automorphism of (((Q,+, 0))) under the map
q 7→M ·q. Since multiplication is associative, the automorphism
group of (((Q,+, 0))) is (group-)isomorphic to (((Q6=0, ·, 1))).] �

Confession. I made up the terms ‘binrel-
homomorphism’ and ‘binrel-embedding’. Probably
‘order-homomorphism’ is used. Term ‘order-
embedding’ definitely is used.

All branches of Mathematics use ‘homomorphism’,
‘isomorphism’, ‘automorphism’. Less common is
endomorphism ; a homomorphism from a structure
to itself. Thus

X→Ω X→X

Weak: homomorphism endomorphism
Strong: isomorphism automorphism

[People working in Category theory have additional words;
monomorphism, epimorphism. We don’t invite such people to
our parties...] �
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§H A few countable ordinals

Defn. Element m of poset (((X, < ))) is minimal if
∀b∈X: [b ≤ m] ⇒ [b = m]. The poset is well-found-
ed if each non-void X-subset admits a minimal elt.

A descending-chain has form x1 > x2 > x3 > . . .
and could be finite or infinite. Given the Axiom of

Choice (AC), poset (((X, < ))) is well-founded IFF it has
no ∞-descending-chain.

A well-founded total-order is a well-order. �

Ordinals. For us, an order-type is an equiv-class of
total-orders under order-isomorphism. E.g: (((N,≤ )))
and ((([5 ..∞),≤ ))) and

(((
{2n}∞n=9, •|

)))
all have the same

order-type.
We can think of an ordinal as the order-type of a

well-order. [A von Neumann ordinal is way of assigning
a particular well-ordered-set to each well-order equiv-class.] �

Example countable ordinals. Let’s exhibit sub-
sets of Q≥0 that are well-ordered under <, making
use of the “compression function” f(q) := q

q+1 .
Given a set S, let f(S) be

{
f(s)

∣∣ s ∈ S}. And let,
e.g, 5 + S mean

{
5+s

∣∣ s ∈ S}.
The smallest infinite ordinal is called ω0, often ab-

breviated ω; it has the order-type of N, which I’ll
write as ω↔N.

Let S1 := f(N)
note
⊂ [0, 1). Our f is order-

preserving, so ω↔S1. Thus S1 t [1 + S1] has
order-type ω+ω = ω·2. [Notice that 2·ω = ω; ordinal
add./mult. are not commutative.] Continuing the idea
gives ⊔∞

k=0
[k + S1]

which has order-type ω · ω. Iterating this idea pro-
duces

Sn := f

( ∞⊔
k=0

[k + Sn−1]

)
.†:

Since Sn ↔ Sn−1·ω, it follows that each Sn↔ωn.
Although this process can keep going, e.g,⊔∞

k=0
[k + Sk]‡:

has order-type ωω, we will stop here.

Choice function. Consider C, a set of non-void sets.
A “choice function for C ” is a function

f : C→
⋃

(C) satisfying ∀P ∈C: f(P ) ∈ P .
I.e, for each patch P ∈ C, function f picks an ele-

ment of P . See
https://en.wikipedia.org/wiki/Axiom_of_choice �

133: Axiom of Choice. Suppose C is a collection of
non-void sets. Then C admits a choice function. I.e,{
h
∣∣ h is a choice function for C

}
is non-empty. ♦
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(For zoom writing)
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§Index, with symbols and abbrevs at the End

u• ,u,
⊔

on sets, 87
ε-δ, 66q
T
N

y
, picking from types, 10

ΦN , ϕ(N), 101
[b .. c), see interval of integers
Jx ↑ KK, see rising factorial
Jx ↓ KK, see falling factorial

amplitude, 105
annihilator, 101
Argand plane, 41, 104
associates, 102
associative, 101

Beer, but not a drop to drink, 23
binomial coefficient, 69, 89
binomial polynomial, 95

circular reasoning, see tautology
cis(), cosine + i·sine, 105
commutative, 101
Completing-the-square, 94
complex conjugate, 41, 104
complex plane, 41, 104

discriminant, 94
distributes-over, 101
Dixon Lanier Merritt, 47

Eggs, 1, 2, 4–6, 11, 16, 17, 22, 23,
26, 33, 37, 39–41, 45–47, 54,
57, 66, 68, 69, 71, 78, 79, 82,
84, 86, 88

Euler phi, 93
exp(z)=ez, exponential fnc, 104
exponential

complex, 104
Extremal argument, 49, 53

falling factorial, 89
field, 101
frequency, 105
Fund. thm of Algebra , 94

Gaussian integers, 101
Geo-power Lemma, 90
golden ratio, 33
Group, 101

of units, 101

identity element, 101
Im(ω), imaginary part of ω∈C, 41,

104
Inclusion/exclusion, 30
indicator function, 88
Induction, 53

Infinite descent, 29, 30, 60
Minimum-CEX, 36

integral domain, 101
interval of integers, 87
Invariants, 45, 46
inverse element, 101
irreducible element, 102

Lewis Carroll, see Volkswagen
lim
(
erick

)
, 11

linear combination, lincomb, 96
logarithm, 87

Möbius, 10, 88
Malaphor, 5, 68
ML8, see Lewis Carroll
modular arithmetic, 35, 61
monoid, 101
multi-index, 91
multinomial coefficient, 89

phase-shift, 105
Pigeon-hole principle, 6
PolyExp, 87
PolyExp-sum, 87
polynomial

discriminant, 94
prime element, 102
Product Rule thm, 91
Proof

circular, see circular reasoning

Re(ω), real part of ω∈C, 41, 104

Recurrence, 30
ring, 101

annihilator, 101
domain, 101
zero-divisor, 101

rising factorial, 89

Same-freq Lemma, 105
semigroup, 101
symmetric difference, 87

tail of a sequence, 88
tautology, see Proof, circular
Theorems

Fund. thm of Algebra, 94
Geo-power, 90
Product Rule, 91
Same-freq, 105

unit, 101, 102
U(N), 101
UΓ, 101

Volkswagen, 46

ZD, i.e: zero-divisor
zero-divisor, 101, 102
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That’s All, Folks! –Bugs Bunny
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