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Pigeon-Hole Principle (PHP)

1.1:pgad How's my hair? Prove that some two people
on Earth have the same # of hairs on their heads.

Proof. With H the maximum number of head-hairs a
person could have, we have H+1 PHs: A box labeled “0”,
for all the bald folk. A box labeled “1”, for all the the 1-haired
people ... A box labeled “H”, for all the max-hair folk.

With U denoting the current Earth-popUlation, the
PHP says that there is at last one box with at least

{H[—H} people in it.

It seems that the max-number of head hairs is about
150,000. Conservatively, take H+1 := 2x10° hairs.
As of Oct.2020, the human pop.is estimated at
U := 7.8x10°. Ratio

7.8 x 109

57105 3.9 x 10%.

So, on average, about N := 3.9x10* people have the
same number of head-hairs that you do. In particular,
there is some number h, where at least N people have
exactly h head-hairs. ¢

Pigeon-Hole Principle (PHP)

Page 3 of

1.2 g Martian socks. Marty the Martian is dressing
for his date; he’ll meet her at the restaurant. [As we
all know| Martians have 3 feet. In his sock drawer,
jumbled up, are 500 socks; 100 apiece of five colors.
He wants to wear matching socks on his date. Alas
there is a power failure and he can’t see the colors.
What is the minimum number of loose socks he can
grab, to guarantee he has 3 socks of the same color?{

Proof. With 10 socks, he might have 2 of each color;
no matching triple. Marty needs 11 socks.

With C:=5 the number of colors [i.e, the #
of pigeon-holes|, and D:=3 the desired number of
matching socks, the max-number of socks without a

monochromatic D-set is TookFew = [D—1]C.
Therefore, the min-# of socks needed is TooFew+1,
ie [[D-1]C] + 1. ¢
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2.1: ??N—friends Problem. In each set of N>2 people,
some two of them have the same number of friends.

(VieW friendship as an anti-reflexive, symmetric re]ation.) O

SOL\EEI Jeremy S., 2011t.  Caleb S., 2014g. Patrick B. & Isaac K., 2017g.

Aerin B. & Jeremy M., 2018t. Riley B., 2018t. Everybody, 2019t.
Morgan F. & 77, 2020t. Chris C., 2021g. Luke C., 2021t.
Nate B., 2022g. Alexa M., 2022t. Zhengmao Z., “Bill”, 2023t.

Melanie R., Sarah B. & Andrey N., 2024g.

Learn from the mistakes of others. You can’t
live long enough to make them all yourself.
—Eleanor Roosevelt
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3.1: 77 Points-in-a-square. In square C := [0, 1]x[0,1],  4.1: 779N -Subset-Problem. Let Jy = [1..2N],
there are 10 “special” points. Prove that some two of ~ where N€Z,. If subset SCJy is big, ie has
them are no-further-apart than v/2/3. O |S|=N+1, then:

SOLVED: Djego R., 2014. Yifei L., 2017g. Daniel 7, 2018t. Appetizer: There exist distinct numbers z,y € S
Bhaskar M., 2019t. Julia A., 2020t. Bill Z., 2021t. Noah K., 2022g. with x L Y.

Aidan H., Noah K., 2022g. Edward G., 2022t. Abhinav P. &
Entrée: There exist distinct wu,d € S with

Olivia J., 2023t. Rohit D., Luke L., 2024g.
u o d. [Such a (u,d) is a divisibility-pair.|O

SOLVE]\J,Z Hannah P. & Patrick W., 2011t. Zach N., 2012t. Mor-
gan W. 2014g.
MALAPHORS Appetizer: CJ [Charles F.|, 2017g.  Entrée: Jessie C., 2017g.

Anthony M., Joey F. & Kailey S., 2018t. App: Bhaskar M., 2010t.

Noam A., 2020g.  Junhao Z., 2020t. App: Shi Z., 2020t. Ent: Bran-
We'll burn that bridge when we come to it. don A., 2021g.

Luke C., 2021t.  App: Nate B., 2022¢. Ent: Alejandro L., 2022g.

It’s not rocket surgery.

You can beat a dead horse, but you can’t make him drink.

App: Anneka H., 2022h.  Appetizer-by Olivia J., 2023t.  Entree-by

Faythe Corr, 2023t. Sam C., 2024g.

4.2: 77 Generalized 2N -Subset-Prob. If |S| > N+2,
must S have at least two divisor-pairs? How does the-
above result generalize? O

Unhyphenated English pentasyllabic noun.
Hyphenated monosyllabic long paragraph.
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5: 7?Monochromatic rectangle (USAMO 1976.1). 6.1: 77 Lattice coloring.  Each point of the lattice
quadrant NxN is colored one of 50 colors. Prove that

a: Suppose that each cell of a Tx4 chessboard is col-  NuN admits a monochromatic rectangle. |Le, the
ored either red or green. Prove, for each such color-

ing, that the board must contain a rectangle |formed

by the horizontal and vertical lines of the board] whose S°™EV: Yuhan B. & Hao Z., 20195 Teegan B., Chris P, Caden C.,
four distinct corner-cells are all of the same color; Jessica V., 2020g. Junhao Z., 2020t.  Nicholas V.N., Alex T.,
a monochromatic rectangle. Max W., 2021g. Andrey N., 2024g.

four corner lattice-pts have the same co]or.] O

b: Exhibit a red-green coloring of the 4x6 board with

no monochromatic rectangle. I am always ready to learn although I do
. not always like being taught.
¢: Produce an improvement of part (a). O T el

SOI‘VEEI James C. & Caleb S., 2014g. Ken D., 2017g. Alex K., 2018t.
Part (b) by Yukai H., Vanessa W., 2020g.  Part (a) by Noam A., 2020g.
Part (b) by Morgan F., Hani S., 2020t. Part (b) by Alex T., 2021g.

Bill Z., 2021t. Part (b) by Nate B., 2022. Diego P., 2022t.

Andrey N., 2024g.

Measure twice, cut once. —Proverb
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7.1 ??Triangle Existence. Sticks of lengths a, b, ¢ can
form a (non-degenerate) triangle IFF the sum of each
two lengths exceeds the third. [A length is a posreal|

Initially, let “upper bnd” U := 32 and “number of
sticks” N := 13. A bag B is a multiset of lengths with
|B|=N, where each length ¢ € B satisfies 1 < ¢ < U.
We say that N-bag B is “U-bounded”.

a: Prove that each bag has some 3 sticks which can
form a triangle; this, using a simple PHP argument.
[I.e, prove each 32-bounded 13-bag admits a triangle.]

b: With the same argument, to what value can we
lIower N and retain the conclusion?

c: Fix posint N>3. There is a largest real Uy st.: Fv-
ery Uyn-bounded N-bag admits a (non-degenerate)
triangle. Compute each Uy. |Hint: Note Us = 2.| O

SOL\%QI Justin K., 2020t.

Nicholas V.N., Alex T., Max W., Aubrey S. & Haritha K., 2021g.

Ben R., 2021t. Alexa M., 2022t. Amogh A. and Abhinav P., 2023t.

This next problem is similar, although I don’t see
how to solve it with PHP.

cui.1: 7 Acute triangle (USAMO .2012.1). A tuple
f = (01,05,...,0N) of posreals is cute if there are
distinct indices 1,5,k whose lengths (;,(;, (), form the
sides of an acute triangle |each angle <90°|. An N>3 is
good if every N-tuple satisfying

T: Max(ﬁl,fg,...,EN) < N-Min([l,fg,...,fj\r)

is cute. Find all good integers. O
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Rooks

Let 7x7 denote the 7x 7 chessboard, viewed as a set of
49 cells. A subset S C 7x7 is friendly if its elements
lie in distinct rows, and in distinct columns. [Le, no

rook in S could capture another S—rook.]

9.1: 7?7 Non-attacking rooks Thm. Say a subset ' C 7x7
is large if |[I'| > 22. Then: FEach large I' admits a
friendly 4-subset. O

SoLv }3[\) Alisa M., 2015g. Nathan T., 2010t. Jessica V., 2020g.

Luke C., 2021t. Mason « « , 2022g. Abhinav P., 2023t.

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King Counting in Two Ways (D()ubh‘ ) Page 9 Of

counting

Counting in Two Ways (Double )

counting

One type of proof counts a (usually finite) set in two
different ways. Here is an example:

Mult-is-commutative.Integer 2 -3 equals 3-2.

Double-count pf. Make a 2x3 array of dots. Counting
the # of dots row-wise, gives 2 rows of 3 dots apiece.
Counting column-wise yields 3 columns of 2 dots.4

Now for something more substantial. . .

10.1:@0@ll Fermat's Little Thm. Fix P prime. For each
integer n, difference n° —n is a multiple of P. O

[See (18a) proving this by Induction.]

Double-count pf. [WLOG n>0.] The idea is illustrated
by n=4. Let S comprise those P-tuples of stones,
colored from G,R,0,B, that are not monochromatic.
Thus |S| = 47 — 4. We now count S a different way.

Connecting the ends of a tuple forms a necklace.
Group together those tuples that form identical neck-
laces, up to rotation. [We are not allowed to turn-over a
necklace.|] It suffices to show

x:  Fach necklace-group comprises P many tuples.

For then, |S| = [# of necklace-groups] - P.

If a necklace-group comprised only d many tuples,
where d<P, then the corresponding necklace is peri-
odic with period d. Hence, d is a proper divisor of P.
Our P is prime, whence d = 1. But that means that
the necklace is monochromatic, hence was not in S.4
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counting

11.1: ??Candy—store identity.  The store has an un-
limited supply of 4 types of candy [MMs, lemon-drops,
twizzlers, jelly-beans|. From the 4 types, compute the
number of ways of picking 5 candies, total.

I use [[g]], read as “4 types pick 57, for this number.
For TeN and K€eZ, use [;E]] for “T types pick K
(objects) 7 O

SOL\EQI Samantha-S., 2017g. Ken D., 2017g. Daniel Z., 2018t.
Hani S., 2020t. Andrew L. & Isabel del-C., 2021t. Ben R., 2021t.
Kevin J. & Noah K., 2022¢. Edward G., 2022t. Zhengmao Z., 2023t.

Ivy Z., Rohit D., 2024g.

Being a mathematician means never
having to comb your hair.
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counting

12.1: 77 Scheherazade’s Stratagem.  On each of the
1001 nights, as Scheherazade tells a tale to King Tut
(ycs, I lmow.’) she flips a coin; as does he. But on the
final night, Scheherazade has so mesmerized him that
he forgets to flip. [She flipped 1001 times; he, only 1000.]
She wins if she counted strictly more Heaps than he;
else, he wins.

What is Scheherazade’s probability of winning?

SOWEEI Justin K. & Matthew C., 2020g. (Lively ideas contributed by
Hani S., Junhao Z. & Sydney E.)

Jeremy G. & Emily Y., 2022g. Abhinav P., 2023t. Sam C., 2024g.

A FLEA AND A FLY IN A FLUE

Were imprisoned, so what could they do?
Said the fly, “let us flee!”

Said the flea, “let us fly!”

So they flew through a flaw in the flue.

—Ogden Nash

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King Counting in Two Ways (Double ) Page 12 Of

counting

13: ??Binomial-product—PoT Lemma. Consider
natnums N > E. Then

* > W = 2V 0

ke[E .. N]

S / . . s
SOV ED: Mike C., 2014g. Ross P., 2015g. Ken D., 2017g.
Daniel Z., 2018t. Nathan T., 2019t. Hani S., 2020t. Bill Z., 2021t.

Gabriel G., 2022t. Zhengmao Z., 2023t. Sarah| B., 2024g.
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Combinatorial counting

The Canpy-sTORE PrROBLEM was an example of using
double counting [stars-and-bars|, and binomial-coeffs to
prove an identity. Here we look at a related counting
problem.

Tuples. Below, N, L and each a; is a natnum. With
various restrictions, we count the number of tuples
a = (ay,az,...,ar) satisfying

Kk [Zle aj} = N.

For posint-tuples, use Vi (/N) to count all of them,
whereas F, (N, L) counts those of length exactly L.
Finally, use Fy(/V, L) to count all L-tuples of natnums.
[Symbol V counts Variable-length; F counts Fixed—length.]

These (1.1,1),(1,2),(2,1),(3) are the only posint-tu-
ples summing to 3. So V;(3) =4. And F(3,2) =2,
as only (1,2),(2,1) have length 2. Allowing natnum
entries (0,3),(1,2),(2,1),(3,0), shows that Fy(3,2) = 4.

In contrast, Fy(2,3) = 6, as witnessed by these six
tuples:  (2,0,0), (0,2,0), (0,0,2), (0,1,1), (1,0,1), (1,1,0). O

14.1: ??Counting tuples.  Allowing factorials, what

are the simplest formulas you can find for
V"F(N):?a F—‘F(NvL):?v FO(N)L):“)

Can you avoid summations? Is N=0 a special case?()

501‘\7{;’1;,: Matthew C. & Sydney E. & Hani S., 2020t. Partial soln

by Morgan F., 2020t. Bill Z., 2021t.
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Inclusion-Exclusion Doubting Thomas. Here are the 27 good triples:

The InkEx pamphlet has a proof of InEx, and several (2513) (3413) (3512) (4313) (44 12) (45 11)

examples, a few of which appear below. (6213) (56312) (54 11) (55 10) (6 1 13) (6 2 12)
(6311) (6410) (65 9) (70 13) (7 1 12) (7 2 11)

15: Counting limited candy. The store sells jelly- g 2 1‘;; g i :; E; 2 3; (8 012) (8 1 11) (8 2 10)
Beans and Chocolate squares and Dates. Mom allows O
you a total of 20 candies.

Alas!, the store only has 8B and 5C and 13D.
Stars-and-Bars counts how to pick out of mul-
tiset {ocoB,00C,00D}.  The relevant multiset is

{8B,5C,13D}; so how do we count? O

Candy soln. Let ©Q be the set of natnum triples
(B,C, D) with B+C+D = 20. We'll count the “good”
[B<8 & ¢<5 & D<13] triples, using Incl-Excl.

Let Ap be the set of natnum-triples that are
“ Awful” because B > 8. Hence,

Why? 3 24+ 11
A = = )
4] == |[20—[8+1]H < 2 ) o

So |Ac| = [5o_5rag] = (*H'%) =120, and |Ap| = 28.

For pairwise intersections

Why? 3 245
AN A = = 21.
[As N Ae] == |[20—[8+5+2]H ( 2 )

3 3 Why?
AlSO, |AB N AD‘ - [20 [8+1‘3+2}]] = [[negativc]] O’

and [Ac N Ap| = [4_ [o+13+2]] = [[ ]=1
For the sole three-fold intersection

3 3
ApNAcNAp| = = =0.
450 Ac O Ap| [[20 — [8+5+13+3]ﬂ |[negﬂ

Since [[230]] = 231, the number of good triples is
121 = 14z + |4c| + 4p])
+ (148N Ac| + |45 N Ap| + |4c N Ao )
— |[Ag N Ac N Ap|
= 231 — [78+120+28] + [21+0+1] — 0.

This equals 27. ¢
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Below, sets D (Domain) and C (Codomain)
|D| and C = |C|; both finite.

Prelim.
have cardinalities D =

Thus €%, the set of fncs D—EC, has cardinality CP.
Easily:
%2 [The # of injections D%C] = [[C $ D]].

Let’s compute Sur(D, C), the number of surjections.]

16a: Counting surjective fncs. With notation

from above
C

te Sur(D,C) = B9 [C — KP. O

Sur. For point y € €, let A, comprise those functions
h() which Avoid y; i.e, Range(h) # y. Thus

o D
i N e A,]
is the set of surjections.

For I C @, let Aj comprise those fncs which miss
each member of I. With k := 7], then,

A ={h € @P | Range(h) NI} and |Af| = [C — k]P.

The number of subsets 7CC with #I =k is (%) Con-

sequently, Inclusion-Exclusion yields (7). ¢
When D<C. There are no surjections, when D<C.
As a (f)-example, Sur(2,3) equals
(0)3% = ()2* + ()12 - (307
=19 — 34 + 31 — 1.0 = 9—-12+3,
which indeed equals zero. O

Inclusion-Exclusion

Page 15 of

[4 Curious Corollary of Counting sur-fncs.]

16b: A Curious Corollary. For N =0,1,2,...

N
£y: N = Z N — kN, 0

Proof. When |D| = |€| = N, then we can identify
D with € and view each surjection as a permutation.
There are N! permutations. And RhS(£y) equals
RhS(}1) when D= C = N. ¢

When |D| = |€| = 3. Computing, Sur(3, 3) equals

(03 - 2+ 1 - ()0
=127 — 38 + 31 — 10 = 27— 24+3 = 6,

which, happily, equals 3-factorial. 0

TwoStirling numbers. For natnums D, C, the number
of partitions of a D-set into C many non-void-atoms,
is a ““Stirling # of the 2" kind”, (or Stirling partition num-

ber). Here, I'll write it as S(D, C).

Were the C many atoms labeled, then we could view
a partition as a surjective [each atom is non-empty]| func-
tion from the D-set into the label-set. Consequently,

D 0 < C — kP
S(D, C) = Sur Z 1]* Q
= -[C— k]!
16c: 5
(kn) € NxN Z [ k n
RS0 AR i
T k!-n!
is the nifty formula we obtain. O
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17.1: 7 ?Random digits (USAMO 1972.3). A ran- Psychic shop closed due to
dom number selector selects one of the nine integers unforeseen circumstances.

1,2,...,9, and it makes these selections independently
and with equal probability. Determine the probabil-
ity, Dy, that after N €N selections, the product of the
N numbers selected is divisible by 10. %

Sor ED: Hani S., 2020t. Haritha K. & Alex T., 2021g. Aryaan V., 2022t.

Zhengmao Z., 2023t. Rohit D., 2024g.

Suggestion. Write 1 = v+e+r where, at one selection,

v := [Probability of five];
e = [Probability of an even] and

r is the rest of the probability. Use InEx to com-
pute 1 — Dy. [
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Induction How Do You Know When You 're Middle Aged?

For the next thm and two lemmas, P is a fixed prime, The Four Warning Signs. . .

and = means =p. [See (110.1) for a double-count proof.]

182Xl Fermat's Little Thm. Each ne€Z has n" = n.

Induction pf of (18a). WLOGenerality, n > 0.
Base case: 0F =0 = 0.

Induction: Fix n st. n° = n. The Prime-binomial
lemma gives (z) =0, for each k=1,2,...,P—1.
Hence

P = O P
n+1]7 = Z (2) nE1PF=nP 71 4+ (E) nF
k=0 k=1
= n® 4 1,
by the Binomial thm, Thus [n+1]" = n + 1, courtesy
the ind.hypothesis. ¢

See ([123al) for a related result.

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King

Fixable inequality? Suppose I ask you to demon-
strate the following assertion.

19.1:pggdd (Busted base) Statement A. For each
posint n:
*1 5-2" < 3", O

You would detect the error and write:

Dear Prof. King:

Something is amiss; assertion (x) fails forn =1,
since 5-2 &£ 3. [Inequality () also fails for n=2 and
n=3.| I, Bubba, correct the statement below, and
prove my correction.

19.2: Theorem A’. For each n € [4..00):

P(n): 5-2" < 3", O

Proof. Let L(k):=5-2% and R(k) := 3F.

Base case: Note that

L(4) = 5-16 = 80 < 81,

which equals R(4). Hence P(4).
Induction: Fix an index n € [4..00). [Henceforth,
“n” plays the role of a constant.]

Assuming P(n), my goal is to establish P(n+1). So
I want to examine how L(n+1) relates to L(n), and
ditto for R().

Easily

L(n+1) & 2.

courtesy P(n) and that 2 is positive. [Multiplication by

a positive number is order—preserving.] Thus

L(n+1) < 2-R(n)
< 3-R(n),

def R(n+1),

since R(n) is positive,

as desired. ¢

Autopsy. Of course, your proof used this elementary
tool.

Induction

Page 18 of

19.3: Lemma.  For all reals a<f, and “multiplier”
M € R: If M is positive, then aM < SM. %

Exer.: You used this lemma twice in your proof of
Thm A’; where are the two occurrences?

(How Do You Know You're Middle Aged?)
1: You don’t understand what on earth the young

peasants are talking about.
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20: ooly—many—Primes Thm (Euclid). There are oo]y (How Do You Know You're Middle Aged?)

many primes. O 2: You struggle to read Chaucer in weak candlelight.
Pf.  Given primes pq,...,py (not-nec. distinct), we

construct a new prime. Let Q = [p;-py-... py];

this Q is at least 1. [Even for N=0; the void-product is 1.]
Now add 1; let R := Q + 1. Necessarily, R L Q.
Thus (R is coprime to each pj]. Moreover, R > 2, so

R has at least one prime factor (which might be R itself).
And each of these prime factors is new. ¢

Algorithm. Becoming precise, at each stage let the
new prime, call it p,, |, be the smallest prime-factor
of R,,. Then we will generate the Euclid-Mullin sequence,
which is|A000945/ in OEIS.

Let’s compute the beginning of the sequence.
[Looking into the future: 1807 = 13-139; 23479 = 53.443.|

Primes,, Qn R, | pyi1
T 1 o 2
{2} 2 3 3
{2, 3} 6 7 7
{2, 3, 7} 42 43 43
{2, 3,7, 43} 1806 1807 13
{2, 3,7,43, 13} 23478 | 23479 53
{2,3,7,437 13,53} T 7T4+1 77
(Exercise: Write down the rest of the table. .. ) ]

20a: Joke (Hendrik Lenstra). There are ooly many com-
posite numbers. O

Proof. 'To obtain a new composite number, multiply
together the first N composite numbers, then don’t
add 1. ¢
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Prof. JLF King

21.1: W% Al horses have the same color.

Prelim. For n € N, we will use induction to prove

Fach collection of n horses
P,: . . [
is monochromatic (Mcr).

Poof. Base case: The emptyset is Mcr, hence (F).

[Alternatively, we could start with (P1), as singletons are Mcr.|

Inpuction: Our goal is to show that if each n-set of
horses is monochromatic, then each [n+1]-set is too.
Let’s illustrate the idea with n = 50:

Take an arbitrary collection, C, of 51 horses. Gen-
tly lead one of the horses, say, Abby, out of the cor-
ral, then close the gate, leaving 50 horses in the cor-
ral. [Abby is comfortably munching Kentucky bluegrass in
the field.] Using (Ps0), the 50-set in the corral is nec-
essarily monochromatic say, brown. Now lead Abby
back in the corral, but take Bert-the-horse out to
the Kentucky bluegrass. Appealing to (Psg) again,
the 50 horses currently in the corral must also be
a monochromatic collection, hence also brown. Now
bring Bert-the-horse back in, reforming collection C,
an all-brown 51-set of horses. The argument was ap-
plies to an arbitrary starting collection, C, so our proof
is complete. ¢

Induction

Page 20 of

(How Do You Know You're Middle Aged?)
3: You grumble that the Crusaders look younger

every single year!
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22.1: General Triangle-Inequality. For each (How Do You Know You're Middle Aged?)

natnum N, and sequence $1, . ..,Sy of complex num-

bers, this inequality holds:

N N
@n: ‘ijlsj‘ = Zj:l‘sj" ¢
Remark. Looking ahead, our tool will be (Q2). O

22.2: Weak Tri-Ineq. For all complex numbers «,3:

*: la+ 3| < la]+18]. O

Rem.  For a,( real, this follows by a case-by-case
argument [Both negative? Mixed sign?] For complexes,
this takes a bit of development of the complex plane.[]

Proof of Gen. Tri-Ineq. We use the vacuous base-case.

Evidently (Qo), since 0 < 0. [And (Q1),

since |s1]| < |s1]. However, we don’t need this argument, since

Base case:

the induction gets the same result.]

Induction: Fix a natnum N, and sequence
Sly.-+,SN,SN+1. Assuming (Qx), our goal is to es-
tablish (Qn+1)-

Applying ) with a == Zévzl sjand B == sN41,

gives
S| < Jal+181.

i=1

And (Qn) yields || < 320, |s;]. Adding these gives

S ss| < [ bsal] + 181,

which equals RhS(Qn+1), as was sought. ¢

4: And you constantly worry about testing positive
for Black Death. ..
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Prelim lemmas, sqrt-harmonic sum

By looking ahead in our induction proof, we may find
a result that we wish to prove as a separate lemma.

23.1: Recip-Squareroot thm. For each N € Z.,

t: 1+%@+%+...+\%ﬁ < 2VN. O
Hmmm [Bubba thinks to her/him-self|: /‘Zlfter p[ayzng
with (1) for a bit, I realize I need a little inequality
involving square-roots. Let me state and prove that
separately, to be nice to those reading my proof.

23.2: Lemma.

1
%2 — <

N3

(We needed x>1 for «/x—1 to make sense in R.) O

For each real x > 1, we have that

2[vr — Vz—1].

Proof of (23.2)). Since v/z > 0, our (*) is implied by
1 <

?
hence by 2v/z?2 —x < 2z — 1. Both sides are non-
negative, so this follows from the squared-version,

?
4z — 2] < 42% — 4z + 1.

And this last is trivially true. ¢

Proof of Recip-Squareroot thm.Let Ly and Ry denote
the left /right-hand sides of (23.1J).

Base case. Since L1 = 1 < 2 = Ry, we can start
p_TIour induction at N=2.

Induction: ISTEstablish, for each N€[2..00), that
Ly—Ly_1 < Ry — Rn_1, i.e, that

1 ?
g — < 2[VYN —+V/N-1].
i = < N VA
Happily, this is implied by Lemma |23.2 ¢

“! Actually, in a sense we could use N=0 as our base case.
True, Lo = 0 = Ry, so we do not have the strict inequality
of (). But as (1) is strict, we would obtain (f) for N =1,2,....

Prelim lemmas, sqrt-harmonic sum

Page 22 of

Apres-proof. In developing our induction argument,
at (1) we realized we needed another result. Not only
is it clearer to split the result out to a separate lemma,
but we got a slightly stronger result, since holds

for reals, not just integers. O

23.3: Alternative. We can sharpen ([23.1)), using cal-
culus. For an arbitrary decreasing fnc f:R;—R; and

integer N € [2..00), a picture easily showsl?l that
N N

¥: S0 < [ @) dr.
j=2

Applying this with f(z) := 1/\/z yields that

N oV - V.

r=1

Ly —1 < 2212

Adding 1 to each side yields Ly < [2v/N]| 1, for
N=234,... 0

Precaution is called the Mother of Wisdom;
the father was never known.

That should prove to you, at at glance,
that even Precaution once took a chance.

—Paul von der Porten, translated from the German
by his son, Arnold von der Porten.

“28pecifically: The inequality in (¥) is strict unless f is the
step-function which mimics the summation.

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King Prelim lemmas, sqrt-harmonic sum Page 23 Of

Defn. For numbers, recall that AB means AIBC].
The n'" Fermat number is F, = 22" +1. Eg
Fo=3and F3 =1+22" =14 2% =257. 0

24: ??Coprime Fermat.  For each pair K < N of
natnums, Fermat numbers Fg and Fy are coprime.

(Coro: There are infinitely many prime numbers. [How does
this follow?]) O
Hint. How is G, .= F,, — 2 related to [,? [l

Caveat: The Wikipedia page has a proof.
SOWE‘;S 2013t & 2015g classes, on a takehome.

Patrick T., 2018t. Hani S., 2020t. Joseph M., 2021g.

THE STALLED-INDUCTION DITTY
... Ninety-nine bottles of beer on the wall.

Ninety-nine bottles of beer.
And if no bottles should happen to fall. ..
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We now discuss a sequence liKe the Fibonacci sequence.

25.1:gr 8 Two-term recurrence. Sequence
b = (b, b1, bs,...) starts with by :=-1 and by = 2.
Moreover, for each integer n > 2,

T: bn = 5bn_1 - Gbn_g.
Prove, for each natnum k, tha
5 by = [4-3F]—1[5-2F). O

Preliminaries. Define f:N—Z by
1 f(k) =

Before starting work, do I even believe the out-
landish assertion of the thm? From () I can compute

[4-3%] — [5-2¥].

by & 52 — 61 = 10+6 = 16.
And f(2) equals [4-9] — [5-4] = 36 — 20, which indeed
equals 16.  Also,

by & 516 — 62 = 80—12 = 68.
And f(3) equals [4-27] —[5-8] = 108 —40, which —~wow!—
also equals 68. So now I [Bubba Student| think the stmt
is plausible, and I am willing to work on it. O

Observation. When k is large, the value 3¥ swamps 2%.
So a corollary of Two-term is that b grows like k3",
in the sense that ratio [by/[4-3%]] — 1, as k "o0.
And that is not obvious from the recursive defini-
tion of b, in (1). O

Proof of Two-term. Since (}) needs the two previous
values in b in order to determine the next, we’ll need
to check two base cases.

Base cases: Firstly [or should I say “Zerothly”?],

Hooray!

£(0) = [41] = [5-1] = -1 ==L p,.
And secondly [“firstly”?],
£(1) = [43] —[5-2] = 12—10 = 2 2= p,

as was needed.

w_»

“3Do you see why (T) uses “:=”, but (}) uses the relation?

Prelim lemmas, sqrt-harmonic sum

Page 24 of

Induction: We just need to show that fnc f() be-
haves like (f). So say that a fnc ¢g:N—Z is good if

x:  VkeN: g(k+2) = 5g(k+1) — 6g(k).

Restated, | our goal is to show that f is g(,)(,)d].

We can, of course, show goodness directly, but let’s
“look ahead”, and see if we can shorten our work.

We glance at (11) and note that f is built from two
simpler fncs, namely

H(k) = 3% and W(k) = o

“H” is for tHree, and “W” is for tWo,] Our beloved f is
simply the linear combination

fO) =

Evidently, if a fnc g() is good, then for o an arbi-
trary real, the product ag() is also good; this follows
from () since mult distributes-over addition.

Moreover, the sum of two good fncs is good; this,
since addition is associative and commutative. So
we’ve established:

AH() — 5W().

Linear combinations of good

xok .
functions are good.

Hence our task has simplified to the following.

Goal: Fnc H() is good, and so is W ().
Y := 3, in order to show H() good, we covet

Letting

VkeN: Y*2 = syktl_gyk,
But this is implied by establishing

Y2 £ 57 — s,

simply by multiplying by Y*. And this nice quadratic
equality (\\'(‘, could just compute that 9 equals [5-3] — 6, but let’s
take an approach that illustrates how the problem was created) is
the same as saying that Y'=3 is a root of polynomial

P(z) = z?2-5z+6.

Similarly, showing W () good is equivalent to show-
ing that P(2) = 0. So we could simply check that

both P(3) and P(2) are each zero. Or note that
Plz) = [z-3]-[zx—2];

i.e, we simply factor the P() polynomial. FElegant!
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Autopsy. Indeed, to create the problem, Prof. K
simply started with the factored poly [z — 3] - [z — 2],
then multiplied to get 22 — 52 + 6. This gave him the
coeffs for (7).

The Upshot?:  We learn a lot about a sub-
ject /technique by creating problems with that tech-
nique. So I encourage you to create and post induc-
tion problems, and to POSt solns to others’ posted
problems.

We adults tend to learn by synthesis, more than

by analysis. [Or at least, we retain more.] O
25.2: Exercise. For distinct reals «,f, define
a sequence b by (25.1) together with by := « and
by = (. Derive formulas for numbers H, 3 and W, g
so that:

25.3: VkeEN: by = [Hap-3"] — [Wap-25].0
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26.1: ??Favorite-Toy Problem (HMMT2013.7).  There Tarantulas tarantulas

is a set K of n kids, and a set 2 of n toys. Fach Everybody loves tarantulas

child has a (strict) preference ordering on the toys. A If there’s just fuzz where your hamster was

distribution of the toys, is a bijection f:K<»; it

indicates that child c gets toy f(c). A distribution is

disappointing if no child gets his favorite toy.
Distribution h dominates f, written h = f, if each

child likes his h-toy at least as much as his f-toy.

[Further, say “h exceeds f”, written h ~ [, if hi=f and h;éf.]

The goal is to prove:

It’s probably because of tarantulas

—chorus of “The Tarantula Song” —Bryant Oden

Suppose f is a disappointing n-distribution.

tnl: Then there exists an h with h - f. 0

SOLVED -
BY*
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SOL\EE?Z Alex K., Christopher P., Reid 0., 2012g.

Prof. JLF King

27: ?Modsum-zero Problem. Given a posint V' (initial
Value), define a sequence b by by ==V and, for each
n € [2..00), let b, be the unique value in [0..n) for
which sum

Spn = bi+ba+...+b,

is divisible by n. Prove that b is eventually-constant.
bp: 31 1. 1 3 4 2 0 6 6---
b T 234567809 0

Bhaskar M., 2019t.

Bill Z., 2021t. Amogh A., 2023t.

Prelim lemmas, sqrt-harmonic sum
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98.1: 777 Difference-divider (USAMO 1998.4). Each
N>2 admits a set S of N integers such that [s — 5]°
divides product s-5, for each distinct s,5 € S. O

Thoughts. The N>2 restriction is irrelevant; the result vacu-
ously holds for N = 0,1.

Temporarily remove squaring, seeking just that each differ-
ence s — § divides s-5. A soln might generalize to squares.

For § comprising posints s;<s2< --- <sy, what simple con-
dition forces sy — s to divide sis¢, whenever N>¢>k>17

Fabricate {s;}1 to iteratively satisfy the condition. Try both
going up from s, and going down from sy |
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Vis29.1: ???Blue trails (IMO2002.1).  Fix posint N. Let “Happy trails’” (to you)
A be the set of all natnum-pairs (x,y) st. z+y < N. o
Each element of A is colored pink or blue, so that if
(x,y) is pink and o’ <z and y' <y, then (2',y') is

also pink.
S e
Teooe
6oeooe
151 : : : ° An example of pink-
3 cee blue A for N =9.
2 oo
1 )
0

[ J
012345678

An X-trail is an N-set of blue points in A of form

{(OvyO)a (17 yl)a (27:1/2)7 R (N_lvyN—l)} )

one blue point per-column of A.
AY-trail is also an N-set of blue pts, but has form
{(%0,0), (21,1),...,(zn-1,N-1) }; one blue per-row.
Prove |X| = |Y|; equal numbers of X and Y trails.{

A better proof?  While the PList has an induction
proof, a more elegant demonstation would be to pro-
duce a natural bijection X<Y. I don’t have one, but
perhaps an ES [Energetic Student| can find one? O

Hint. These two examples. . .

o ®©
©O ©e A Y-trail.
[ N} .@
o (©» CNOK]
L LN XO)
( YO
Hee
® e

©

show that an X-trail need not be a Y-trail.
This legal coloring 2 2 of a square board, has one
X-trail, but no Y-trails. Board-shape matters... [
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30: ??Coloring subsets (USAMO02002.1). An element of

J = {1,2,3,...,2002}

is a token. A set-of-tokens is a blip. A “coloring
over J” is a map, C, which assigns to each blip either
green, or red such that

The union of each two red blips is red, and
the union of each two green blips is green.

t:
Let R(C) denote the number of red blips. Prove:

i Vn € [0..22092] there exists an n-coloring, o
" C, i.e, a coloring with R(C) = n.

'SOL\EEEZ I think this was solved by former student.
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Defn. For each natural mumber M, let Jy; = [1..M].  32: 7 Stable-table Conundrum (USAMO2005.4).  Legs

Use TAP for “3-term arithmetic progression™; a Ly, Lo, L3, Ly of a square table each have length n,
triple (7, 7 + G, T + 2G) of numbers, with G > 0.00  where n € N. For how many ordered 4-tuples
(K1, ko, k3, ky) of natnums can we cut a piece of
length k; from the end of leg L;, and still have a stable
table? Let A, denote this number. (The table is
stable if it can be placed so that all four of the leg-ends touch

31.1: ??3Term integer AP (precursor of USAMO 1980.2).
Compute f(M), the number of TAPs in Jyy. O

: [Suggestion: Inclusion-exclusion. Induction.] the floor. Note that a cut leg of length 0 is permitted.) O
SOL\%%{I Daniel Z., 2018t. Daniel S., 2019t. Atharva P., 2019t.

A stable tableneed not be level.
31.2: 7?3Term real AP (USAMO01980.2).  Determine SOLVED: Cameo L. & Diego R.,
g(M), the maximum number of three-term arithmetic
progressions which can be chosen from a sequence
of M real numbers |which we’ll call tokens|

2014g. Ken D., 2017g.

*e T < To < -+ < THp-

[I.e, g(M) is the max taken over all M-sequences of tokens.] O

: [Suggestion: Induction.]
SOL\'ESI Atharva P., 2019t.
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. 77?7
Neﬁ?.l. o ‘Sealed_set (USAMO2O(14'2)' C(?n_ Defn. A (ﬁnite or inﬁnite) sequence 71, = (n17n2, 50 )
sider Izosmt N and Z-tuple & = (ai,...,an) Wl?h of posints is cute if, for each j, product n;n;i; is
GCD(a) =1. A set QCZ owns each «;, and satis- divisible by sum 1, + 141, n
fies:

iz Vi, j (not nec. distinct): v — oy € (1. 34.1: 77 Cute sequences (USAMO 2002.5).
Gir Ve y e If 24y €Q then 2 —y € Q. lior a,b>3, prove tl.lere exists a cute-sequence
n = (ny1,ng,...,ng) withn; =a and ng = b. O

Prove that ) = 7.

SOL\]E‘QI Hani S., 2021t.

SOLV%Q: (No one, so far.)
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Induction, abstractly

Seeking to prove some proposition P on N, weak in-
duction and strong induction are

V’I’LGZ_,_:
Vn € N :

Pno1 = Pn;
[PoAPLA .. APp_1] = Py .

WEAK:

STRONG:

Strong-ind says: If all the descendants of m are P,
then so is m. In principle, strong-ind has no base
case. Note, however, that n=0 has no descendants,
so sometimes Py needs to be treated separately.
Strong-ind can be converted to weak-ind at the ex-
pense of adjoining a quantifier to the proposition. Let

Q, = [Vk <n: P holds].

Then weak-ind for Q is the same as strong-ind for P.

This takes place on a well-
founded [each non-void subset has a minimal element] poset
(92, < ). For B, the “descendants of 3 comprise

the set QY = {weQ|w=<p}.

General induction.

To prove that all of € is, say, blue, ISTEstablish:

b VBeQ: If each descendant of 3 is blue,
" then B is blue.

To see that this is strong-induction on €, FTSOCon-
tradiction suppose the CEX set [the set of non-blue elts|
is non-void. Since €2 is well-founded, CEX has a min-
imal element; call it Mindy. Since Mindy is minimal
non-blue, all of its descendants are blue. But this
contradicts (T) [Possibly Mindy has no descendants; ﬁne.]

Say that « is a “child of 37 if o < [ and there
is no elt w with o < w < 5. Suppose your poset has
each elt 8 satisfying:

Each descendant of B is less-equal some
child of 5.

Then proving €2 blue can be done by weak-induction:
I: VBeQ: If each child of 8 is blue, then (3 is blue.

[In practice, one might have a separate “base case” argument,

showing that all the “childless” €2-minima are bluo.]

Notation. Induction on a poset €2 more compli-
cated than (N, <) is called transfinite induction.
Typically, transfinite induction is done on a totally-
ordered [i.e, well-ordered| set.

Induction, abstractly

Page 32 of

Infinite descent. Induction by Infinite descent
is when, initially, you don’t know well-founded set to
induct on. But you discover it while exploring prop-
erties of the problem.
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Infinite descent The downloaded movie got 3.1415 stars.

I describe |Proof by infinite descent| as “Induction, zufienyou It’s a w-rated movie. ..

don’t Know what you are inducting on.” ~transmitted by Ruth King
Pool [Proof by infinite descent| starts with “For the

sake of 3%, suppose...” In the process of manipulat-

ing the parts in problem, you discover something get
smaller, in a context where it can’t get smaller forever;
thus, 3¢. [By “smaller”, here, I mean that a quantity moves
in some direction, where that direction is eventually blocked.]

Here is an example.

Golden ratio. Break a stick into a long piece, length L,
and a short piece, S. Suppose we have that ratios
Total len long : L+S _ L

Tong and = are equal, i.e I° =3 The com-
mon ratio is called the golden ratio, A. |For future
reference: A golden rectangle is a WxH rectangle where

long side is . ] D

short side

36: The Irrationality of Gold. Golden A is irra-
tional. (The Menendez Proposition) O

Proof by co). FTSOC, suppose there exist positive
integers T>1 with % = A. From the defining prop-
erty of A, letting S := T'— L gives this new pair L>95
of posints, whose % ratio is golden. Hence we can
(supposedly) descend in the positive integers ad infini-
tum, getting golden-ratio pairs; 3&. (contradiction) ¢

Alt. Making S = 1, relation % = % says that A is the
positive root of g(z):=a? —x —1, so A = %
Hence irrationality of A is equivalent to irrationality
of v/5. However, proof of the latter seems to need
higher-powered stuff like the uniqueness of factoring-
into-primes, whereas the above ool argument used
nothing.  (Discussion? Objection?) U
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37.1: Root-flipping example (IM01988.6). A posi-
tive integer R is nice if there exist posints b,c¢ such
that ratio

2, 2
*: e = R.
be + 1
Then each nice R is a perfect square. O

NB.  Allowing R negative ruins the perfect-square
-12 4+ 3210
conclusion. E.g Hi—i— = = = =h O
[-13] +1 -2

The below proof is from WIKIPEDIA’s Vieta jumping.

Root flipping. FTSOC, fix a non-square nice R. Among
all posint-pairs (b, ¢) satisfying (x), pick a pair mini-
mizing sum b+c, and call it (B, C). WLOG, B > C.

Our contradiction shall be to produce a

) B2 + C2
f:  Posint $<B such that ‘3;;1 =

z24C% _
zC+1 R’

Polynomial. Numbers, z, that satisfy
are the roots of quadratic

f(z) = z* — CRz + [C* — R]
=22 - Sz + P,

where & is the sum of the f-roots, and P is their
product. Our P#0, since R is not a square.

The other f-root, §:=S& — B, is an integer, since
S and B are.

?
Is 5 > 0: Ratio B;gff is positive, so SC+ 1 is

positive; thus 5C > 0. But 8#£0, since product P+£0.
Hence 8 > 0. Concrusion: [ is a positive integer.

note

.
Is § <B: Note B = C?—R < (C? < B?, since
B>C>0. Thus § < %2 = B, yielding (f). 3% ¢

Infinite descent
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Addenum. Let (b, c| R) mean (x) where and

R are three posints.

37.2: Obs. TFAEquivalent:

@©: (b,c|R) = (1,1|1).
@:b=c. @:c=1(orb=1). @ 1.

R = O

Proof of @=®. Since [*+1]R = 2¢?, our R o c?,
so R>c2 Thus 0 = [2+1]R — 2% > c*+c% —2¢2,
which is non-neg. Hence all are zero and thus ¢ = 1.4

Pf®=®. We have b>+1 = [b+1]R, so R =, 1. Thus
b>+1 = [b+1][mb+1] for some natnum m, whence
b2 = mb? + [m+1]. So m =0 and thus R = 1. ¢

Proof of ® =®. We have b*+c¢? by @ be+1 < b2+1.
Thus ¢ < 1, s0 ¢ = 1. Hence b°+1 = b+1, s0 b = b,

whence b = 1. ¢
Families. Fixing R, when (b, ¢| R) minimizes b+c
[or just 5] then our ool proved R 2= 2 Thus (x)
gives b = ¢*. Hence
b c R

AN AN A

(¥ n 02
is an oo soln-family.
Another co-family is b ¢ R

An example of both is n=2. Note that 2° — 2 = 30.

So. ..
30% + 82 964
= = and

[30-8] + 1 241
82 +22 68 _
82 +1 17
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38: ??bcq—bc Problem (USAM01976.3). Determine all ~ 39: 7?Football Prob. (Research possibility: Tug-of-war).

integral solutions of A tuple w = (wi,ws,...,we3) represents the [real

number| weights of football players. Tuple W is a

To P+l +qd = b football tuple if: No matter whom is chosen as

referee, there exists a partitioning of the remaining

|Hint: oo}, after preparation.] 0 players into two equal-cardinality, equal total-weight
SOL\%QI Lizzie [Donna| N-C., 2017g. teams.

Prove that the only football tuples are the constant

Alex T. & Allan D. & Isabel D. & Max W., 2021g.  Bill Z., 2021t.
tuples. [Hint: First consider integer weights and use oo¢.] O

Aryaan V., 2022t. Abhinav P., 2023t.
) T
Sory ‘g%ﬁ Forrest K. (fur integral Woig,hts), 2013t. Junhao Z. (f'or integral

\\'('iglxls)f 2021t.
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40.1: ??Coalescing Robots. Consider an KxL chess-
board, which we’ll think of as the K-L many rooms
of a building. Initially, the walls are all the edges
of rooms. Remove some of the interior walls, so the
building is connected; it is possible to walk from any
room to any other room. Call a connected building a
house.

Put a robot mouse in each room. You can radio
commands N,E,S W |North, East, South, West| to all the
robots. If you radio N, then each robot with a room
to his north and no wall between, rolls to that room;
otherwise, he doesn’t move. [Now, some rooms might
contain two robots; a room can hold any number of robots.]

A house is coalesceable if there exists a finite in-
struction sequence |e.g NNES...WWN| after which all
K-L robots are in a single room.

Prove that every (finite; foreshadowing) house is co-
alesceable. [Hint: Create a LEMMA which, used repeatedly,

proves coalescence. Now use ool to establish the LEI\JI\’IA.] O

]ID,E) Isaac K., 2017g. Nathan T., 2019t. Atharva P.; 2019t.
Ben R., 2021t. Nate B., 2022g. Faythe C. (The essential Idea), 2023g.
EXAMPLE:

A 7x4 house.

40.2: Ans. Each (K, L) is good.

Tool: In a house, define the distance between
two rooms A, B as the length of a minimum length
walking-path [which need not be unique] between them.
For example, Dist(A, A) = 0 and, for A = (3,5) and
B = (3,6): If there is no wall between these rooms,
then Dist(A, B) = 1, else Dist(A4, B) > 2. O

40.3: Defn.  Consider two robots (ie, rooms) A,B
in a house H. Their Pair-coalescence Time,
PTy (A, B), is the minimum time it takes to coalesce
A with B. For a finite house, it makes sense to define
the worst-case pair-coalescence-time,

PTy = Max{PTu(4,B) | A,B€H}. So

KxL = Max{f’\TH | H a KxL house} is

the worst-case over all houses with a given footprint.[]

Every H has Ply > [K—1] + [L—1], since that
many horizontal+vertical commands are need to unite

Infinite descent

Page 36 of

antipodal corners. In a house with a single path visit-
ing every room, its end rooms are distance Area(H)—1
apart. So the minimum time to coalesce those two

bots is at least
robots is at leas [KLQ_IW he%ce I?;\L

Where is the 2 from?
Is it necessary?

40.4: 77 Pair-coalescence Time. What are interesting
/N

upper and lower bounds for KxL? %

40.5: MinCQW. (QN = Coalescence-Word.) For a finite
house H, use ATy for the minimum time to to coa-
lesce All the robots into a single room. [There may be
several QWs of this min—length.] ]

40.6: " House-coalescence Time. By defn,
ATy > f?]_“H Is there an interesting IFF condition for
equality? Are there houses where ATy > 10 + ﬁTH?
Where ATy > 10-PT? What is a nt—upper-bound
for ATy ? O

40.7: Defn. For a N,E,S,W-word m, let B-7w be the room
where m would bring a robot from room B. Say that
rooms A,B are exchangeable if dr st. A-m = B and
B-m = A. House H is universally exchangeable if
every pair A,B is exchangeable. O

40.8: ??Exchangeable Robots. Which KxL admit a
house with an exchangeable pair A%B? Which KxL
admit a universally exchangeable house? %

AT
Sorv ]};’%) Mason H. gave an example of an exchangeable-pair, 2022g.

[Quostions await. Solve ho’, don’t be shmo; get on the Go!]

40.9: Defn. A tuple A == (A1, ..., Ag) is full if the
k rooms are distinct. A building [finite or infinite| is
k-transitive if for every two k-tuples A and Z%, each
full, there exists a word = st. for every j: A;-m = Bj.

So “l-transitive” is a synonym for “connected”. If
a house is 2-transitive then it is certainly universally
exchangeable.

A house is weakly k-transitive if for each two k-
sets of rooms, there exists a word carrying one k-set
to the other.
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A k-attractor is a k-set A={Ay,..., A} to which
every k-set can be carried. [So “3 a 1-attractor” is a syn-

onym for “house is coalesceable”.] O

Infinite houses

40.10: ??Word—of— Doom.  |doomed—‘non-coalesceable’,
and coal= ‘coalesceable’.] Does there exist a (necessarily oo)
house, rooms A, B and word ¢ |e for “error”] s.t:

Pair (A, B) is coalesceable, but
pair (A-e, B-€) is doomed?

Does there exist an oo-house with ooly many coal-
pairs, and ooly many doomed-pairs? O

40.11: 7?7 Robots in Infinity-House. ~ With all of ZxZ
being rooms, with each room having at least 2 walls,
produce a pair-coalescable house. O

40.12: ??Questions/Challenges.Is every finite house 2-
transitive? How about weakly? Produce an oco-house
which is 2-transitive. Can you make one which is 3-
transitive? O

Page 37 of

What’s a 1 “L” la-ma?
What’s a 2 “L” la-ma?
What’s a 3 “L” la-ma?

A Tibetan monk,
A South Amerian pack-animal.

A4 Fire. . .
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Iterative/Algorithmic

Iteration can be viewed as a kind of induction. T.fol
are “programmable” problems.

41.1: ??Wizard-cards (USAMO2016.6).  Fix integers
N,L > 2. Cards are labeled cq,co,...,cn, and the
deck has two copies of each. The Wizard shuffles the
2N cards and lays them face-down in a row, in places

1,2, 3, ..., 2N—2, 2N—1, 2N.

On your turn, you point at L places. [So (°) pos-
sibilities.] Wiz turns those cards face-up, in place. If
some two of the revealed-cards match, you have won!
Else, you look away, and Wiz returns those cards,
face-down, to the L places, but permuted in any way
he wishes. [I.e, you now know the set of cards in those L
places, but not their order.]| Now it is your turn again.

The game is winnable if there exists a posint
T=Tn,1, and strategy, that is guaranteed to win in at
most T" moves, regardless of Wiz’s play.

Which (N, L) pairs are winnable? O

bom'gg: Junhao Z., 2021t.
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42.1: ???Thirteen coin problem.  Thirteen coins, la-
beled 1,2,...,13, have standard-weight, except one
of them might be heavier or lighter than std-weight
(or they could all weigh the same). You also have a std-
weight coin, W.

Available is a scales-of-justice (SOJ) balance.
Putting some coins on the left-pan and on the right,
either SOJ balances, or tilts left or tilts right.

Using no more than three weighings, determine the
coin-situation. O

SOLVED - 9
SV

42.2: ???SOJ conundrum.  Consider std-weight coin
W, and mystery coins 1,2,3,...,C—1,C which have
std-weight except one coin might be heavier or lighter.

Maximize C st. N many clever SOJ weighings can
determine the coin-situation. O

The four-year-old niece of a mathematician
was playing a game in which she was the con-
ductor on a train and her mother was a pas-
senger.

“Wait a minute,” said Nancy, “we have to get
some paper to make tickets.” “Oh,” said her
mother, who had probably had a long day, “do
we really need them? After all, it's only a pretend
game with pretend tickets.” “No Mommy, you're
wrong,” replied Nancy; “they're pretend tickets,
but it's a real game.”

~transmitted by David Gale
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Well-ordered set Snowclones

See BoP or SaP or Wikipedia for definitions of: total-order, To X or not to X.
partial-order (both strict and lax), well-ordered set, well-
founded poset.

X is the new Y.
In space, no one can hear you X.

Dictionary-order. Alphabet A = {a,b,...z} has It's the mother of all X

a<b<c<...ordering. A word w = wiwows . ..wy,

has some finite length, L, with each w; € A. Y-ing while X.
* : .
Let A™ be t}ie set of all words. Define a strict total- If Eskimos have n words for snow, X surely
order < on A™ by have m words for Y.  |WIKIPEDIA: In 2003, an ar-
UTUUZ . . . UK < W WaW3 ... W], ticle in The Economist stated, “If Eskimos have dozens of

words for snow, Germans have as many for bureaucracy.” |

IFF FEither: K < L and ujus ... ug = wiws. .. Wk,
[i.e, u is an initial-segment of w] OR: Words u and w
disagree at some index and, letting d < Min(K, L) be
the smallest disagreement-index, that ug; < wy. O

43.1: ???Dictionary—order conundrum.
Is (A*, <) a well-order?
Is (A*, > ) a well-order? %

SOLVED - 9
SV

44: ???Well—founded conundrum. For binrel < on
set Q, define o~ by B < a.

iz Suppose both (€, <) and (2, ) are strict well-
orders. Prove that € is finite.

ii: Weaken (Q,=<) and (Q,>) to strict well-
founded partial-orders. Prove or give CEX to
statement “Set ) is finite.” O

SOLVED - 9
BY " *
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Complex numbers

The number you have reached is imaginary. Please
rotate your phone 90 degrees and dial again.
~David Grabiner

Complex numbers

The algebraic structure of R can be consistently ex-
tended to a larger field, by adjoining a sqroot of
negative 1. This is conventionally@ called i, so
% = -1 = [1i]’. Extending R by i produces field

C = {21 + yi | where x and y are real} .

[['ve written 21 4 yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2+ 3i, not 2-1 + 3i.]

A geometric picture of C, with the real axis hor-
izontal, and the imaginary axis vertical, is called
the Argand plane or the complex plane.

Write real-part and imaginary-part extractors
as, e.g, for z := 2 — 3i, give

Re(z) =2 and Im(z)=-3
since z = 2:1 + [-3]-i.  The absolute-value or mod-
ulus of z is its distance to the origin; so

= \/Re(z)2 + Im(2)?

[Here, |2 — 3i| = V1+9 = V13.] The complex conju-
gate of this z is Z = 2+ 3i. For a general w = x + yi
with z,y€R, observe that

Re(w) ==z = “3¥, Im(w) =y
= Re(w) — Im(w)i;

Pythag. thm
lw* 22222 2242 = Wi
(Complex-)conjugation w +— w is an involution of C,
_ N )
since @ = w. For complex polynomial f(z) = >° c¢;z/,
N , J=0
define f(z) = Zoﬁjz] , its conjugate polynomial.
J:
Thus 7
f(z) = 1(@),
“1Electrical engineers use j rather than i, as “i” is used to

represent current/amperage in EE. Also, while boldface i is a
sqroot of -1, we still have non-boldface i as a variable. E.g, we

could [but wouldn’t] write 7i + S°° . 4° 20% 75 4 3% 442,

Page 41 of

since p+v=n+7v and v = i - v for p,v € C.

Multiplying complex numbers corresponds to mul-
tiplying their moduli and adding their angles.

To write a quotient * in std = + iy form, note
So write va in std form, then divide by real |a|”.

See W: Complex number] and W: Argand plane for arith-
metic with complex numbers.
See Appendix for further C information.
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45.1: S\/Buried Treasure Problem [BTP].  Floating in
the ocean you spy a bottle containing a pirate’s map
to fabulous treasure. You sell your possessions, pur-
chase a robot-crewed ocean-catamaran, and sail to the
island, discovering it is a vast plateau. The map says:

Arrrgh, Matey! Count your paces from the gallows
to the a quartz boulder, turn Left 90° and walk the
same distance; hammer a spike into the ground.

Count your paces from the gallows to the giant oak,
turn Right 90° and walk the counted distance; hammer
a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau |with the treasure
you can say bye bye to annoying Math classes!] and immedi-
ately spot the giant oak, and quartz boulder. But the
gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? O

[Hint: Using B, K, w for the Bolder’s, oaK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tp x(w)
by using C addition and multiplication.] Alphabetic-order

mnemonic: Boulder Left old

oakK Right silver

L o .
Sor }';[Y) Matthew C, Junhao Z., Hani S., 2020t. ~ Nathan T., 2021t.

(Partia] soln) Sreeram \”'.7 2022g. Maxime A., 2023g.

NAB . 1 ???Telescoping polynomial (USAM01977.1). De-
termine all pairs of positive integers (K, N) such
that [1+ 2V + 22V + ...+ 28] is divisible by
1+az+a2?+--+2F] 0
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Tiling questions

47: TOFF Chess-domino-tiling criterion.  Consider a
8x8 chess board with 1 black cell and 1 white cell
removed. We seek an IFF-condition, on the removed-
pair, for the board to be domino-tilable (by % = 31
dominos), under the assumption that the board is:

a: Toroidal: The top-and-bottom edges connect, and
the left-and-right edges connect.

b: Cylindrical: Just the the left-and-right edges con-
nect.

c: Normal: No edges connect.

d: For W.H € Z, how does this generalize to WxH
board? O

48: 7 4mino-tilable rectangles. A four-mino is a
1x4 tile. Which 2N x 2K boards admit a four-mino
tiling? O

Abby T. & Kailey S., 2018t.
49: 77 N-mino-tilable rectangles.  An N-mino is a

1xN tile. For width,height pairs W, H € Z, does the
WxH board admit an N-mino tiling? O

Tiling questions

Page 43 of

50: 2 Lmino puncture-tilable. An Lmino (pron. “ell-

mino”) comprises three =l squares in an “L” shape (all
four orientations are a]lowed).

A board is “Lmino puncture-tilable” if: No mat-
ter which cell is removed, the resulting puntured-
board is Lmino tilable.

Which posint pairs N, K, with NK =3 1, are such
that the NxK board is Lmino puncture-tilable?  {

51: ??Multi—dimensional Lminos. In class we showed,
for each n € N, that the 2" x 2" board is Lmino
puncture-tilable.

Generalize this to a D-dimensional board,
2" x 2" x D x 2" You will first need to decide
what your D-dimensional generalization of an
Lmino should be.  Are there several reasonable
possibilities? O
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Invariants

Underlying certain problems, is that some quantity or
some relation is preserved under the relevant opera-
tions.

Eg: Invariant quantity. Have B be the 8x8 chess-
board, but with the lower-right and upper-left cells
removed; so |B| = 62. We start laying down dominos.
Can we cover the board with 31 dominos? No!/
Why? Initially, the uncovered part of the board (i.e,
all of B) has 32 black cells and 30 white cells. These
numbers are mot invariant under placing a domino.
But the discrepancy, this difference
f: #{ ik oo § ~ #{hito cels)
is unaltered by placing a domino —it is invariant.
Since the discrepancy is 2 initially, it will always be 2,
no matter how many dominos we place. But a covered
board would have a discrepancy of 0, not 2.

Eg: Invariant relation. Our Lightning bolt alg.
chose “seeds” for the s- and ¢- columns, so that

e Thn = Spro + thri,

for n = 0,1. [The n'™®:  remainder, quotient, and Bé-
zout columns are called rn,qn,sn,tn.] The LBolt update
rule preserved relation (), in building row n from
rows n—2 and n—1. When we found the index K
where rg = GCD(ro,71), this invariance handed us
the GCD as a linear-combination of ry and ry.
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53.1: ??Coloring a 99-gon (USAMO01994.2). Let R,B,
denote the colors red, blue, , respectively.

The sides of a 99-gon are initially colored so that,
traveling CW (clockwise), consecutive sides are

e R, B,R, B,..., R, B, R, B,
Is it possible, still traveling CW, to obtain
I: R, B,R,B,..., R, B, R, V', B

by a sequence of modifications? A modification
changes the color of one side (to one of R,B,") under
the constraint that at no time may two adjacent sides
have the same color. O

S 7 . - . . - ,,
Sor EQ Tyler A., 2014g. Christopher P., Nate G., 2012g. Ken D., 2017g.

Pietro L., 2022t.

Fast is fine; accuracy is final.
—Wyatt Earp

(Also applies to picklebali)
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Rectangle. On a WxW chessboard, cells
form a rectangle if their coordinates have form
(z,9), (z,v), («'¢), («';y), where z#z’ and y#y'.
[So A—B—C—D is traveling clockwise or counter-clockwise

around the corners of a rectangle.] Ll

54: ???Chip patterns (USAMO2015.4). Poker chips are
piled on the cells of a WxW chessboard. Use #A for the
number of chips on cell A=(x,y). The total number
of chips on the board is N€N.

A mowve chooses a rectangle that has #A
and #C both positive. A chip is moved from A to B,
and a chip is moved from C to D. The move decre-
ments #A and #C, and increments #B and #D.

Two chip-patterns are move-equivalent if there is
a sequence of moves carrying one to the other.

How many move-equivalence classes are there?

SOLVED - 9

BY

Stopped at a traffic light, the car in front has

vanity plate | MLBMLS]| .

What color is the car?

Invariants
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55.1: ??Pentagon (USAMO2011.2). An integer is as-
signed to each vertex of a regular pentagon so that
they sum to 2011. A mowve of a solitaire game con-
sists of subtracting an integer 3 from each of the inte-
gers at two neighboring vertices and adding 23 to the
opposite vertex, which is not adjacent to either of the
first two vertices. (The amount 3 and the vertices chosen
can vary from move to move‘)

The game is won at a certain vertex if, after some
number of moves, that vertex has the number 2011
and the other four vertices have the number 0. Prove
that for each choice of the initial integers, there is
exactly one vertex at which the game can be won. ¢
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56: {?Three aces expectation (USAM01975.5). A deck
of N playing cards, with three aces, is shuffled “at
random” [1',(3, the N! many orderings are cqually—likcly]. The
cards are then turned up one-by-one from the top until
the second ace appears. Prove that T, the expected-
number of cards to be turned up, equals [N+1]/2. ¢

J 2
Sorv ED! Lizzie |[Donna| N-C., 2017g. ~ Atharva P., 2010t. Alex T., 2021g.

Abhinav P., 2023t.

A WONDERFUL BIRD IS THE PELICAN
His bill holds more than his belican.

He can take in his beak,

Enough food for a week,

But I'm damned if I see how the helican.

—Dixon Lanier Merritt
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Boomerangs cannot tile a convex polygon

(Problem from David Gale.) A boomerang is a non-
convex quadrilat(eral); call its [>7r] interior-angle
“thick”. Conversely, a quadrilat with each angle <
(a “thin” angle) is a kite. [So a polygon is convex IFF all
its angles are thin.]| A dissection of a polygon P into
finitely many quadrilats is a *“quadritiling of P”.

[The tiles need not be congruent to each other.]

o7.1: ??Boom—Kite Theorem. Each quadritiling of a
convex polygon P must use a kite. O

57.2: Fuils with “Quad” replaced by “Penta”. Let P
be the square with vertices (+2,+2). Cut P with a
polygonal path going from /to

(+2,+2) — (-1,+1) — (+1,-1) — (-2,-2).

This cuts P [which is convex| into two non-convex pen-
tagons [WhiCh are congruent to each other].

Exer: Each polygon Q, convex or not, admits a
(finite) tiling by non-convex pentagons. O
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Combinatorial Graphs

[Some, but not all, of these problems use induction.]

For these problems, you should draw pl tures
of your combinatorial graphs.

58.1: Gregariousity (USAMO 1982.1). In a party
with 1982 persons, among every group of four there is
at least one person who knows each of the other three.
What is the minimum number of people in the party

who know everyone else? O

Proof. For N>3 people, the min-number of gregari-
ous (someone who knows everyone) people is N — 3.

Consider the complete graph on NV vertices (people);
color an edge green/red as the two people do/don’t
know each other.

WLOG there is a red edge u=—v. Every other edge
w==x must share a vertex with u==v [otherwise, the
4-set {u,v,w,x} is bad; nobody knows the other three].

A red-degree-3 vertex is also ruled out; were u=—=v,
u=vy, u==vs distinct edges, then {u,v,vo v3}
would be bad.

Thus, distinct from u==v, the red subgraph has at
most two other edges, u==u and v=v; WLOG it has
both. These two edges must not be vertex-disjoint,
hence U = V. So Non-gregarious = {u, v, u=v}. ¢

Combinatorial Graphs

Page 49 of

59: ??Desegregation problem. A coloring of a graph
assigns to each vertex either “aqua” or “red”. It is de-
segregated, if each vertex has at least one neighbor
of the opposite color from his. [TWO vertices are neigh-
bors IFF they are connected by an edge.| Prove that each
finite connected graph G with N>2 vertices, admits a
desegregated coloring. O

Hint.  This can be done by an FExtremal or Induc-
tion argument; can you discover both proofs? (A third
proof?) What are generalizations of this graph-
theory problem? O
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60.1: ??N—towns Theorem.  Consider a network of
N>1 towns, each connected to every other town by a
one—waﬂ road. Then . . .

A: There exists at-least-one universal town. Town o
is universal if for each other town, (3, you can
legally bicycle from a to 3 (possibly passing through
intermediate towns).

SOI‘\EQZ John P., 2011t. Zach N., 2012t. Michael E., 2013t.
Lizzie [Donna] N-C., 2017g.  Noam A. & Riley B. & Caden C., 2020g.

Alex T., Nicholas V.N., Allan D., 2021g.  Bill Z., 2021t.

B: There exists a 2-universal town; it can access
each town using at most two roads [i.e, at most one
intermediate town].

SOL\%QZ Michael V., Terry T., Alex H., Stephen H., 2011t

Ken D., 2017g. Bill Z., 2021t.

C': In a network of N>3 towns, it is always possible
to reverse at most one road so that, now, every
town is universal.

Sor ED: Ken D., 2017¢. Bill Z., 2021. O

“>We have a directed graph; a “digraph”. This one is a
“complete digraph on N vertices”; it has (1;] ) directed-edges,
that is, 2 N[N—1] many oriented edges.
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61.1: ??Polygamy Problem. A polygamous com-
munity comprises 100 women and 101 men. Every
man has at least one wife. Prove that there is a
married_couple such that the wife has more husbands
than the husband has wives. O

boL\EQ: Matthew C., 2020t.
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Extremal arguments

Here is an example argument.

Defn. [Textbooks vary slightly in their precise defns of path,
walk, trail. 1 will use the defns from Miklos Bona’s text.| In
a (multi)graph G, a length-NN trail is a sequence

T: Vo = Vi = 500 N VN-1 =X VN,

where edge ej runs between vertices vi_1 and vg
[possibly Vi—1=V}, i.e the edge is a loop]. Edges (hence ver-
tices) may occur more than once.

A walk is a trail in which no edge is repeated (but
vertices may). A path is a trail in which no vertex is
repeated (hence no edge is either).

Say (f) is a trail/walk/path between vy and vy,
or connecting vg and vy. “Graph G is connected”
if each pair of vertices has a trail connected them. [J

62:E| a path.  Fix a connected (possibly infinite)
graph G. Then between each two vertices, u,w € Vg,
there exists a path [no repeated Vertices]. O

Proof. Fix a minimun-length trail (1) between u=vy
and w=vy. If there were indices k<¢ in [0.. N] with
Vi = vy, then

i: Vo = Vi =2 N ok VE=Vy = coe eNﬁlVN_l =2 VN,
would be a shorter trail; 3¢. Hence your min-length

trail was a path all along. ... ¢

Note: The above DESEGREGATION PROBLEM can be
done via an extremal argument.
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Bashful Boyfriends Story. TFor a natnum N we have two
sets of points, with |B| = N = |G|, and B U G comprises 2N
distinct points.

Set B comprises the boys’ homes, G the girls’ homes. Each
boy wants to build a straight sidewalk from his home to his
girlfriend’s. Boys are bashful, hence don’t want to meet other
boys when girlfriend-visiting. So the boys want their sidewalks
to be disjoint. Indeed, the boys are so bashful that they are
willing to change girlfriends in order to not meet another boy.[]

63: 7 Bashful Boyfriends. In the plane, con-
sider sets |B| = N = |G|, with |B U G| = 2N and no-
three-points-colinear. Then there exists a bijection
D:B<»G such that the collection of line-segments
{Seg(b,D(b)) ‘ be B} is pairwise-disjoint. O

[Notation: Boy b’s Date/girlfriend is D(b).|
uestions. Can you come up with an extremal
N
proof? An induction proof? Does the result hold

if |B| = 0o = |G| (the smallest infinity)? Can no-three-
points-colinear be weakened? O
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Number theory

The first few problems can be approached via factor-
ing, or by modular arithmetic.

64.1: 8 The 14 Problem.  Find all integer-tuples
¢ = (c1,ca,...,c14) whose 4""-powers satsify

f: 4. Hcs+c, = 31,999. O

16 beats up 14. Trick: Reducing () mod-16 gives
e d+eg+...+cis+cly, = 15,

where = denotes =16. We’ll show eqn (}) has no soln
by showing: Congruence (1) has no soln. This latter
will follow by proving:

*:  Mod-16, each 4'"-power is either 0 or 1.

This is immediate for {0, +2, +4,+6,8}, the even
residue-classes. Happily, this table,

| s | (e
1 1 1

handles the odd residue-classes. ¢

Number theory

Page 54 of

You have to do your own growing no matter how
tall your grandfather was.
—Abraham Lincoln
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65.1: ??Digit—nine (USAMO 1998.1). The set
{1,2,---,1998} has been partitioned into disjoint
pairs {ay,b,}, for n = 1,...,999, so that each
absolute-difference |a,, — b,| is 1 or 6. Prove that sum

S = ]al —b1| -+ |a2—b2| + ...+ |(1999—1)999|

ends in the digit 9. O

y D . 7
SOL\’};‘;. Bill Z., 2021t.
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66.1: /7% Two linear-recurs (USAMO1973.2). Let & and
9 denote two sequences of integers defined as follows:

xg = 1, xy =1, T+l = 2Tp—1 + Tn ;

vo=1, =7 Ynt1 = 3Yn-1+2Yn.
Thus, the first few terms of the sequences are:

#:1,1, 3,5, 11, 21,...
§:1,7,17,55,161,487, . ..

Prove that, except for the “1”, there is no term which
occurs in both sequences. O

’5(:)”'}1;‘;%,).1 Junhao Z., 2021t.

Addendum. Could a (possibly complex) number « have sequence
n — o satisfy the &-recurrence [but with possibly different initial

conditions|? Yes!/. This happens exactly (exercise!) when « is a
root of polynomial

note

f) =t —t—2 == [t -2t —-1].

So x, = P-2" + Q-[fl}n for numbers P, @) that will be de-
termined from the initial conditions.

Similarly, an a has n — " fulfill the g-recurrence IFF it is
a root of

note

g(t) = t* -2t -3 [t —3][t —-1],

whence ¥, = 5-3" + T~[f1]n for some numbers S, T'.
Solving for P,Q.S,T gives

Tz, = [22" + [1]"]/3 and
yn = 23" — [F1]".

However, I don’t know how to use (x) efficiently to solve the
problem. O
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67.1: 770 Prime yelling (MC2012.3).  With P an odd-
prime, P campers sit around a circle. They are la-
beled C; [camper #1|, Co,...,Cp, in clockwise order.
Camper C; yells out “1”. One place clockwise, C-
yells “27. Two places clockwise, C, yells out “3”. Con-
tinuing forever, after the camper who yelled “n”, the
camper n-places clockwise from him now yells “n+1"
Each yell earns that camper a cookie.

a: Show there’s a camper who never gets a cookie.

b: Of the lucky campers [those who get a cookie|, is there
one who at some point has at least ten more cookies
than the other Iuckies?

c: Among the luckies, is there one who at some point
has at least ten fewer cookies than the others? ¢

Number theory

Page 57 of

Patient: I've had this recurring dream that I'm
a famous psychoanalyst.

Doctor: How long has this been going on?
Patient: Oh, —ever since I was Jung. ..
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68.1: ??a2 — b* Problem (HMMT2009.1.alg). Posints a,b  69.1: ??Power—sum Problem. For each odd n>3, the

have a? — b* =2009. Compute a + b. O integer f(n):= 5-[15" 4+ 19"] is composite. O
SOLVESZ Yifei L., 2017g. James |[Matt] B., 2020t. . Alex T., 2021g. SOL\EBZ Class of, 2017g. Sydney E., 2020t. Allan D., Nicholas V.N.,
Matthew D., 2022g. Alex T., Max W., 2021g.
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70.1: ??Power—4Term Problem. For natnum n, define

Sp = 3"+7T"+ 11" —-6".
Prove, for odd posints n, that S, is composite.

SOL\%EZ Ken D., 2017g. Sydney E., 2020t.

71.1: ??PoT—pIus—Square Question. (Dis) Prove: There

are at least seven primes p such that sum
fp) = 2+ p

is prime.

Non-examples. Note 5 is prime, but f(5) =57 =193
is composite. In the other direction, the composite
15 yields f(15) = 32993, which is prime. Finally,

f(1) = 3 is prime but the unit 1, alas, is not.

S()L\'YES:]\/'(BV(,‘H H., 2013t Rabon M., 2017g.

Jeremy G. & Emily Y., 2022g.

Number theory

SN
b()r,\rlgg: John P., 2011t.

Page 59 of

72: 77 The z + % theorem.  Consider a real [or com-
plex| number = that is good; sum x + L is an inte-
ger. Prove, for each posint N, that = is good, i.e,
oV + I%\ is integral. O

E.g: Let F:=+/5 and 1y = # Then i equals

2 _ 2B-F] _ 3-F
3fF = "9-5 ~— "2
Hence y + % = # + % = 3, so y is good. The the-

9 note 74 3fF
2

orem implies that y is good; 1s t? O

Pf of [72), start. For N € N, let Sy = [2¥ + Q%N]
Now ... [Hint: The Appendix defines binomial coeffs.| 4

Junhao Z., 2020t. Allan D., 2021g.

I
Nick K., 2021t.
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73: ??Recip—sum—is—one (USAMO 1978.3). An integer G 74.1: Ids Squarish problem.Call & = (e1,...,e1) an L-
is good if there exist posints 01, ...,0nN (not necessarily — bit-tuple if each €y, is +1 or -1. Integer T' is squarish
distinct) with if there exists a natnum L and an L-bit-tuple € st.

s [Rel=o ma [L ] = o= Y e

7=l Prove that every integer is squarish. O

Given that I' D [33.. 73], prove that T' D [33..0), Sowvep.
where T' C Z4 denotes the set of good numbers.  {

John P., 2011t.

] 2 7l
SOL\"S%?Z Rabon M., 2017g.

Defn. Call (%) a“(good) decomposition of G”. []
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75a: (70 2-to-2 Problem (USAMO1991.3). Sequence

B o= (1,222,229 202%7] )

can be recursively defined as

b(] = 1, and bt+1 = 2bt,

fort =0,1,2,.... Then for each modulus M, sequence
b is eventually mod-M constant. O

Filename: Problems/Misc/induction-SELO- jk.latex
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76: 77? Odd-divisor Fibonacci (USAMO1993.4).  Arbi-
trary posints fo and f1 determine an oddish sequence
f, defined thereafter by letting f,, be the largest odd
divisor of f,—o + fn_1.

Prove that f is eventually-constant, and determine
what this constant C' = C'( fo, f1) is. O

Remark. Given a posint F' = 2°-D, where e € N and
D is odd, define /] to be this D. Thus

[[fnf2 + fnfl]] = fn

is the update rule. O
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TTa: ??.?Integer—product seq. Thm (USAMO 2009.6).
Suppose § = (so, $1,82,...) Is an infinite, noncon-
stant sequence [i.e, not so = s1 = s2--+| of rational num-
bers. Suppose t is also an infinite, nonconstant, ratio-
nal sequence with the property that

f: For all j and k: Product [sj — s3] - [t; — t] is an
integer.

Prove that there exists a rational number r=£0 st.

i For all j and k: Values [s; — si]/r aund<>
" [tj — tg] - are integers.
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2r78.1: 72 Power-of-Two composite (USAMO 1982.4).
Prove that there exists a positive integer k such that
V,, =1+ k-2" is composite for every posint n. O

[Ideas: Covering-systems. Mod-arithmetic.]
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79.1: Ezample. The set of Threeish-numbers is
T = {1,4,710,...} = {n€Z4|n =31} .

Ok, so 7 is not a ring. But 7 is sealed under mul-

tiplication, has no ZDs, and the only 7 -unit is 1; we

can make sense of “7-irreducible” and “7 -prime”.
Factoring 100, these two Threeish-factorizations

4-25 = 100 = 10- 10,

show that none of 4, 10, 25 is Threeish-prime. Yet each
1s Threeish-irreducible. [This7 as their only non-trivial N-

factorizations use non-Threeish numbers]. O

79.2: "?? Threeish conundrum. Given a “target”
T € [2..00), write its usual N-prime factorization,

79.3: T = ph.pl2. . phr,

with py,...,pr, distinct, and each E; a posint.
In terms of (79.3)), give an IFF-characterization of:
i When T is Threeishian.

ii: When T is Threeish-irreducible.

iii: When T is Threeish-prime.

iv: Are there coly many Threeish-primes? —or any at
all? [Hmt: Look up Dirichlet's thm on arith.-progressions.]

O

SOLVED -

by - Keven H., 2013t.
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Calculus ideas 81: 77 Factorial-cosine limit (Domain specific). With n
80.1: 7 Tan-of-Sum (HMMT2009.4.gen).  Angles z,y taking on values 1,2,3, ..., prove that limit
satisly that L = lim cos(n!-2me)
n—o0
tan(z) + tan(y) = 4, and cot(z)+ cot(y) = 5. exists, and compute it. o

Compute tan(x + y).

<> SOL\/EBI Daniel B. & Rabon M., 2017g.  Nick K., 2021t.

SOL"EBZ Ken D., 2017g. Hani S., 2020t. Alex T., 2021g.

Eating too much cake is the sin of gluttony,

THERE’S A DELTA FOR EVERY EPSILON whereas Eatmg too much pl is a—ok, as the sin
of pi is zero.

It’s a fact that you can always count upon.

There’s a delta for every epsilon
And now and again,
There’s also an N.

But one condition I must give:
The epsilon must be positive
A lonely life all the others live,
In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-

Tives that I might mention.

The matter merits our attention.

If an epsilon is a hero,

Just because it is greater than zero,
It must be mighty discouragin’

To lie to the left of the origin.

This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,
Have deltas
To call their own.

Words and Music by: —Tom Lehrer
Video of |Lehrer performing the d-¢ song.

|Lyrics, and audio of Lehrer performing.
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82.1: ??Graph—chords (Induction). Function Now we seek to establish the converse:
f:10,1]=R is good if f(0) = f(1) and f is continuous.
Length A€(0, 1] is a ““chord of [ if there exists points
0 <w <z <1 with f(w)=f(x) and w+A = x.

Our A is a universal chord, UC, if every good Sowvep: 7
function has A as a chord; by defn, length 1 is a UC.

CreaB82.2: 7 Graph-chords, converse. Prove that a univer-
sal chord must be a harmonic number. O

Prove that each harmonic number, 1, %, %, %, ..., 18
universal.  |An induction idea can work here.| O

SOI‘\EQZ Bill Z. & Alejandro T., 2021t.
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Misc. Problems MALAPHOR

These problems are “straightforward” given the right That's the way the cookie cries over spilled milk.
tools, e.g, calculus, binomial coeffs, algebra identities,

complex numbers. [In contrast, some of the hidden problems

—that I reveal as you solve these— are challenging.]

£a83.1: ??Can you spot the frog? Fred-the-frog jumps
on N={0,1,2,...}, with unknown hop-length heZ . At
time t € N, our friendly frog is at integer t-h.

At timet = 1,2,3, ..., you shine a spotlight at posi-
tion F(t)eZ. ; if the frog is there at time t, then you've
caught him. Prove that there is a fnc ¥:7,.—7,
which catches Fred, regardless of his hop-length.

*SOI‘VSQZ Sienna N. & Patrick O., 2019t. Junhao Z., 2020t. David R.,

Aubrey S. & Haritha K., 2021g. Kevin J., 2022g. Alexa M., 2022t.

83.2: 7 ?More lily pads. Now Fred jumps on 7, with
non-zero hop-length heZ. He starts at lily-pad (€7.
At time t, doomed Fred is on pad [ + [th].
Although both ¢ and h are unknown, show there
exists a Fred-catcher G:Z,—Z. |Le, G:Time— Space.]
PROVE OR DISPROVE: There exists a Fred-catcher
M:7Z.,—7 with this weak-monotonicity:

«: For all times ¢ < u we have |M(t)| < |M(u)|. ¢

P
Sory EYL Junhao Z., 2020t.

(A third problem awaits...)

How to punctuate [help spot the giraffej.

Help spot the giraffe. [Locate the giraffe.|

Help spot the giraffe. [Help me put spots on the giraffe.]

Help Spot, the girafle. [We need to go to Spot’s aid.]

Help Spot! —the giraffe! [My dog Spot will protect me
from this crazy giraf‘fe!]

Help! —Spot the giraffe |(signed) giraffe named Spot,
desperately requesting aid.]
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Fafl. 1: ??Counting idempotent fncs. Consider a set
I' of cardinality N = |I'| € Zy. A map h:I'=T is
idempotent if hoh = h. Give a formula for I, the
number of idempotent-maps. ~ Compute I5. %

[Ideas: Get a formula ITOf binomial-coefficients.]

Easy-i8D. 1 ?.??Circularly-composite (USAMO .2005.1). Deter-
mine all composite positive integers (3 for which it is
possible to arrange the non-one (positive) divisors of 3
in a circle, so that no two adjacent divisors are rela-
tively prime. O

Convenience. Use bigdiv for “non-one divisor”. E.g,
the bigdivs of 6 are 2,3,6,

Use blip for integer>2. Blip 8 is good if its big-
divs can be circularly arranged with adjacent-pairs
not coprime. For example, 12 is good as it admits
(good) cycle (2,6,3,12,4). O

86.1: ??Irreducible fraction. For each natnum n, prove

that fraction 21147:11151 is irreducible. O

Is Rn — 1Tn+ 14

Contrast. always irreducible?

2n + 9
Alas, g = % = 12%.)0 which is reducible. [J

SOIN%BZ ? Morgan F. & Sydney E., 2020t.

Alex T. & Nicholas V.N. & Haritha K., 2021g.

PuzzLE: There are twelve boxes, one of which
contains fabulous riches, and eleven of which
contain goats. There is also a large balance,
on which you can weigh the boxes. The bal-
ance is surrounded by 53 bicycles. Three Monty
Halls, one of whom always tells the truth, one
of whom always lies, and one of whom answers
randomly, will answer a single question. All
three say, “I do not know the two numbers”,
and then look at one another.

What happened to the other dollar?
—Ken Kaufman
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87.1: 17 Coefficient-Sum (HMMT2009.2.algebra).  Let S 88.1: ??Reciprocal Sum (HMMT2009.5.algebra).
be the sum of all the real coefficients of the expansion ~ With A, B,C  denoting the roots of cubic

of [1 + iz]*°%. What is log,(S) ? O f(z):=2® -z + 1, compute the sum
SOL\'EQI Ken D., 2017g. James |[Matt| B., 2020t. Alex T., 2021g. %H + %ﬂ + %H . <>
SOLVED: Yifei L., 2017. Nicholas V.N. &, Max W., Alex T.,

Haritha K., 2021g.
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89.1: 77?Does a + 2b cover? (USAM01996.6). Deter- Removing Foliage
mine whether there exists a subset X C 7 satisfying:

90a: 7 Polynomial-deriv-divisible (Putnam 2016.A1).

For each r € 7, there is exactly one solution Find the smallest natnum J such that for every

to a+2b—=7 with ab € X. O intpoly p() and for every k € Z, the integer
. (J) The J-th derivative
e p (k) {ofp(), evaluated at k.}
is divisible by 2016. O

a
SOI‘VE‘QZ Rabon M., 2017g.
Taylor D. & Hunter R., 2019t.

Alex T., 2021g.

zucchini, n.: What stylish menagerie
animals wear to the beach. —IK
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Counting/Probability Fasy92.1: (77 Lattice-walk three (HMMT2019.5.Feb.Comb).

Contessa is taking a random lattice walk in the plane,
starting at (1,1). [A random lattice-walk moves up, down,
left, or right 1 unit equi-probably at each step.] If she lands
on a point of form (6x,6y) for x,y € Z, she Wins!;
but if she lands on a point of form (6 + 3,6y + 3)
she Loses. What is her probability, G, of winning? ¢

Sometimes we have a finite non-void set (2, a “good”
subset G C 2. We pick an « € 2 “at random”, i.e,
with uniform probability. The probability of o being
good is ratio |G|/|Q]. Often we wish to compute car-
dinality |G| or to lower-or-upper bound it. To show
that two subset G.H C () have the same probability,
sometime we can produce an explicit bijection G— H.

In probability theory, the term expected value
means “average value”. E.g, if you roll a fair die, it
takes on the values 1,...,6 equi-probably, so its ex-

pected value (expectation) is w =T7/2.

Earlier problems in these notes using related ideas:
[Scheherazade's Stratagem| [T hree aces expectation]

Easy-9il. 1: ?.??Disjoint Triangles (USAMO01983.1). On a cir-
cle, six points A, B,C, D, E, I' are chosen at random,
independently and uniformly w.r.t arclength. Deter-
mine the probability that triangles ABC and DEF
are disjoint. O
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93.1: ??Expected Backtrack (HMMT 2020.7 Nov., Team).
Bob the ant walks on the coordinate plane, starting
at (0,0). Every second, he moves from one lattice
point to a different lattice point at distance 1, chosen
equi-probably, independently. He continues until he
backtracks, reaching a point he could have reached
sooner. E.g, walking (0,0)—(1,0)—(1,1)—(1,2)—(0,2),
he will stop at (0.2) because he could have traveled
(0,0)—(0,1)—(0,2).  Compute E, Bob’s expected-
number of steps before stopping. O

SOL\EQZ Junhao Z. & Hani S., 2021t.
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94: 77?Zero mod-3 (USAM01979.3).  From integers
ki,ko, ... kn, a term « is picked at random. A 2"
term, [3, is randomly picked, independently of the
first. Then a third, v. Prove the probability that
« + 8+« is divisible by 3 is at least 411' O

[Ideas: Let x,y,z be probability that a term chosen from k1, ko, ..., kx
has mod-3 residue 0, 1. 2, respectively. Compute the desired proba-
bility ITOf x,y,z, then use calculus to minimize that expression over

the appropriate set of (z, v, z) triples.]
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95.1: ???Collapse—abc (HMMT 2020.7 Feb., Comb). Alice
writes 1001 letters on a blackboard, each one chosen
independently and uniformly at random from the set
S :={a,b,c}. A move consists of erasing two distinct
letters from the board and replacing them with the
third letter in S. What is the probability that Alice
can perform a sequence of moves which results in one
letter remaining on the blackboard? O
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Challenging misc. Problems

96.1: ??Poly—permutation (USAMO 1974.1). With A,B,C
three distinct integers, let f denote a polynomial hav-
ing integral coefficients. Show it is impossible that

f(A)=B, f(B)=C, and f(C)=A. 0

?, Semester.

Ezxploration? Does such an f exist if we allow it to be a Q-poly,
rather than Z-poly?

Or, keeping f a Z-poly but allowing A,B,C to be rational,
does that admit a soln? O

Challenging misc. Problems

Page 76 of

97.1: 772 Decimal divisibility (USAMO1088.1).  The
repeating decimal 0.ab---kpq---u equals %, where
« 1 B are posints, and —necessarily— there is at least
one decimal before the repeating-part. Prove (3 is di-
visible by 2 or 5 (or both).

|[E.g: 0.01136 = 0.01136363636--- = &=, and 882 ¢
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Challengingd8: ??Multiplicative—coloring (USAMO02015.3). A blip,
B, is a subset of token-set {1,2 ... N}, where
N > 1. A coloring colors each blip either green or
red (not both). Let g(B) count the green sub-blips
of B,

Determine A(N), the number of legal-colorings;
those which satisfy

f: VblipsB,C: g(B)g(C) = g(BUC)g(BNC). O
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99: ??Chessboard—conﬁg Problem.  In some order,
put the numbers 1,2, ...,64 on the cells (squares) of a
chessboard; call this a configuration. For a cell a,
let ag denote the number placed there by G. Two
cells a, B are adjacent if they touch vertically, hor-
izontally or diagonally. Define the worst-case differ-
ence,

99az: G = Max{|a(; el

Cells o and 3 }
are adjacent.

What is the minimum (taken over all configurations G )

of G7? O

Challenging misc. Problems

Page 78 of

As Rousseau could not compose without his cat beside
him, so I cannot play chess without my king’s bishop.
In its absense the game to me is lifeless and void. The
vitalizing factor is missing, and I can devise no plan of

attack. —Siegbert Tarrasch

I had a toothache during the first game.
In the second game I had a headache. In
the third game it was an attack of rheuma-
tism. In the fourth game, I wasn’t feeling
well. And in the fifth game? Well, must
one have to win every game?

—Siegbert Tarrasch
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100.1: ???Hexagonal Game (USAMO2014.4). Abby and
Bert play the “k-game” on an infinite hexagonal grid
which, initially, is unmarked. Players alternate, with
Abby moving first. Abby marks two adjacent un-
marked hexagons. Bert then unmarks some marked
hexagon (anywhere on the board). If ever there are k con-
secutive marked cells in a line (a k-chain), then Abby
wins. Find the min value of k for which Abby cannot
win, O7 prove that no such minimum exists. %

101.1: ???Averaging polynomials (USAM02002.3). Fix
natnum K. A good polynomial is monic with real
coefficients, and has degree-K. Prove that each good
F(z) is the average of two good polynomials with all
real Toots. O

Challenging misc. Problems

Page 79 of

Never criticize a man until you've walked a
mile in his shoes. ..

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King

102.1: 77 Rational 6x6 grid (USAMO 2004.4). Alice and
Bob play a game on a 6x6 grid. On his turn, a player
chooses a rational number not yet in the grid and
writes it in an empty cell (i.e, square) of the grid. Al-
ice starts, then players alternate. After all cells have
numbers: In each row, color black the cell with the
greatest number in that row.

Alice wins if she can draw a (polygonal) line from the
top of the grid to the bottom of the grid that stays
in black cells; Bob wins if she can’t. |Defn: Two cells in
adjacent rows are connected IFF they share a Vertex.] Find,
with proof, a winning strategy for one of the players.{

Challenging misc. Problems

Page 80 of

...for then, you are a mile away —and,
you have his shoes.
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103.1: 772 7.5-Prob.
C, =17"+4+5"

Produce a simple formula so that, for coprime
natnums L > K,

For n = 0,1,..., let

GCD(Cyr, Cx) = SimpleFormula(L,K).

[Guessing a formula may be easy; our goal is a prooﬂ] O

Challenging misc. Problems

Page 81 of

Valiant polynomial. A polynomial f is 'ualian
if [weZ] = [f(w) € Z]. Define the k™ binomial
polynomzial

z[z — 1z — 2] [z — [K—1]]

Bi(z) = % ,

which we can think of as ().

104.1: 7?7 Binomial-polys are Valiant. For each K € N,
polynomial By is valiant. O

104.2: ?"?Valiants are lin-combs. Each valiant poly
f can be written as a finite linear-combination, with
integer coefficients, of the binomial polys. [Le, {Bi}72,

is a Z-basis for VALIANT.] O

“OTe, its VALues are INTegers.
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105.1: 77 Half-intersection Problem. Consider a set A 106.1: ??Polynomial fit (USAMO1975.3). Fix N € Z4
(tokens) with |A| = 4028, along with subsets (blips)  and J:=[0..N). Let P() denote the unique poly-
B1,Bg, ..., Bagia C A, where each |B;| = 2014. Prove  nomial st. Deg(P) < N'—1 and
that there exist distinct indices i,j with k

T: VkeJ: P(k) = —.

k+1
|B; " B;| > 1007. O
Determine the value of P(N). O
SOW}'}‘SZ Hani S., 2021t.
SOL\’%BZ Daniel S., 2019t.

Attempting to park at any major university
—as anyone who has tried to do it will tell you—
is the 10"-ring of torment in Dante’s Inferno.
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Defn.  The geometric-mean of a set of m non-
negative numbers is the m'™-root of their product. [

107.1: ??Integral geometric-mean (USAMO1984.2). A
subset G C N is good if: The geometric-mean of each
(non-void) finite subset of G is an integer.

12 Which posints N admit a good-set of cardinal-
ity N? (Such an N is also called good.)

7i: Is there an infinite good set? O

Challenging misc. Problems

Page 83 of

108.1: ??Heart—isomorphism. The f(z) := 2% map,
from R—R,, is a group-isomorphism from (R, +,0)
onto (R, -, 1). More than a group, the reals form a
ring. So f carries this ring

(Ra +707 *H 1)
(R+*'ﬂlﬂ pr /O)a

to a ring,

where © is a binary operation on Ry, and @ is an
element of R .

What is @ 7 And what is the © binop? What does
508 equal? O

SOL\VESZ James [Matt] B., 2020t.
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King’s bad proofs

Here are problems where I did not find an elegant soln,
and hope some student can find a more elegant one.

To a man who has only a hammer, every problem
looks like a nail. —Mark‘fwain (paraphrased)

109.1: ??Non-negative polynomial. On R3, prove that
fr flx,y,2) = 254 oty + 2%yt — 322222

is non-negative. %

‘SOL\EQZ Junhao Z. & Hani S., 2021t. Jeremy G. & Emily Y., 2022g.

Student-created conundra

Can you solve your colleagues’ challenges?

Notation. For sets U A C R, say “U avoids A”,
written Ux A, if:  Vz,y € U x4y ¢ A.

110: ???Sam's Avoidance Problem. Does there exist
an uncountable U with UxQ? Prove or give CEX.{
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Cardinality problems

111.1: 7 ?infinite hats.  An infinite set, P, of peo-
ple, play a game; they either all win, or all lose. At
midnight, a white hat or a red hat will appear (Star
Trek transporter?) on each person’s head. FEach sees
the color of everyone else’s hat, but he cannot see his
own hat. Simultaneously, each yells out a guess of his
hat-color.

RESULT: If coly many are incorrect, then the team
loses. If only finitely-many are wrong, then the team
wins.

THE PROBLEM: They are told the rules in advance.
Either prove there is a method for them to win, or else
prove that there is no such method. O

Temporary addition to SeLoNotes:

Cardinality problems

Page 85 of

A denumerable set P = {p1, p2, ps,...} of people
play a game; they either all win, or all lose. At mid-
night, a White hat or a Red hat magically appears on
each person’s head. Each sees the color of everyone
else’s hat, but he cannot see his own hat. Simultane-
ously, each yells out a guess of his hat-color.
NotaTioN: With W:=White, R:=Red, and color-set C:={W, R},

the Color-maps set is C¥. For color-map f € C¥, value f(n)
is color of hat that f puts on p,.

Use W:=R and R:=W.
Let /1" be the color-map h which: Has h(N) = f(N), and
has h(k)=f (k) for each k € P~{N}.

Use A(n, f) for the color p, Announces (his “guess”) for his
hat-color, when the actual color-map is f. The condition that
an announcing scheme A can not have a person’s guess depend
on his hat-color, is this:

For each n€P and each feCF, the scheme has

B A, 1) = A, f).

Every announcing-scheme A you use must satisfy (f). You may
use the AX1om OoF CHOICE in any of your arguments.

If coly many are incorrect, then the team loses.
If only finitely-many are wrong, then the team wins.

Prove there is a method for the team to always win.
You may use the Axiom of Choice: Suppose J is a collection
of non-void sets.

mapping JF into |J A st. C(A) € A, for each A € F.
AeF

Then there exists a choice function C

The rules have changed. Now, the team wins
only if no more than 50 people guess wrong.

Prove there no method guaranteeing a win. |Hint:
Given a guessing scheme A, can you use PHP to show there is

coloring f causing more than 50 people to guess Wrong.]

A kind of converse to (ii): For each posint N:
Prove 3 scheme Ay so that for each color-map f, at
most [%] among {p1,p2,...,pn} guess wrong. [NB: P
is still mﬁmte.]
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Difficulties mastered are opportunities won.
—Winston Churchill
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§A Appendix: Notation

Number Sets. Expression k € N [read as “k is an
element of N” or “k in N”] means that & is a natural num-
ber; a natnum. Expression N 3 £ [read as “N owns k|
is a synonym for k£ € N.

N = natural numbers = {0,1,2,...}.

Z = integers = {...,—2,—1,0,1,...}. For the set
{1,2,3,...} of positive integers, the posints, use Z.
Use Z_ for the negative integers, the negints.

Q = rationalnumbers = {¥ | p € Zand g € Z, }.
Use Q4 for the positive rationals and Q_ for the neg-
ative rationals.

R = reals. The posreals R, and the negreals R_.

C = complex numbers, also called the complezxes.

For weC, let “w > 5” mean “w is real and w > 5”.
[Use the same convention for >, <, <, and also if 5 is replaced
by any real number.]

Use R = [-00,+00] := {-o0} URU{+c0}, the ez-
tended reals.

An “interval of integers” [b .. ¢) means the inter-
section [b, ¢) N Z; ditto for open and closed intervals.
So [e..2mw] = {3,4,5,6} = [3..6] = (2..6]. We allow
band ¢ tobe + 00;s0 (-00..-1]isZ_. And [-o00..-1],

is {~oo} UZ_.

Floor  function: |7] =3, |- | = 4.
Ceiling fnc: [mw] = 4. Absolute value: |-6] =6 = |6]
and |-5 + 2i| = v/29.

Mathematical objects. Seq: ‘sequence’.
poly(s): ‘polynomial(s)’. irred: ‘irreducible’.  Coeff:

‘coefficient’ and var(s): ‘variable(s) and parm(s): ‘pa-
rameter(s)’. Fnc: ‘function’ (so
ratfnc: means rational function, a ratio of polynomials). trnfn:
‘transformation’.  cty: ‘continuity’. cts: ‘continuous’.
diff'able: ‘differentiable’.  CoV: ‘Change-of-Variable'.
Col: ‘Constant of Integration’. Lol: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop'n: ‘Propo-
sition’. CEX: ‘Counterexample’. eqn: ‘equation’.
RhS: ‘RightHand side’ of an eqn or inequality. LhS:
‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the
sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as
in “a fixed-pt of a map”.

Expr.: ‘expression’.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.
FTC: ‘Fund. Thm of Calculus’. INVT: ‘intermediate-
Value Thm’. MVT: ‘Mean-Value Thm'.

A APPENDIX: NOTATION

Page 87 of

The logarithm function, defined for >0, is

048 1 y
log(x) == / ('1'[ .
J1 4

For 2>0, then, exp(log(z)) = = = €!°¢(®). For real ¢,
naturally, log(exp(t)) = t = log(e").

Its inverse-fnc is exp().

PolyExp: ‘Polynomial-times-exponential’,  e.g,
[3 4 t2]-e*t.  PolyExp-sum: ‘Sum of polyexps’. E.g,
f(t) = 3te? + [t?]-e’ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality'.
IFF: “if and only if.  TFAE: ‘The following are equiv-
alent’. ITOf: ‘In Terms OFf. OTForm: ‘of the
form’.  FTSOC: ‘For the sake of contradiction’. And
3% —“Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that'.

Latin: e.g: exempli gratia, ‘for example’. i.e: id
est, ‘that is’. N.B: Nota bene, ‘Note well. interalia:
‘among other things’. QED: quod erat demonstrandum,
meaning “end of proof”.

Prefix nv- means ‘non-void’, e.g “the cartesian prod-
uct of two nv-sets is non-void”. Prefix nt- means ‘non-
trivial’, e.g “the (positive) nt-divisors of 14 are 2,7, 14,
whereas the proper divisors are 1,2, 7.

Operations on Sets. Use € for “is an element of”.
E.g, letting P be the set of primes, then, 5 € P yet
6 ¢ P. Changing the emphasis, P 2 5 [“P owns 57| yet
P#6 [“]P’ does-not-own 6”]

For subsets A and B of the same space, (), the
inclusion relation A C B means:

Yw € A, necessarily B > w.

And this can be written B O A. Use A & B for proper
inclusion, i.e, A C B yet A # B.

The difference set BN Ais {w € B|w ¢ A}. Em-
ploy A€ for the complement )~ A. Use A /A B for
symmetric difference (A~ B|U[B ~ A|. Further-
more

AWB, Sets A & B haye at least one point in
common; they intersect.
AN B ’ The sets have no common point; dis-

joint.

The symbol “ A el B” both asserts intersection and rep-
resents the set AN B. For a collection C = {E;}; of
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sets in (), let the disjoint union | |; F; or [ |(C) rep-
resent the union (J; £ and also asserts that the sets
are pairwise disjoint.

On a set €2, each subset B C €2 engenders 15, the
“indicator function of B”. It is the fnc Q—{0, 1}
sending points in B to 1, and pts in its complement,
B¢ :=Q~B, to 0. [So 1 +1pc is constant—l.] E.g,
1Primes(5):1 and ]-Primes(g):o-

Seqgs. A sequence & abbreviates (zg, 1,72, x3,...).
For a set Q, expression “ « C ()” means [Vn: z,, € Q.
Use Taily () for the subsequence

(JL‘N, ITN+1, TN+2;- --)

of . Given a fnc f:Q2—A and an (2-sequence &, let
f(Z) be the A-sequence (f(z1), f(x2), f(x2),.-.)-

Suppose €2 has an addition and multiplication. For
Q-seqs & and 9, then, let & + ¥ be the sequence whose
n*® member is z,, + y,,. Le

—

ij‘er = [n'_)[$n+yn]]

Similarly, @ -y denotes seq [n — [z, yy]].

A APPENDIX:

NOTATION

Page 88 of

Why did the chicken cross
the Mobius strip?
To get to the same side.

I dream of a better world where chickens can cross
the road without having their motives questioned.
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§B Binomials & Friends

Bi/Multi-nomial coeffs.

to mean “n factorial”; the product of all posints <n.

So3!=3:-2-1=6 and 5! =120. Also 0! =1 =1
For natnum B and arb. complex number «, define

For a natnum n, use “n!”

Rising Fctrl: [o1B] =afa+1]-[a+2]-- [a+[B-1]],

Falling Fctrl: [o|B] =a[a—1]-[a—2] - [a—[B-1]].

E.g, [BLB] = B! =[11B]. Two further examples,

Fl4ﬂ:%§igf?mmm¢ﬂ:1n~4:o

In particular, for n € N: If B> n then [n | B] = 0.

We pronouce [5 ] B] as “5 falling-factorial B”.

Binomial. The binomial coefficient (3), read
“7 choose 3”, means the number of ways of choosing
3 objects from T distinguishable objects. Emphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as (574) [Read
as “7 choose 3—(:0111111;1—4.”] Evidently

iy N\ withk=N—; ( N\ N [N]j]
T\ g k) gtk gt

Note ((7)> = <o,77) =L

says

Finally, the Binomial theorem

£ [z +yN =

Z (j',\lk) Tyt

j+k=N
where (j, k) ranges over all ordered pairs of natural

numbers with sum N.

For natnum N, binomials satisfy this addition law:

Pick last object. Avoid last object.
——

f) - @ - @)

Extending this to all BEZ forces:

NY 0
B - )
Ny [NJB]

Case B>N is automatic in formula (g

when B > N
or B negative.

B BINOMIALS & FRIENDS

Page 89 of

Multinomial. In general, for natural numbers
N==Fk +...+kp, the multinomial coefficient
(A:|.A'»;'.\I.,..A-p) is the number of ways of partitioning

N objects, by putting k; objects in pocket-one, ko
objects in pocket-two, ...putting kp objects in the
P pocket. Easily

: N B N!
' ki ko, ... kp) Kl kal-... kp!

Unsurprisingly, [1+. . .+2p]" equals the sum of terms

c N copi kL k2 kP
£L£: (kl,...,kp) il i) xTrp y

taken over all natnum-tuples k=(ky, . . ., kp) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum Sy = ki1 + ko + ...+ kp. Then
multinomial LhS(}) equals this product of binomials:

(2)(“ ;251)('\' ;352> L (N —kfp—1>.

[The last term is (i;) note 1]
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112.1: Geo-power Lemma. FEach posint L and every
complex |u| < 1 satisfies

1 = (n+L—-1 n
L% 1= ul _Z<n L—1>'“' v
n=0
E.g. Whenever |u| < 1: For L = 2, we have

1 o0

[1—u? = (" u =1+ 2u+ 3u’+ duP+ Sut+ .

n=0

Similarly, 1/[1 — u]® equals

o0
S (3" = 1+ 3u+ 6u2 + 1003 + 15ut+... O
n=0

Proof. The L=1 case simply says

; = 14+u+u?+ud+. ..
1—u ’

summing a convergent geometric-series. Inducting

on L, we show (i) = (f.41) by applying 7-§;
to (t741). For the lefthand-side,

1d 1 L !
7 - LhS(f,) = A ) = [T — w]E+t

Term-by-term diff’ing gives

1 d 1 & (k+L—-1 -
~." Rh _ . k
T aeSte) =7 k; (k L—1> b

n = k-1 > n+1<n+1+L—1> "

= L n+1, L—1
Conveniently,
n+1 n + L _ (n+L
L n+l, L-1) \n, L)’
Thus
1 1 d
———— = ——VLh
[1 — wu]btl L du S(fz)
1 d = (n+L
= —_—— h = - 1 e .
L duR S(fz) nz::() <n./ L) !
Happily, this is the desired (7). ¢
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Calculus applications

Bi/Multi-nomials appear in differentiation formulas.

113a: Product Rule.  For natnum N, and N-times
differentiable functions f and g:

w g™ = 3 (M) r9g®,

j+k=N

where (j, k) ranges over all ordered pairs of natural
numbers with sum N. O

E.g: [}‘q]( ) _ fg(4) + 4f(1)g(3) + 6f(2>g(2) + 4]&(5)‘(](1) + f<4>,(].

113b: Lemma. For posints N, J, K with J+ K = N+1,

¥: (le\{ K) + (J, %71) = (]}Hlb Y

Proof. The LhS(¥) equals

g, M + N K _  [J+K]-N!

J [T-1'K! JE—1 'K~ JTKT 0
which equals RhS(¥). ¢
Pt of (113a)). At N=0, our (%) says fg = fg; a

tautology. Fixing N for which (%) holds, note [f -

9] equals 5 (73) [£2)- 9], which equals

A B

Z (ﬁc) f(j+1)g(k) + Z (J?’Vk) f(j)g(kﬂ)‘

j+k=N Jj+k=N

Letting J := j+1 and K =k, rewrite A as

t: A = Z (J_JX R f(J)g(K)'

J+K =N+1,
J>1

Similarly, with K := k41 and J := j, rewrite B as

i B = Z

J+K =N+1,
K>1

(‘L g_l) ) f(J)g(K) ]

Separating out the A =0 term from (f) and the J=0
term from (), says that A+ B equals

(W) FVHIGO g ([N FOG+D

N,
+ ) {(J—jl\i ®)+( %_1)}  fgE)
J+K = N+1,
JK>1

Calculus applications
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Use the lemma, (¥), to rewrite the summand. Thus
A+ B equals

FOHDGO) 4 fOGINHL) SN (N ()

J+K =N+1,
JK>1

And this equals > (NJ?;) - fD gk ag desired. ¢
jrk=N+1 7

Larger product. Given a tuple J = (ji,...,jp) of
natnums, let ¥J == j; +--- 4+ jp. With N = 1J,
let (]} ) mean Tultinomial coeff (jl,jQJ,Y _.7jp). Finally,
given a tuple f := (f1,..., fp) of differentiable fncs,
e

let f( ) abbreviate this product of derivatives:

2(J) ‘ j

f - fl(Jl) X f2(]2) .

(JP)
L f9P)
[When tuple J is used this way, it is called a multi—indea:.]

113c: Gen. Product Rule. Fix natnum N,
posint P, and N-times differentiable functions,

f = (f17 000 fP) Then

Vp: [f1- -'fP](N) =

Proof. Eqn (V1) asserts tautology fl(N) = fl(N). We
proceed by induction on P. Fixing P such that (Vp),
we now establish (Vpy1).

Fix P41 fncs f1,..., fp,g,andlet & := f1 - ... fp.
Then [fi-...-fp-g]" is [®-g]" . By (%), it equals

dls T (M) -0 g
sth=N

where (s, k) ranges over all natnum-pairs with sum N.
Courtesy (Vp), our () equals

~(J
Z (j)f( ), where J = (j1,...,jp).
J:+J=s
Plugging this in to (x1) gives

2: ST (&G-F g

s+k=N"-J: 4 =5
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But product (st) (5) equals multinomial (

Renaming k to jpy1, and g to fpyi1, writes (x2) as

N (1) (Gp) pGps1)
Z (jl»...,jP—H) SRR A S

Jji+..t+ipt+ip+1
=N

which indeed is RhS of (Vp1). ¢

Deriv(product). Consider f(t):=3!, g(t):=sin(5t)
and h(t) = €. The 6*P-derivative, [f-g-h](®, is a sum
of terms. What is the coeff of the f”-¢ -h"" term?

Soln. By the generalized product rule, (113c)), the
coefficient of f(¢(MpB) s

6 note 6 4 3 6- 4
(21) = G)G)E) = 5r 3 -0

Continuing, note:

ot

—_

@ = [log(3)]%-f; ,(1(1)(75) = 5cos(bt); h®) = 73.h.
So one summand in the sum forming [f-g-h]®, is

60 -log(3)* - 5- 7% - [3" - cos(5t) - €] . ¢
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Number Theory

Use =y to mean “congruent mod N”. Let n L k
mean that n and k are co-prime [no prime in common]|.

Use k o n for “k divides n”. Its negation k $n
means “k does not divide n.” Use nfo k and n}k
for “n is/is-not a multiple of k.” Finally, for p a prime
and E a natnum: Use double-verticals, p” d| n, to
mean that E is the highest power of p which di-
vides n. Or write n o p” to emphasize that this is an
assertion about n. [E.g, 2° ¢ 40 since 8 ¢ 40 yet 16 $40.]

Use PoT for Power of Two and PoP for Power of
(a) Prime.

Euler ¢. For N a posint, use ®(N) or &y
for the set {r € [1.N]|rLN}. The cardinality
p(N) = |Dy/| is the Buler phi function. [So p(N) is
the cardinality of the multiplicative group, ®x, in the Zx ring.]
Easily, ¢(p”) = [p—1]-p"~!, for prime p and posint L.
Less easily, when K | N, then (K N) = @ (K)-(N)

Use EFT for the Euler-Fermat Thm, which says:
Suppose that integers b | N, with N positive. Then
bPWV) =y 1.
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§C Polynomials

Use poly for “polynomial”. An integer-coefficient poly
is a Z-poly or an intpoly. With rational coefls, it is
a Q-poly or ratpoly. An F-poly has its coeffs come
from a field F. (A commutative ring is ok too).

The poly Zip has all of its coefficients zero. Say
that a poly is b-topped if its degree is strictly less
than 5. Over a field F, the set of (single variable) N-
topped polys forms an N -dimensional vectorspace.

(See also Prof.King’s Primer on Polynomials)

Discriminant. The discriminant of quadratic
[i.e, A#0] polynomial ¢(z) := Az%2 + Bz + C is

B? — 4AC.

i[—B + y/Discr(g) | -

Hence when A,B,C" are real, then the zeros of ¢ form
a complex-conjugate pair. And ¢ has a repeated root
IFF Discr(q) is zero.

114.1:  Discr(q) =

The zeros [“roots”| of ¢ are

114.2:  Roots(q) =

A monic R-irreducible quadratic has form

114.3: g(z) = 22 -Sz2+P = [z—Z] - [z - Z],

where Z € C\R. Note S = Z + Z = 2Re(Z) is the
Sum of the roots. And P = Z - Z = |Z|* is the Prod-
uct of the roots. The ¢ discriminant, Discr(g), equals

1144:  S?—4p2 (7 -7 = —4[Im(2))°.
Completing-the-square yields
114.5: q(x) = [x = %}2 + FQ, where F':= |Im(Z)|,

which is easily checked. [Exercise]

C POLYNOMIALS
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115: List lemma.  Fix h, a Z-poly [“intpoly”, a polyno-
mial with integer coef'fs]. Then for each two integers k.¢,
difference k — ¢ divides h(k) — h(k).  Pf. Exercise.{

116: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic C-polynomial

g(t) = tN +By_1t" 1+ .. + Bit+ By.
Then g factors completely over C as
g(t) = [t—Zl]'[t—ZQ]-...-[t—ZN],

for a list Zy1,...,Zn € C, possibly with repetitions.
This list is unique up to reordering.

If g is a real polynomial, i.e g = g, then g fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering.

Proof. A proof-sketch is in|Primer on Polynomials
on my [Teaching page.Also: A proof-sketch is in Primer on
Polynomials on my Teaching page. %
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Summation polynomials. Fnc f on N has sum-
mation function

117a: vy = Y

¢€[0.. N)

If f is a polynomial of degree L € N, then f is a poly-
nomial of degree L+1.

To see this, define the L™ binomial polynomial,

for LEN, b
Y zlx—1]- [z —2] - [z — [L-1]]

117b: Br(x) = 7 ,

which we may also write as (;) = [ziL] Uﬂ Rewrite the

binomial identity (LL) = (Zji) + (”Zl) a
("2 = (1) = (51 SoBr(N) equals
N . N . N ;
Z ("2 = Z{ L+1 Z+1)} = (141) — (L+1)'
n=1 n=1

This last equals By 1(N), since (Lil> =0 [because
L+1is positive]. Hence

117c: B, = Brii.

The binomial polys {B/}7° , form a basis for the
vectorspace of polys. Since the [ +— }‘A map is lin-
ear, we can compute the summation-poly of arbitrary
polynomials. [AsipE: Stronger, collection {B.}7%, is a
Z-basis for the set of Z-valued polynomials (the “valiant” polys);

however, this fact isn’t obvious.]

Low-degree summations. Here we go!:

N[N+1] N?*+N

2434+ 5 5

PP oo d P =

6 a 6

P4+2d433 4. 4N = [

2 4

_ N[N +1][2N + 1][3N? + 3N — 1]
30
6N° + 15N* + 10N> — N
30 :

_ [NIN+1)]*-[2N? + 2N - 1]
12
2N6 + 6N° + 5N* — N?
12 :

Letting pz(z) := % the above LhS are p7(N+1).
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§D Theorem Grabbag

We start with just a touch of LINEAR ALGEBRA.

Defn. A linear combination of two vectors ¥, is
a sum of form av + fw where a,f are scalars.
[Abbr: linear-comb, lincomb.| A lincomb of a list

U1,...,UyN is a sum of form ZJN:1 a;U;

An integer-lincomb (or Z-lincomb) means that
each scalar o is an integer. O
118: Lemma. A common divisor d of integer-

list Ky,...,Ky divides every integer-lincomb of the
list. In particular, GCD(Ky,...,Ky) divides every
integer-lincomb.  Proof. Exercise. O
Application. Evidently 302 | 201 since

[2-302] — [3-201] = 1.

[Thus each common divisor of 302 and 201 divides 1.] OJ

119: Bézout's lemma. FEach N-tuple

(Ki,...,KNn) of integers admits a Bézout
tuple: A tuple (s1,...,8n); of integers s.t
YN [sK;] = GCD(K1, ..., Ky). O
Convexity. In Vi=RY, or any R-vectorspace, it is

possible to define the line segment between two
points p,r € V:

t: Seg(p,r) = {.’Cp + [1—zr ) 0<z< 1}.

A subset Q@ C V is convex if € is sealed under
line-segment, ie,

i VpreQ: Seg(p,r) C Q.

A point q € €2 is an “interior point of Q2 in V” if
there exists a radius £>0 s.t ball Bal.(q) C €; here

x:  Bal.(q) = {ueV]|Dist(u,q)<e}.

Finally, Q is strictly convex if for each p#r in €2,
each point q which is interior to Seg(p,r) is interior
to Q, i.e,

When 0<z<1, then zp+ [l —z|r is
an interior point of  in V.

i

D THEOREM GRABBAG
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Functions. Below, Vis R or RY [or any R-vector-
space|]. The graph of a function f:V—R is the set of
points (u, f(u)), for ue V. So the graph is a subset of
vectorspace VxR. Define the set of point above and
below this graph, as

_|_
Gy

{(u.9) [ueV & yeR & y> f(w)};
Gy = {(u,y) ‘ ueV & yeR & ygf(u)}.

Fnc f is (strictly) convez-up if GJZF is a (strictly)
convex set. And f is (strictly) convez-down if G
18 (strictly) convex. [The older terms for convex-down and

convex-up were “concave fnc” and “convex fnc”.]

If f is defined on only a subset 2 C V, i.e f:Q—R,
these definitions still apply as long as €) is a convex
subset of V.

122: Jensen's inequality. On an interval J C R,
consider points @)y € J, for each v in a countable
indexing-set C. We have a probability-distr P() on C.
Then for each convex-down fnc L: J—R

L(YP™)-Qv) > S PW)-L(Q).

velC vel

122a:

Now suppose L is strictly convex-down. Then:
Equality in (122a)) IFF the probability-distr

122b: . .
is concentrated on a single point.

IOWords, having removed all zero-probability ele-
ments from C, the map v — Q) is constant.

Proof. Exercise. [Or' see picture on blackboard.] O

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King D THEOREM GRABBAG Page 97 of

Misc. tools.

123: Prime-binomial Lem. Fix a prime p. Then each
ke(0..p) satisfies (f) =, 0. ILe, (F) o p. O

See|Pascal’s triangle, rows2,3,5,7.

Pf. Our k > 1,s0 pe [pl k], the falling factorial.
And p does not divide k!, since £ < p. Hence p

divides () 2 [p 4 k]/k!. ¢

Here is an application.

123a: Lemma. Forx,y integers, [x+ylP = 2P + yP. O

k=0

: p
Pf. Well, [x + y|P Biothm > (P)-z*yP~F, which equals

p—1
_ by (123)
a:p—i-yp—i-Z(Z) -ghyPk 2400 2P +yP+0. ¢

k=1
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Prelim.  Suppose a finite group G acts on a finite
set ). The stabilizer Stabg(s) of a point s € Q) is
{g € G| g(s) =s}. So the G-orbit of s corresponds
1-to-1 with the (left-)cosets of subgroup Stabeg(s). In
particular

*: |Orbit(s)| divides |G|.

This is part of the Orbit-Stabilizer thm.

For natnums A>w, recollect that binomial coeffi-
cient (Y) is zero. Recall also that (8) = 1. O

124.1: Lucas's binomial thm. Express natnums U,L in
base p, where p is prime, as

U = vepX + ko P+ vap? +uip + v

and

L= AP+ AP Xop? + Aip + Ao,

where each v,,,\,, € [0..p). Then we have mod-p con-
gruence

= (@=1k)

[Mnemonic: U for Upper number, L for Lower.| O

D THEOREM GRABBAG
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Proof (From Wikipedia). ~Fix a set, B, of cardinality /.
Partition B into v,, many cycles of length p™. This
product of cyclic groups,

G = CPK XCpK—l X... X CpXC1

acts on B by rotating the cycles.

Consequently, G acts on (2, the collection of size-L
subsets of B. Since |G| =T["_,p" is a power of
prime p, each G-orbit has size a power of p, cour-
tesy (*). Thus

& (%) fote Q| =, |[{Set of G-fixed-points}|.
Our goal is now RhS(1) = RhS(1).

Fixed-pts. A size-L subset SCB is G-invariant IFF
S is a union of some of the cycles comprising B.

First suppose there is such a fixed-pt, S. Let ay,
be the number length-p™ cycles that it fills. As B
only has v,, many p"-cycles, necessarily a,, < v, < p.
The uniqueness of base-p representations now asserts
that each , since YK_j a,,p" = |S| = L.
Consequently each , and the number of such
fixed-points is precisely RhS(f). Conversely, if each
A, < wv,, then there are fixed-pts.

Finally, having no G-fixed-pts corresponds to
An, > v, for some index n, whence RhS(f) is zero. 4
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AM-GM. The arithmetic and geometric means

of a list é := (c1,...,cn) of non-negative numbers,
are
AM(@) :w GM(@) = e en.

[The AM is well-defined in those rings where every sum
OTForm 1+1+...+1 hasa reciproval.] L]

125.1: AM-GM inequality. For non-negative list ¢,

cl1+...+cN >
N 2

Ncl-...-cN

with equality IFF ¢y =cy=...=cpn. O

Pf N<2. Cases N = 0,1 are trivial. For N=2, note

Vay <5t L ey < iy & 0< [o—y% ¢

since™) z,y > 0.

Pf N>2. Fix §>0. The simplex, A, of non-neg N-
tuples with > (¢) =5, is compact. Hence [](€) attains
a maximum at, say, €. Were € non-constant, then
WLOG e; # e2. Thus §>0, so each e; > 0. Among
non-neg pairs (¢1,cz) whose sum equals ej+ey, prod-
uct c¢j-co is uniquely maximized when ¢; = co. This
contradicts that pair (e1, e2) gave maximum product

[here7 we are using that product H7\:; e; is positive.] ¢

Filename: Problems/Misc/induction-SELO- jk.latex



Prof. JLF King Reciprocal tables in Z, Page 100 Of

Reciprocal tables in Z, MULTIPLICATION
RECIPROCALS 71 2 3
S P,
1/2 2| -3
Modulo 2: x < /L>2 3| -1 2
1 1
z | (1/z)3
o =2 | NS 111 2 3 4 5
Modulo 3: T T I
21 4
z | (I/z)s | = | (L/z)s S
Modulo 5: 41 -3 1 5
+1 +1 +2 =) T I
z | Iz || = | (1/x)7
Modulo 7: +1 +1 _f:_%_:___?___?___A_L___?___(_S_
+2 F3 +3 F2 2| 4
31 6 -4
1 1 4| -5 -1 3
gftapetom g
: 61 -1 5 -2 4 -3
Modulo 11: Lo - m i3
+3 +4 +5 F2 171 2 3 4 5 6 7 8
N
z | (Iahs || @ | (1/a)13 21 4
+1 +1 +4 ===y 31 6 -8
Modulo 13: 4] 8 -5 -1
= i = i 5| -7 -2 3 8
+3 F4 +6 F2 61 -5 1 7 -4 2
71 -3 4 -6 1 8 -2
z | (1/z)17 || = | (1/z)17 81 -1 7 -2 -3 5 -4

+1 =5 +5 +7
Modulo 17: =42 F8 +6 +3 19
=3 +6 S= +5 T

|
|
2 | 4
+4 F4 +8 F2 3] 6 9
4] 8 -7 -3
z | (1/x)o || = | (1/2)19 51 -9 -4 1 6
+1 +1 61 -7 -1 5 -8 -2
71 -5 2 9 -3 4 -8
Modulo 19: = +9 +6 +3 8| -3 5 6 2 -9 -1 7
+3 T6 +7 +3 9] -1 8 -2 7 -3 6 -4 5

+4 +5 +8 F7

+5 +4 +9 T2 23] 2 3 4 5 6 7 8 9 10 11
S

z | (z)s || = | (1/x)os 21 4

=L £ I g

42| FI11 | £7 | +10 S0 s s o

Modulo 23: 43 +8 +8 +3 6] -11 -5 1 7 -10

+4 +6 +9 F5 71 -9 -2 5-11 -4 3

£5 | F9 || 10| &7 L0 - - R

+6 +4 +11 F2 101 -3 7 -6 4 -9 1 11 -2 8
1] -1 10 -2 9 -3 8 -4 7 -5 6
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§E  Rings

Semigroups & Monoids. A semigroup is a pair

(S,e), where e is an associative binary operation

[binop| on set S. A special case is a monoid. It

is a triple (S,e,€e), where e is an associative binop

on S, and e € S is a two-sided identity elt.
Axiomatically:

G1: Binop e is assoctative, i.e Va,5,y € S, necessar-
ily [@ef]ley = ae[Sen].

G2: Elt e is a two-sided tidentity element, i.e
Va e S: aee=a and ee a = q.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element:
Vo, J6 such that e 5 =e and fea = e.

When the binop is ‘4’, addition, then write the
inverse of v as —~« and call it “negative o”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of a as ot and call it the “reciprocal of o> We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes af for cef.

For an abstract binop ‘e’, we often write o' for the
inverse of a [“av inverse”|, and omit the binop-symbol.
If e is commutative [Va,B3, necessarily a o 3 = 3 e o then

we call S a commutative group.

Rings/Fields. A ring is a five-tuple (', +,0,,1)
with these axioms.

R1: Elements 0 and 1 are distinct; 0 # 1.

R2: Triple (F, =+, O) is a commutative group.

R3: Triple (I‘, ., 1) is monoid.

R4: Mult. distributes-over addition from the left,
afz +y] = [azx] + [ay], and from the right,
[z + yla = [za] + [ya]; this, for all a,z,y € T

Our I' is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When T' is commutative: Say that « e ( [« divides
Bl if there exists p € T’ s.t ap = B. This is the same
relation as 3 k « [ﬂ is a multiple of a].

E RINGS
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Zero-divisors. Fix a € T'. Elt g € T is a “(two-
sided) anmnihilator of o” if af =0 = fa. An « is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0-1 = 0 = 1.0, and

1 # 0. We write the set of I'-zero-divisors as

ZDr or ZD(T).

[E.g: In the Zi5 ring, note 9 # 0 and 10 # 0, yet 9-10 is = 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

Ana el isal-unit if 36 €T st. af = 1 = fa.
Use Ur or U(D)

for the units group. In the special case when I' is Z,
I will write @5 for its units group, to emphasize the
relation with the Euler-phi fnc, since (V) = |®y]|.
[Some texts use U(N) for the Zy units group.|

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
7Dr = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F in which every non-zero element
is a unit [i.e U(F) = F~.{0}] is a field. That is to say, F
is a commRing where triple (F~.{0}, -, 1) is a group.

Erxamples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z19 comprise
{£2,£3,+4,6}.

In Z the units are +1. But in Zjo, the ring of in-
tegers mod-12, the set of units, ®(12), is {£1,£5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {£1,£i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Zi2) is not cyclic. For which N is
®(N) cyclic?] O
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Irreducibles, Primes. Consider (T',+,0,-,1), a
commutative rinﬂ An elt o € I is a zero-divisor
[abbrev ZD| if there exists a non-zero 5 € I' st. aff = 0.

In contrast, an element v € [' is a unet if Jw € I’
st. ww = 1. This w, written as v !, is called the

reciprocal [or multiplicative—inverse] of w. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer la: If o divides a unit, o ¢ u, then « is a unit.

Exer 1b: If v o z with z € ZD, then ~ is a zero-divisor.

Exer 2: In an arbitrary ring I', the set ZD(T) is disjoint from
Units(T).

An element p € T is:

12 I'-irreducible if p is a non-unit, non-ZD, such
that for each I'-factorization p = x-y, either = or
y is a I'-unit. [Restating, using the definition below:
Either z~1,yxp, or z~=p, y%l.]

75: I'-prime if p is a non-unit, non-ZD, such that for
each pair c,d € I": If p ¢ [c- d] then either p ¢ c
or ped.

Associates. In a commutative ring, elts o and (8
are assoctates, written « ~ [, if there exists a
unit u st. = uc. [For emphasis, we might say strong
associates.| They are weak-associates, written
a~B,if ad B and ale [i.e, a€ plland B € aF].

Ex 3: Prove Assoc = weak-Assoc.

Ex4: If o ~ 8 and « ¢ 7D, then «, 8 are (strong) associates.

Ex5: In Zio, zero-divisors 2,4 are weak-associates. [This,
since 2-2 = 4 and 4-3=12 = 2.]

Ex 6: With d ¢ a, prove: If a is a non-ZD, then d is a non-ZD.

And: If « is a unit, then d is a unit.

Are 2,4 (strong) associates?

126: Lemma. 1In a commRinﬂ I', each prime « is
irreducible. O

Proof. Consider factorization @ = zy. Since « ¢ zy,
WLOG « ¢ z, i.e 3¢ with aec = . Hence

*: a = Yy =aoacy.

By defn, a ¢ ZD. We may thus cancel in (%), yielding
1 =cy. So y is a unit. ¢

“TMore generally, a commutative monoid.

E RINGS
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There are ring with irreducible elements p which
are nonetheless not prime. However. ..

127: Lemma. Suppose commRing ' satisfies
the Bézout condition, that each GCD is a linear-
combination. Then each irreducible « is prime. %

Pf. Suppose « ¢ c:d.  WLOG « fc.  Let

g = GCD(a,c). Were g ~ a, then v ¢ g ¢ ¢, a con-

tradiction. Thus, since « is irreducible, our ¢ ~ 1.
Bézout produces S, 1" € I' with

Hence

1 = Sa+Tec.
%2 d = Sad+Ted = Sdao+Ted.

By hyp, « ¢ cd, hence a divides RhS(x). So o o d.4

128: Lemma. In commRing T, if prime p divides
product o - - - i then p o o for some j. [Exer. 7] O

129: Prime-uniqueness thm. In commRing I", suppose
P1-P2'P3- Pk = 91°92:q3---qL

are equal products-of-primes. Then [ = K and, after
permuting the p primes, each p; ~ q;. O

Pf. [From Ex.4, previously, for non-ZD, relations ~ and =~ are
the same.] For notational simplicity, we do this in Z,
in which case p;, ~ g; will be replaced by p;, = q;..
FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L>1. Thus
K>1. [Otherwise, q; divides a unit, forcing q, to be a
unit; see Ex.1a.] By the preceding lemma, q; divides
some pi; WLOG q; o pir. Thus q; = py [since py
is prime and q, is not a unit]. Cancelling now gives
P1-P2 - Pr—1=41°q2 " qr_1, giving a CEX with a
smaller [x—1+[—1 sum. ¢

“8Consider the ring, T', of polys with coefficients in Zis.
There, 2° — 1 factors as [z — 5[z + 5] and as [z — 1]z + 1].
Thus none of the four linear terms is prime. Yet each is I'-
irreducible. (Why?) This ring I" has zero-divisors (yuck!),
but there are natural subrings of C where Irred# Prime.
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Example where ~ # ~. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let ©Q be the ring of real-valued continuous fncs
on [-2,2]. Define £,D € Q by: Fort > 0:

£(t) = D(t) = {t—l ifte[l,Q]}.

0 if t € [0,1]

E(t) = E(+t) and D(t) = —D(~t).

[So € is an Even fnc; D is odD.| Note £ = fD and D = [€,

where
1 iftell, 2]

ft) =t iftel[1,1]
-1 ift e [-2,-1]

Hence & ~ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [-2,2] ~ {0}. Cty of g then forces g = 0.

Could there be a unit u € Q with uD = 7 Well

u(2) = 5 B2+, and u(-2) = g BE1

Cty of u() forces u to be zero somewhere on inter-
val (-2,2), hence u is not a unit. O

Addendum. By Ex.4, both £ and D must be zero-
divisors. [Exer.& Exhibit a function gef2, not the zero-fnc,

such that £-g = 0] L]
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§F C-exp-cos-sin

The algebraic structure of R can be consistently ex-
tended to a larger field, by adjoining a sqroot of
negative 1. This is conventionally@ called i, so
2 — -1 = [-]?. Extending R by i produces field

C = {21 + yi | where x and y are real} .

[[’ve written x1 + yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2+ 3i, not 2-1 + 3i.]

A geometric picture of C, with the real azis hor-
izontal, and the #maginary axis vertical, is called
the Argand plane or the complex plane.

Write real-part and imaginary-part extractors
as, e.g, for z = 2 — 3i, give

Re(z) =2 and Im(z)=-3
since z = 2-1 + [-3]-i. The absolute-value or mod-
ulus of z is its distance to the origin; so

= V/Re(z)? + Im(2)?

[Here, |2 — 3i| = 4+ 9 = V13.] The complex conju-
gate of this z is Z = 2+ 3i. For a general w = x + yi
with z,y€R, observe that

Re(w) =z = 93¢, Im(w) =y = ¥5%;
= Re(w) — Im(w)i;

2 Pythag. thm
of? Do the

ww .

9:2+y2 =

(Complex-)conjugation w + w is an im)olution of C,

since w = w. For complex polynomial f(z) = Z c;2,
define f(2) = Z ¢; 2/, its conjugate polynomml
=
Thus - _
f(z) = 1(@),

since p+v=n+7v and v = fi - v for pu,v € C.

Multiplying complex numbers corresponds to mul-
tiplying their moduli and adding their angles.

C . . . .
“9Electrical engineers use j rather than i, as “i” is used to

represent current/amperage in EE. Also, while boldface i is a
sqroot of -1, we still have non-boldface i as a variable. E.g, we

could [but wouldn’t] write 7i + >01_ . i% B 7i 4 37 442,

F C-EXP-COS-SIN
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To write a quotient * in std = + iy form, note

So write @ in std form, then divide by real |a|”.

See |W: Complex number] and |W: Argand plane for arith-
metic with complex numbers.
Let’s extend the exponential fnc to C.

130a: Defn. For z € C, define
=1
exp(z) = € = —" =14+ 2224+ 18 4+

PR Y T 1 ,
cos(z) .—Z 2% = 1—7,2 + o2t =

i [2k]!
~ o= U e 1.3 5
sin(z) = ;m-z =z — $2°+ 352" —
FEach series has oo-RoC. O

Since we have absolute convergence of each series,
we can re-order terms without changing convergence.

130b: Lemma. Fix o, € C. Then

Proof. For natnum N, recall the Binomial thm which
says that

> (W) -elst =

j+k=N

[+ BN

where the sum is over all ordered-pairs (j,k) of
natnums. By its defn [and abs.convergence], e*e® equals

> 5] [Z af] = X X Gg e
J=0 N=0 j+k=N

But ﬁ equals % . % Hence e“e? equals
il X G o8] =5 et A
= R =

which is the defn of e®*8, ¢
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130c: Lemma. For 0,x,y,z complex numbers:

130.1:

el = [cos(f) + isin(f)] = cis(f). Hence
130.2:

i0 -if i0 _ -if

% = (jos((g)7 % = sin(H) 0 AISO,

i

130.3:

e? W — o . oY — % [cos(y) + isin(y)],

since cos(~y) = cos(y) and sin(-y) = -sin(y).

When 6 is real, then,
130.4: Re(e'’) = cos(d) and Im(el?) = sin(9).
Since the coefficients in their power-series expan-

sions are all real, our exp(),cos(),sin() fncs each com-
mute with complex-conjugation, i.e

130.5: exp(z)=exp(Z), cos(z)=cos(Z), sin(z)=sin(z) ;

Translation-identities & addition-identities

130.6:
cos(z —

Q

2)
cos(a+ )
B

sin(a =+ f3)

extend to the complex plane. Finally,

sin(z), sin(z+ %) = cos(z),
cos(a) cos(B) F sin(a)sin(p),
cos(a)sin(f) =+ sin(a) cos(B).

130.7:
Range(exp) = C~{0} is the punctured C.

And Range(cos) = C = Range(sin).

All zeros of |complex]| cos() lie in R. Hence
cos() has only one period, that of 2m.
Both statements hold for sin().

130.8:

Pfof (I30.7). For Range(cos) L C, target 3€C re-
quires z with cos(z) = 7/2. With R = ¢e'*, then, we
need R + % = 7,i.e R?> = 7R+ 1 = 0. This quad.eqn
has a solution R € C. As R=0 is not a soln, necessar-
ily R € Range(exp). ¢

F C-EXP-COS-SIN
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Pf of (130.8). Fix a z = x +iy st. cos(z) = 0. Thus

0 = 2cos(z) exp(i- [z +1iy]) + exp(-- [x+1iy])
= exp(y +iz) + exp(y — iz)

= eYcis(x) + eYcis(-x) .

Since these summands cancel, they must have equal
abs.values. Since z and y are real, then,

X eV = eY cis(z)| = &Y |cis(-z)| = &Y.

But R-exp() is 1-to-1, so (%) implies that -y = v.
Hence y = 0, i.e z is real. ¢

130e: Lemma. Familar derivative relations, exp’ = exp
and cos’ = -sin and sin’ = cos, continue to hold.

Same-frequency cosines/sines. Consider a sum

of same-frequency cosines

Z A; -cos(P,

where A;c R is amplitude, P;€R is phase-shift and
FeR determines the frequency. |[Courtesy (130.6), we
could include sine fncs in the sum.] We seek a phase-shift
6 and amplitude R>0 so that

.+ F-t),

h(t) =

From ([130.4), we have that h(t) equals
(ZA i[P; +Ft)
= Re({jz::l Aj- ein] -eiFt> .

Thus we are led to define S€EC and X,Y € R by

R - cos(0 + Ft).

ZA Re i[P; +Ft] ﬂOte
7=1

it S = [ N Aj-eiPJ} = X +1iY.

j=1

Since each A; and P; is real,

N N
X =) Ajcos(P) and Y = > Ajsin(P)).

Jj=1 J=1
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130f: Same-freq Lemma. [With notation from above.| Set
R = S| pote /X2 1 Y2,

IfS =0, then h() is the zero-fnc; so can set 8 := 0.
Otherwise, if X = 0, then set 0 to 5 or -5 as Y is
positive or negative.

Otherwise: If X > 0 then set 6 := arctan(Y/X);
and if X < 0 then set 0 = 7 + arctan(Y /X).

With R, 0 defined as above

N
I l:ZAj-COS(Pj + F-t)] = R-cos(@ + Ft). O
j=1

130g: E.g. Compute reals R> 0 and phase-shift 6 st.
Rcos(0+8t) = cos(% +8t) + cos(3* +8t) — \/5(:05(777r +8t).

SOLN: Applying (), above,

‘e - T
S — i3 +e‘5T . \/5614 Geometry i
Hence R =1i|=1 and 0 = Arg(i) = z. H

Hyperbolic trig fncs

(Text (:onnnented—out.)
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§G  Morphisms

Homomorphism. Given binrels (X, R) and (€2, Q),
a map f:X—C is a binrel-homomorphism if

yRz = f(y)Qf(2)

This f can be many-to-one, and need not be surjec-
tive. [Two X-elts not R-related might nonetheless have their
f-images Q-related.| Call f a binrel-embedding if f is
injective with this IFF:

131a: Vy,zeX :

131b: Vy,z€X: yRz <= f(y)Qf(z).

IOWords, (X, R) is binrel-isomorphic (see below) to
a sub-structure of 2.

When R and Q are lax partial-orders, (X, <) and
(2,<), then is an order-homomorphism

and (131b)) is an order-embedding. O
Isomorphism. Consider Foo, an abstract class of

objects. [So Foo might be vector-space or group or ring or
field or topological-space or game or...|. A map f:X-—€) is
a Foo-homomorphism (abbrev: Foo-hom) if f pre-
serves Foo-structure. [This f might be neither injective nor
surjective.]

E.g: When Foo is topological-space then a Foo-hom
is called a ‘continuous map’. When Foo is vector-space
then a Foo-hom is a ‘linear map’.

If f:X<»Q is a bijection, and both f and f' are
Foo-homs, then f is a Foo-isomorphism [E.g: The
map z+ 3" is a group-isomorphism from (R,+,0) onto
(R4,-,1). When Foo is topological-space, a Foo-isomorphism
is called a homeomorphism.] N.B: Iso-morph means
Same-form. Homo-morph also means Same-form; in this case,

in a weaker form.

[Caveat: In Latin, homo means ‘Man’ or ‘Human’; e.g
homo sapien. In Greek, homo means ‘same’, ‘identical’; e.g the
arm of a human, the foreleg of a dog, the wing of a bat, and the
front-fin of a whale (all mammals) are homologous structures.]

An isomorphism f:X<>(2 to a sub-structure of 2
is sometimes called an embedding or an into-
isomorphism. [E.g: The R—RxR map =+ (z,32) is a
vector-space embedding. The R*—R? map (z,v, z) — (5y,0)

is a vector-space hom that is neither 1-to-1 nor onto.] ]

Automorphism. An isomorphism f: XX
from a structure to itself could be called an ‘auto-
1somorphism’; but we contract it to automorphism.

G MORPHISMS
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[E.g: The map x — -z is a group-automorphism of additive

group (Q,+,0).
(the complex conjugate of z) is a ﬁ(‘,ld—zmtonu)]'phism.]

On C, the complex plane, the map z — 2z

The set of Foo-automorphisms of a Foo-structure X
is an (algebraic) group under composition, o. [E.g: Let
Q0 denote the non-zero rationals. Each “multiplier” M € Qg
engenders a group-automorphism of (Q,+,0) under the map
q — M -q. Since multiplication is associative, the automorphism
group of (@, +,0) is (group-)isomorphic to (Qo, -, l)] ]

Confession. I made up the terms ‘binrel-
homomorphism’ and ‘binrel-embedding’. Probably
‘order-homomorphism’ is used. Term ‘order-
embedding’ definitely is used.

All branches of Mathematics use ‘homomorphism’,
‘isomorphism’, ‘automorphism’.  Less common is
endomorphism; a homomorphism from a structure

to itself. Thus

X—Q X=X
Weak: | homomorphism | endomorphism
Strong: | isomorphism automorphism

[People working in Category theory have additional words;
monomorphism, epimorphism. We don’t invite such people to

our parties...] L]
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§H A few countable ordinals

Defn.  Element m of poset (X, <) is minimal if
VbeX: [b < m|] = [b =m]|. The poset is well-found-
ed if each non-void X-subset admits a minimal elt.

A descending-chain has form xy > x9 > x5 > ...
and could be finite or infinite. Given the Axiom or
Choice (AC), poset (X, <) is well-founded |IFF it has
no oco-descending-chain.

A well-founded total-order is a well-order. ]

Ordinals. For us, an order-type is an equiv-class of
total-orders under order-isomorphism. E.g: (N, <)
and ([5..00), <) and ({2"}5°,, ¢) all have the same
order-type.

We can think of an ordinal as the order-type of a
well-order. [A von Neumann ordinal is way of assigning

a particular well-ordered-set to each well-order equiv-class.] ]

Example countable ordinals. Let’s exhibit sub-
sets of Q> that are well-ordered under <, making
use of the “compression function” [(q) = qil )

Given a set S, let f(S) be {f(s) | s € S}. And let,
e.g, 5+ S mean {5+s | s € S}.

The smallest infinite ordinal is called w, often ab-
breviated w; it has the order-type of N, which I'll
write as w <> N.

Let S;:= f(N) e [0,1). Our f is order-
preserving, so w <57, Thus S; U [1+S;] has
order-type w+w = w-2.  [Notice that 2-w = w; ordinal
Continuing the idea

add./mult. are not commutative.]

gives -
Llolk + 1]

which has order-type w -w. Iterating this idea pro-
duces

t: Sy = f<|i|[k 4 Sn_l]).

k=0

Since 5, <+ S,_1-w, it follows that each S,, <> w™.
Although this process can keep going, e.g,

: LI, U+ Sl

has order-type w*, we will stop here.

H A FEW COUNTABLE ORDINALS
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Choice function. Consider C, a set of non-void sets.
A “choice function for C” is a function
J:C—U(C) satisfying VP €C: f(P) € P.
L.e, for each patch P € C, function [ picks an ele-
ment of P. See
https://en.wikipedia.org/wiki/Axiom_of_choice ]

133: Axiom of Choice.  Suppose C is a collection of
non-void sets. Then C admits a choice function. I.e,
{h | h is a choice function for C} is non-empty. O
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§Index, with symbols and abbrevs at the End

/o, M, || on sets,

e-d,

[[]E]], picking from types,
CIDN, (,D(N), 101

[b..c), see interval of integers
[x 1 K], see rising factorial
[x | K], see falling factorial

amplitude,
annihilator,
Argand plane,
associates, [102
associative, [101]

Beer, but not a drop to drink,
binomial coefficient, [69] [89
binomial polynomial, [95

circular reasoning, see tautology
cis(), cosine + i-sine,
commutative, [101]
Completing-the-square, [04]
complex conjugate,
complex plane,

discriminant,
distributes-over, [101
Dixon Lanier Merritt, [47]

Euler phi, [9
exp(z)=e*, exponential fnc, [L04]
exponential
complex,
Extremal argument, [9]

falling factorial, [89

field,
frequency,
Fund. thm of Algebra , [04]

Gaussian integers,
Geo-power Lemma,
golden ratio, [33]
Group, [101]

of units, [I0]]

identity element,
Im(w), imaginary part of weC, ,
104

Inclusion/exclusion,
indicator function, [88
Induction,

Infinite descent, [29] [30] [60]

Minimum-CEX,
integral domain,
interval of integers,
Invariants, [45] [46]

inverse element,
irreducible element,

Lewis Carroll, see Volkswagen

Lim (erick> ’

linear combination, lincomb,

logarithm,

Mobius, [10] 8]

Malaphor,

MLS, see Lewis Carroll
modular arithmetic,
monoid,

multi-index,
multinomial coefficient, [89

phase-shift,
Pigeon-hole principle, [6]
PolyExp, [87]
PolyExp-sum,
polynomial

discriminant,
prime element,
Product Rule thm,
Proof

circular, see circular reasoning

Re(w), real part of weC,
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ring, [0
annihilator,
domain, [101

zero-divisor,
rising factorial, [89

Same-freq Lemma, [105)

semigroup, [101]
symmetric difference,

tail of a sequence, [8§
tautology, see Proof, circular
Theorems
Fund. thm of Algebra,
Geo-power,
Product Rule,
Same-freq,

unit, (703, [107
U(N),[101

Ur,
Volkswagen,

ZD, i.e: zero-divisor

zero-divisor,
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