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Prolegomenon. Consider a finite set, Ω, of tokens.
and a finite indexing set N; let N := #N. For each
j ∈ N we have a patch , a subset Aj ⊂ Ω, and its com-
plement Vj := Ω rAj . Our goal is an expression for
the cardinality of the union

U :=
⋃

j∈N
Aj .

[N.B: This note uses # to indicate the cardinality of an index-
set, and | · | for the cardinality of a token set.]

Notation. For each index-set I ⊂ N, define the
patch-intersection

AI :=
⋂

j∈I
Aj ,1.1:

[and VI :=
⋂

j∈I Vj] and note♥1 A∅ is all of Ω.

Finally, let Ck comprise those index-sets I ⊂ N with
#I = k; this, for k = 0, 1, . . . , N . Easily

|Ck| =
(N
k

)
.1.2:

2: Inclusion-Exclusion Lemma. With notation from
above: ∣∣Ω rU

∣∣ =

N∑
k=0

[
[ 1]k ·

∑
I : I∈Ck

|AI |
]
.2a:

Alternatively,∣∣U∣∣ =

N∑
k=1

[
[ 1]k−1 ·

∑
I : I∈Ck

|AI |
]
.2b: ♦

Pf (2a) ⇒ (2b).Adding the RhSes causes cancellation,
with only the k=0 term remaining. So∣∣Ω rU

∣∣ + RhS(2b) = [ 1]0 · |A∅|
note
=== |Ω| .

So RhS(2b) equals
∣∣U∣∣. �

♥1For index-sets I,J ⊂ N, by definition AI ∩AJ = AI∪J . In
particular, AI ∩A∅ equals AI . I.e, A∅ is the identity element
for intersection, on the powerset of Ω. So A∅ is Ω.

To establish (2a), let’s prove something a little
stronger. Each subset S ⊂ Ω yields a function
1S :Ω→{0, 1}, the “indicator function of S ” ,

1S (x) :=

{
1 when x ∈ S

0 when x ∈ ΩrS

}
.

Indicator fncs allow us to restate intersection ITOf
multiplication: For a set I of indicies,

1AI
=
∏

j∈I 1Aj .1.1′:

Let’s strengthen (2a) to equality of functions,

1ΩrU =

N∑
k=0

[
[ 1]k ·

∑
I : I∈Ck

1AI

]
.3.1:

Proof of (3.1). The RhS(3.1) equals∏
j∈N

[
1 − 1Aj

] note
===

∏
j∈N

1Vj .∗:

After all, the LhS(∗) product expands to the sum, over
all subsets I ⊂ N, of

∏
j∈I

[ 1Aj ]. This latter product,

letting k := #I, equals [ 1]k · 1AI
, courtesy (1.1′).

By De Morgan’s law, Ω rU =
⋂

j∈N Vj . So
LhS(3.1) is 1VN

. Hence (3.1) boils down to the trivi-
ality that

1VN
=
∏

j∈N
1Vj . �

4: Rem. We can rewrite (2a) in simpler [but often less
convenient] form, ITOf summing over all subsets of N:∣∣Ω rU

∣∣ =
∑

I : I⊂N

[
[ 1]

#I · |AI |
]
.4a: �
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Incl-Excl Examples

5: Counting limited candy. The store sells jelly-Beans
and Chocolate squares and Dates. Mom allows you a
total of 20 candies.

Alas!, the store only has 8B and 5C and 13D.
Stars-and-Bars counts how to pick out of mul-
tiset {∞B,∞C,∞D}. The relevant multiset is
{8B, 5C, 13D}; so how do we count? ♦

Candy soln. Let Ω be the set of natnum triples
(((B, C,D))) with B+C+D = 20. We’ll count the “good ”
[B≤8 & C≤5 & D≤13] triples, using Incl-Excl.

Let AB be the set of natnum-triples that are
“Awful ” because B > 8. Hence,

|AB|
Why?
====

s
3

20− [8+1]

{
=

(
2 + 11

2

)
= 78.

So |AC | =
q

3
20−[5+1]

y
=
(2+14

2

)
= 120, and |AD| = 28.

For pairwise intersections

|AB ∩AC |
Why?
====

s
3

20− [8+5+2]

{
=

(
2 + 5

2

)
= 21.

Also, |AB ∩AD| =
q

3
20−[8+13+2]

y
=

q
3

negative

y Why?
==== 0,

and |AC ∩AD| =
q

3
20−[5+13+2]

y
=

q
3
0

y
= 1.

For the sole three-fold intersection

|AB ∩AC ∩AD| =
s

3

20− [8+5+13+3]

{
=

s
3

neg

{
= 0.

Since
q

3
20

y
= 231, the number of good triples is

|Ω| −
(
|AB| + |AC | + |AD|

)
+
(
|AB ∩AC | + |AB ∩AD| + |AC ∩AD|

)
− |AB ∩AC ∩AD|

= 231 −
[
78+120+28

]
+
[
21+0+1

]
− 0 .

This equals 27. �

Doubting Thomas. Here are the 27 good triples:

(2 5 13) (3 4 13) (3 5 12) (4 3 13) (4 4 12) (4 5 11)
(5 2 13) (5 3 12) (5 4 11) (5 5 10) (6 1 13) (6 2 12)
(6 3 11) (6 4 10) (6 5 9) (7 0 13) (7 1 12) (7 2 11)
(7 3 10) (7 4 9) (7 5 8) (8 0 12) (8 1 11) (8 2 10)
(8 3 9) (8 4 8) (8 5 7)

�

6: Cardinality independence. In some combina-
torial applications, cardinality |AI | depends only on
the number of patches being intersected. In that in-
stance, let F (k) be |AI |, for each and every index-set
I satisfying #I = k. So rewrite (2a) as

∣∣Ω rU
∣∣ =

N∑
k=0

[
[ 1]k ·

(N
k

)
· F (k)

]
=

∞∑
k=0

[
[ 1]k ·

(N
k

)
· F (k)

]
,

6a:

where, for k>N , our
(N
k

)
:= JN↓kK

k! is zero. �
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7: Probability of getting your own hat. The N guests
leaving your party grab their hats at random from
your dark closet. What does Pr(N), the probability
that no one gets his own hat, tend to as N↗∞ ? ♦

Hat soln. For a subset I of your guests, the prob-
ability that each person in I took his own hat is
PPPI := [N − k]!/N !, where k := #I. As this probabil-
ity only depends on k, we will also call it PPPk. By the
principle of inclusion/exclusion our Pr(N) equals

PPP∅ −
∑

I: #I=1

PPPI +
∑

I: #I=2

PPPI −
∑

I: #I=3

PPPI + . . . + [ 1]N
∑

I: #I=N

PPPI

= 1 −
(N

1

)
PPP1 +

(N
2

)
PPP2 −

(N
3

)
PPP3 + . . . + [ 1]N

(N
N

)
PPPN

=
N∑
k=0

[ 1]k ·
(
N

k

)
· [N − k]!

N !
=

N∑
k=0

[ 1]k

k!
.

This last is the first N+1 terms of the Taylor series
for e 1. Thus limn→∞ Pr(n) equals 1/e ≈ 0.368. �

Derangements. A derangement of an N -set is a
fixed-point free permutation of that set; let DN be the
set of derangements, and δN := |DN | the number of
derangements. Thus

δN = N ! ·
N∑
k=0

[ 1]k

k!
.7a:

is a restatement of the above probability.

Counting perms with fixed-pts. For N = 0, 1, 2, . . ., we

define PFixN (f) as the Number of N -Permutations

with precisely f many Fixed-points. So f<0 or f>N

makes PFixN (f) = 0. [By defn, PFixN (0) = δN .] �

7b: Corollary. Each f in [0 .. N ] satisfies

PFixN(f) =
N !

f !
·
N−f∑
k=0

[ 1]k

k!
†f :

Thus, the asymptotic probability of f fixed-pts is

lim
N→∞

PFixN(f)

N !
=

1/e

f !
.‡ : ♦

Proof. WLOG, f = 3. The number of permutations
of [1 .. N ] that fix, say, points 2, 6, 9 is the number of
derangements of [1 .. N ]r {2, 6, 9}; so there are δN−3

such perms.
Token-set [1 .. N ] has

(N
3

)
subsets of size 3. Thus

PFixN (3) =
(N

3

)
· δN−3

simplify
====== RhS

(
†3
)
. �
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Prelim. Below, sets D (Domain) and C (Codomain)
have cardinalities D := |D| and C := |C|; both finite.
Thus CD, the set of fncs D→C, has cardinality CD.
Easily:

[The # of injections D→C] = JC ↓ DK.∗:

Let’s compute Sur(D,C), the number of surjections.�

8a: Counting surjective fncs.With notation from above

Sur(D,C) =
C∑

k=0

[ 1]k ·
(C
k

)
·[C − k]D .†: ♦

Sur. For point y ∈ C, let Ay comprise those functions
h() which Avoid y; i.e, Range(h) 63 y. Thus

CD r
[⋃

y∈C
Ay

]
‡:

is the set of surjections.
For I ⊂ C, let AI comprise those fncs which miss

each member of I. With k := #I , then,

AI =
{
h ∈ CD

∣∣ Range(h) u I
}

and
∣∣AI

∣∣ = [C− k]D.

The number of subsets I⊂C with #I = k is
(C
k

)
. Con-

sequently, Inclusion-Exclusion yields (†). �

When D<C. There are no surjections, when D<C.
As a (†)-example, Sur(2, 3) equals(3

0

)
·32 −

(3
1

)
·22 +

(3
2

)
·12 −

(3
3

)
·02

= 1·9 − 3·4 + 3·1 − 1·0 = 9− 12 + 3 ,

which indeed equals zero. �

[A Curious Corollary of Counting sur-fncs.]

8b: A Curious Corollary. For N = 0, 1, 2, . . .

N ! =
N∑
k=0

[ 1]k ·
(N
k

)
·[N − k]N .£N : ♦

Proof. When |D| = |C| =: N , then we can identify
D with C and view each surjection as a permutation.
There are N ! permutations. And RhS(£N ) equals
RhS(†) when D= C = N. �

When |D| = |C| = 3. Computing, Sur(3, 3) equals(3
0

)
·33 −

(3
1

)
·23 +

(3
2

)
·13 −

(3
3

)
·03

= 1·27 − 3·8 + 3·1 − 1·0 = 27− 24 + 3 = 6,

which, happily, equals 3-factorial. �

TwoStirling numbers. For natnums D,C, the number
of partitions of a D-set into C many non-void-atoms,
is a “Stirling # of the 2nd kind ” , (or Stirling partition num-
ber). Here, I’ll write it as S(D, C).

Were the C many atoms labeled, then we could view
a partition as a surjective [each atom is non-empty] func-
tion from the D-set into the label-set. Consequently,

S(D, C) =
Sur(D,C)

C !
=

C∑
k=0

[ 1]k· [C − k]D

k! · [C− k]!

(((k,n))) ∈ N×N
==========

∑
k+n=C

[ 1]k · nD

k! · n!

8c:

is the nifty formula we obtain. �

9: Comps avoiding a part. What is f(N), the number
of 3-compositions of N with no PartSize=2? ♦

Remark. Bona’s text asks for f(12). �

Proof. Not yet typed. �
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Recursive Incl-Excl. This formula appears in Reduced
Recursive Inclusion-exclusion Principle for the probability of
union events by S. G. Chen.

When VPN-ed in to UF, the article is online.

Defn: For patches P1, . . . , PK , let C(P1, . . . , PK) be the car-
dinality of

⋃K
j=1 Pj .

Given patches A1, . . . , AN , let Uk :=
⋃k

j=1 Aj ; so
U0 = ∅. Easily

N⋃
j=1

Aj =
N⊔
j=1

[
Aj rUj−1

]
,

writing a union as a disjoint union.

Taking j = 4 as an example, note∣∣∣A4 rU3

∣∣∣ =
∣∣A4

∣∣ − C
(
A4 ∩A1, A4 ∩A2, A4 ∩A3

)
.

Thus

C
(
A1, . . . , AN

)
=

N∑
j=1

[∣∣Aj

∣∣ − C
(
Aj ∩A1, . . . , Aj ∩Aj−1

)]∗:

gives a recursive characterization of C(·), noting that
C(Empty list) is zero, since it equals the empty-sum,
from above.
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