

Inclusion-Exclusion principle

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 12 May, 2024 (at 13:16)

Prolegomenon. Consider a finite set, Ω , of *tokens*. and a finite indexing set \mathcal{N} ; let $N := \#\mathcal{N}$. For each $j \in \mathcal{N}$ we have a *patch*, a subset $A_j \subset \Omega$, and its complement $V_j := \Omega \setminus A_j$. Our goal is an expression for the cardinality of the union

$$\mathbf{U} := \bigcup_{j \in \mathcal{N}} A_j.$$

[N.B: This note uses $\#$ to indicate the cardinality of an index-set, and $|\cdot|$ for the cardinality of a token set.]

Notation. For each *index-set* $I \subset \mathcal{N}$, define the *patch-intersection*

$$1.1: \quad \mathbf{A}_I := \bigcap_{j \in I} A_j,$$

[and $\mathbf{V}_I := \bigcap_{j \in I} V_j$] and note^① \mathbf{A}_\emptyset is all of Ω .

Finally, let \mathcal{C}_k comprise those index-sets $I \subset \mathcal{N}$ with $\#I = k$; this, for $k = 0, 1, \dots, N$. Easily

$$1.2: \quad |\mathcal{C}_k| = \binom{N}{k}.$$

2: Inclusion-Exclusion Lemma. *With notation from above:*

$$2a: \quad |\Omega \setminus \mathbf{U}| = \sum_{k=0}^N \left[[-1]^k \cdot \sum_{I: I \in \mathcal{C}_k} |\mathbf{A}_I| \right].$$

Alternatively,

$$2b: \quad |\mathbf{U}| = \sum_{k=1}^N \left[[-1]^{k-1} \cdot \sum_{I: I \in \mathcal{C}_k} |\mathbf{A}_I| \right]. \quad \diamond$$

Pf (2a) \Rightarrow (2b). Adding the RhSes causes cancellation, with only the $k=0$ term remaining. So

$$|\Omega \setminus \mathbf{U}| + \text{RhS}(2b) = [-1]^0 \cdot |\mathbf{A}_\emptyset| \stackrel{\text{note}}{=} |\Omega|.$$

So RhS(2b) equals $|\mathbf{U}|$. \diamond

^① For index-sets $I, J \subset \mathcal{N}$, by definition $\mathbf{A}_I \cap \mathbf{A}_J = \mathbf{A}_{I \cup J}$. In particular, $\mathbf{A}_I \cap \mathbf{A}_\emptyset$ equals \mathbf{A}_I . I.e, \mathbf{A}_\emptyset is the identity element for intersection, on the powerset of Ω . So \mathbf{A}_\emptyset is Ω .

To establish (2a), let's prove something a little stronger. Each subset $S \subset \Omega$ yields a function $\mathbf{1}_S: \Omega \rightarrow \{0, 1\}$, the “*indicator function* of S ”,

$$\mathbf{1}_S(x) := \begin{cases} 1 & \text{when } x \in S \\ 0 & \text{when } x \in \Omega \setminus S \end{cases}.$$

Indicator fncts allow us to restate intersection ITOf multiplication: *For a set I of indicies,*

$$1.1': \quad \mathbf{1}_{\mathbf{A}_I} = \prod_{j \in I} \mathbf{1}_{A_j}.$$

Let's strengthen (2a) to equality of *functions*,

$$3.1: \quad \mathbf{1}_{\Omega \setminus \mathbf{U}} = \sum_{k=0}^N \left[[-1]^k \cdot \sum_{I: I \in \mathcal{C}_k} \mathbf{1}_{\mathbf{A}_I} \right].$$

Proof of (3.1). The RhS(3.1) equals

$$*: \quad \prod_{j \in \mathcal{N}} [1 - \mathbf{1}_{A_j}] \stackrel{\text{note}}{=} \prod_{j \in \mathcal{N}} \mathbf{1}_{V_j}.$$

After all, the LhS(*) product expands to the sum, over all subsets $I \subset \mathcal{N}$, of $\prod_{j \in I} [-1] \mathbf{1}_{A_j}$. This latter product, letting $k := \#I$, equals $[-1]^k \cdot \mathbf{1}_{\mathbf{A}_I}$, courtesy (1.1').

By De Morgan's law, $\Omega \setminus \mathbf{U} = \bigcap_{j \in \mathcal{N}} V_j$. So LhS(3.1) is $\mathbf{1}_{\mathbf{V}_{\mathcal{N}}}$. Hence (3.1) boils down to the triviality that

$$\mathbf{1}_{\mathbf{V}_{\mathcal{N}}} = \prod_{j \in \mathcal{N}} \mathbf{1}_{V_j}. \quad \diamond$$

4: Rem. We can rewrite (2a) in simpler [but often less convenient] form, ITOf summing over all subsets of \mathcal{N} :

$$4a: \quad |\Omega \setminus \mathbf{U}| = \sum_{I: I \subset \mathcal{N}} [(-1)^{\#I} \cdot |\mathbf{A}_I|]. \quad \square$$

Incl-Excl Examples

5: Counting limited candy. The store sells jelly-Beans and Chocolate squares and Dates. Mom allows you a total of 20 candies.

Alas!, the store only has $8\mathcal{B}$ and $5\mathcal{C}$ and $13\mathcal{D}$. Stars-and-Bars counts how to pick out of multiset $\{\infty\mathcal{B}, \infty\mathcal{C}, \infty\mathcal{D}\}$. The relevant multiset is $\{8\mathcal{B}, 5\mathcal{C}, 13\mathcal{D}\}$; so how do we count? \diamond

Candy soln. Let Ω be the set of natnum triples $(\mathcal{B}, \mathcal{C}, \mathcal{D})$ with $\mathcal{B} + \mathcal{C} + \mathcal{D} = 20$. We'll count the “good” $[\mathcal{B} \leq 8 \text{ & } \mathcal{C} \leq 5 \text{ & } \mathcal{D} \leq 13]$ triples, using Incl-Excl.

Let $A_{\mathcal{B}}$ be the set of natnum-triples that are “Awful” because $\mathcal{B} > 8$. Hence,

$$|A_{\mathcal{B}}| \stackrel{\text{Why?}}{=} \left\llbracket \begin{matrix} 3 \\ 20 - [8+1] \end{matrix} \right\rrbracket = \binom{2+11}{2} = 78.$$

So $|A_{\mathcal{C}}| = \left\llbracket \begin{matrix} 3 \\ 20 - [5+1] \end{matrix} \right\rrbracket = \binom{2+14}{2} = 120$, and $|A_{\mathcal{D}}| = 28$.

For pairwise intersections

$$|A_{\mathcal{B}} \cap A_{\mathcal{C}}| \stackrel{\text{Why?}}{=} \left\llbracket \begin{matrix} 3 \\ 20 - [8+5+2] \end{matrix} \right\rrbracket = \binom{2+5}{2} = 21.$$

Also, $|A_{\mathcal{B}} \cap A_{\mathcal{D}}| = \left\llbracket \begin{matrix} 3 \\ 20 - [8+13+2] \end{matrix} \right\rrbracket = \left\llbracket \begin{matrix} 3 \\ \text{negative} \end{matrix} \right\rrbracket \stackrel{\text{Why?}}{=} 0$, and $|A_{\mathcal{C}} \cap A_{\mathcal{D}}| = \left\llbracket \begin{matrix} 3 \\ 20 - [5+13+2] \end{matrix} \right\rrbracket = \left\llbracket \begin{matrix} 3 \\ 0 \end{matrix} \right\rrbracket = 1$.

For the sole three-fold intersection

$$|A_{\mathcal{B}} \cap A_{\mathcal{C}} \cap A_{\mathcal{D}}| = \left\llbracket \begin{matrix} 3 \\ 20 - [8+5+13+3] \end{matrix} \right\rrbracket = \left\llbracket \begin{matrix} 3 \\ \text{neg} \end{matrix} \right\rrbracket = 0.$$

Since $\left\llbracket \begin{matrix} 3 \\ 20 \end{matrix} \right\rrbracket = 231$, the number of good triples is

$$\begin{aligned} & |\Omega| - (|A_{\mathcal{B}}| + |A_{\mathcal{C}}| + |A_{\mathcal{D}}|) \\ & + (|A_{\mathcal{B}} \cap A_{\mathcal{C}}| + |A_{\mathcal{B}} \cap A_{\mathcal{D}}| + |A_{\mathcal{C}} \cap A_{\mathcal{D}}|) \\ & - |A_{\mathcal{B}} \cap A_{\mathcal{C}} \cap A_{\mathcal{D}}| \\ & = 231 - [78+120+28] + [21+0+1] - 0. \end{aligned}$$

This equals 27. \diamond

Doubting Thomas. Here are the 27 good triples:

(2 5 13) (3 4 13) (3 5 12) (4 3 13) (4 4 12) (4 5 11)
 (5 2 13) (5 3 12) (5 4 11) (5 5 10) (6 1 13) (6 2 12)
 (6 3 11) (6 4 10) (6 5 9) (7 0 13) (7 1 12) (7 2 11)
 (7 3 10) (7 4 9) (7 5 8) (8 0 12) (8 1 11) (8 2 10)
 (8 3 9) (8 4 8) (8 5 7)

□

6: **Cardinality independence.** In some combinatorial applications, cardinality $|\mathbf{A}_I|$ depends only on the number of patches being intersected. In that instance, let $F(k)$ be $|\mathbf{A}_I|$, for each and every index-set I satisfying $\#I = k$. So rewrite (2a) as

$$\begin{aligned} |\Omega \setminus \mathbf{U}| &= \sum_{k=0}^N \left[(-1)^k \cdot \binom{N}{k} \cdot F(k) \right] \\ \text{6a:} \quad &= \sum_{k=0}^{\infty} \left[(-1)^k \cdot \binom{N}{k} \cdot F(k) \right], \end{aligned}$$

where, for $k > N$, our $\binom{N}{k} := \frac{N!}{k!}$ is zero. \square

7: **Probability of getting your own hat.** The N guests leaving your party grab their hats at random from your dark closet. What does $\Pr(N)$, the probability that no one gets his own hat, tend to as $N \nearrow \infty$? ◇

Hat soln. For a subset I of your guests, the probability that each person in I took his own hat is $\mathcal{P}_I := [N - k]!/N!$, where $k := \#I$. As this probability only depends on k , we will also call it \mathcal{P}_k . By the principle of inclusion/exclusion our $\Pr(N)$ equals

$$\begin{aligned} \mathcal{P}_\emptyset &= \sum_{I: \#I=1} \mathcal{P}_I + \sum_{I: \#I=2} \mathcal{P}_I - \sum_{I: \#I=3} \mathcal{P}_I + \dots + (-1)^N \sum_{I: \#I=N} \mathcal{P}_I \\ &= 1 - \binom{N}{1} \mathcal{P}_1 + \binom{N}{2} \mathcal{P}_2 - \binom{N}{3} \mathcal{P}_3 + \dots + (-1)^N \binom{N}{N} \mathcal{P}_N \\ &= \sum_{k=0}^N (-1)^k \cdot \binom{N}{k} \cdot \frac{[N - k]!}{N!} = \sum_{k=0}^N \frac{(-1)^k}{k!}. \end{aligned}$$

This last is the first $N+1$ terms of the Taylor series for e^{-1} . Thus $\lim_{n \rightarrow \infty} \Pr(n)$ equals $1/e \approx 0.368$. ◇

Derangements. A *derangement* of an N -set is a *fixed-point free* permutation of that set; let \mathbb{D}_N be the set of derangements, and $\delta_N := |\mathbb{D}_N|$ the number of derangements. Thus

$$7a: \quad \delta_N = N! \cdot \sum_{k=0}^N \frac{(-1)^k}{k!}.$$

is a restatement of the above probability.

Counting perms with fixed-pts. For $N = 0, 1, 2, \dots$, we define $\text{PFix}_N(\mathbf{f})$ as the Number of N -Permutations with precisely \mathbf{f} many *Fixed*-points. So $\mathbf{f} < 0$ or $\mathbf{f} > N$ makes $\text{PFix}_N(\mathbf{f}) = 0$. [By defn, $\text{PFix}_N(0) = \delta_N$.] □

7b: **Corollary.** Each \mathbf{f} in $[0..N]$ satisfies

$$\dagger_{\mathbf{f}}: \quad \text{PFix}_N(\mathbf{f}) = \frac{N!}{\mathbf{f}!} \cdot \sum_{k=0}^{N-\mathbf{f}} \frac{(-1)^k}{k!}$$

Thus, the asymptotic probability of \mathbf{f} fixed-pts is

$$\ddagger: \quad \lim_{N \rightarrow \infty} \frac{\text{PFix}_N(\mathbf{f})}{N!} = \frac{1/e}{\mathbf{f}!}. \quad \diamond$$

Proof. WLOG, $\mathbf{f} = 3$. The number of permutations of $[1..N]$ that fix, say, points 2, 6, 9 is the number of derangements of $[1..N] \setminus \{2, 6, 9\}$; so there are δ_{N-3} such perms.

Token-set $[1..N]$ has $\binom{N}{3}$ subsets of size 3. Thus

$$\text{PFix}_N(3) = \binom{N}{3} \cdot \delta_{N-3} \xrightarrow{\text{simplify}} \text{RhS}(\dagger_3). \quad \diamond$$

Prelim. Below, sets \mathcal{D} (Domain) and \mathcal{C} (Codomain) have cardinalities $D := |\mathcal{D}|$ and $C := |\mathcal{C}|$; both finite. Thus \mathcal{C}^D , the set of fncs $\mathcal{D} \rightarrow \mathcal{C}$, has cardinality C^D . Easily:

$$* : \quad [\text{The } \# \text{ of injections } \mathcal{D} \rightarrow \mathcal{C}] = \llbracket \mathcal{C} \downarrow \mathcal{D} \rrbracket.$$

Let's compute $\text{Sur}(\mathcal{D}, \mathcal{C})$, the number of surjections. \square

8a: Counting surjective fncs. With notation from above

$$\dagger : \quad \text{Sur}(\mathcal{D}, \mathcal{C}) = \sum_{k=0}^C [-1]^k \cdot \binom{C}{k} \cdot [C - k]^D. \quad \diamond$$

Sur. For point $y \in \mathcal{C}$, let A_y comprise those functions $h()$ which Avoid y ; i.e, $\text{Range}(h) \not\ni y$. Thus

$$\ddagger : \quad \mathcal{C}^D \setminus \left[\bigcup_{y \in \mathcal{C}} A_y \right]$$

is the set of surjections.

For $I \subset \mathcal{C}$, let \mathbf{A}_I comprise those fncs which miss each member of I . With $k := \#I$, then,

$$\mathbf{A}_I = \{h \in \mathcal{C}^D \mid \text{Range}(h) \cap I\} \text{ and } |\mathbf{A}_I| = [C - k]^D.$$

The number of subsets $I \subset \mathcal{C}$ with $\#I = k$ is $\binom{C}{k}$. Consequently, Inclusion-Exclusion yields (\dagger) . \diamond

When $D < C$. There are no surjections, when $D < C$. As a (\dagger) -example, $\text{Sur}(2, 3)$ equals

$$\begin{aligned} & \binom{3}{0} \cdot 3^2 - \binom{3}{1} \cdot 2^2 + \binom{3}{2} \cdot 1^2 - \binom{3}{3} \cdot 0^2 \\ &= 1 \cdot 9 - 3 \cdot 4 + 3 \cdot 1 - 1 \cdot 0 = 9 - 12 + 3, \end{aligned}$$

which indeed equals zero. \square

[A Curious Corollary of Counting sur-fncs.]

8b: A Curious Corollary. For $N = 0, 1, 2, \dots$

$$\mathcal{L}_N : \quad N! = \sum_{k=0}^N [-1]^k \cdot \binom{N}{k} \cdot [N - k]^N. \quad \diamond$$

Proof. When $|\mathcal{D}| = |\mathcal{C}| =: N$, then we can identify \mathcal{D} with \mathcal{C} and view each surjection as a permutation. There are $N!$ permutations. And $\text{RhS}(\mathcal{L}_N)$ equals $\text{RhS}(\dagger)$ when $D = C = \mathbb{N}$. \diamond

When $|\mathcal{D}| = |\mathcal{C}| = 3$. Computing, $\text{Sur}(3, 3)$ equals

$$\begin{aligned} & \binom{3}{0} \cdot 3^3 - \binom{3}{1} \cdot 2^3 + \binom{3}{2} \cdot 1^3 - \binom{3}{3} \cdot 0^3 \\ &= 1 \cdot 27 - 3 \cdot 8 + 3 \cdot 1 - 1 \cdot 0 = 27 - 24 + 3 = 6, \end{aligned}$$

which, happily, equals 3-factorial. \square

Two Stirling numbers. For natnums D, C , the number of partitions of a D -set into C many non-void-atoms, is a “*Stirling # of the 2nd kind*”, (or *Stirling partition number*). Here, I'll write it as $\mathcal{S}(D, C)$.

Were the C many atoms *labeled*, then we could view a partition as a surjective [each atom is non-empty] *function* from the D -set into the label-set. Consequently,

$$\mathcal{S}(D, C) = \frac{\text{Sur}(D, C)}{C!} = \sum_{k=0}^C [-1]^k \cdot \frac{[C - k]^D}{k! \cdot [C - k]!}$$

8c:

$$\frac{\binom{C}{k} \cdot k!}{\binom{C}{k} \cdot k!} \sum_{k+n=C} [-1]^k \cdot \frac{n^D}{k! \cdot n!}$$

is the nifty formula we obtain. \square

9: Comps avoiding a part. What is $f(N)$, the number of 3-compositions of N with no PartSize=2? \diamond

Remark. Bona's text asks for $f(12)$. \square

Proof. Not yet typed. \diamond

Recursive Incl-Excl. This formula appears in *Reduced Recursive Inclusion-exclusion Principle for the probability of union events* by S. G. Chen.

When VPN-ed in to UF, the article is online.

DEFN: For patches P_1, \dots, P_K , let $C(P_1, \dots, P_K)$ be the cardinality of $\bigcup_{j=1}^K P_j$.

Given patches A_1, \dots, A_N , let $\mathbf{U}_k := \bigcup_{j=1}^k A_j$; so $\mathbf{U}_0 = \emptyset$. Easily

$$\bigcup_{j=1}^N A_j = \bigsqcup_{j=1}^N [A_j \setminus \mathbf{U}_{j-1}],$$

writing a union as a *disjoint* union.

Taking $j = 4$ as an example, note

$$|A_4 \setminus \mathbf{U}_3| = |A_4| - C(A_4 \cap A_1, A_4 \cap A_2, A_4 \cap A_3).$$

Thus

$$\begin{aligned} & C(A_1, \dots, A_N) \\ *: &= \sum_{j=1}^N [|A_j| - C(A_j \cap A_1, \dots, A_j \cap A_{j-1})] \end{aligned}$$

gives a recursive characterization of $C(\cdot)$, noting that $C(\text{Empty list})$ is *zero*, since it equals the empty-sum, from above.
