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Prolegomenon. Consider a finite set, {2, of tokens.
and a finite indexing set N; let N := #N. For each
Jj € N we have a patch, a subset A; C (), and its com-
plement V; := ()~ A;. Our goal is an expression for
the cardinality of the union

U = UjGNAj'

[N.B: This note uses # to indicate the cardinality of an index-

set, and |- | for the cardinality of a token set.|

Notation. For each index-set I C N, define the
patch-intersection
1.1: Ar = 4

|and V; = ,_, ;] and notd" | Ag is all of Q.

Finally, let € comprise those index-sets I C N with
#] = k; this, for k =0,1,..., N. Easily

1.2: e = ().

2: Inclusion-Exclusion Lemma. With notation from

above: N
2a: ‘Q\U‘ = _[*1]k'Z|AI|]
k=0 I3 IIE
Alternatively,
N ~-
2 v = [71]’“‘1~Z|AI|]. o
k=1 I:Ice,

Pf = . Adding the RhSes causes cancellation,
with only the k=0 term remaining. So

QN U| + RhS@Y) = [1°-|Ag| 2= |0).

So RhS equals ‘U} ¢

“IFor index-sets I,J C N, by definition A; N Ay = A;us. In
particular, A; N Az equals A;. L.e, Ay is the identity element
for intersection, on the powerset of 2. So Ay is €.
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To establish , let’s prove something a little
stronger. Each subset S C ) yields a function
15:92—{0, 1}, the “indicator function of S”,

s o 0 whenze Q-S|

Indicator fncs allow us to restate intersection ITOf
multiplication: For a set I of indicies,

L1l 1a, = [ljerly; -
Let’s strengthen to equality of functions,
N

31: 1oy = Z[H]R.Zlm}

k=0 1:1€Cy

Proof of (3.1). The RhS(3.1)) equals
x: [T - 1] 2= ] 14,

JEN JEN

After all, the LhS(x) product expands to the sum, over

all subsets I C N, of [][-14,]. This latter product,
jel
letting k := #I, equals [-1]¥ - 14, courtesy (L.1f).
By DeMorgan's law, Q~\U = ;exVj. So
LhS(3.1)) is 1v,,. Hence (3.1]) boils down to the trivi-
ality that

ly, = HjeN Ly, . ¢

4: Rem. We can rewrite (2al) in simpler [but often less
convenient| form, ITOf summing over all subsets of N:

> I 1AL] 0

I:ICN

4a: ’Q\U| =
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Incl-Excl Examples

5: Counting limited candy. The store sells jelly-Beans
and Chocolate squares and Dates. Mom allows you a
total of 20 candies.

Alas!, the store only has 8B and 5C and 13D.
Stars-and-Bars counts how to pick out of mul-
tiset {ocoB,00C,00D}.  The relevant multiset is
{8B,5C,13D}; so how do we count? O

Candy soln. Let ©Q be the set of natnum triples
(B,C, D) with B+C+D = 20. We'll count the “good”
[B<8 & ¢<5 & D<13] triples, using Incl-Excl.

Let Ap be the set of natnum-triples that are
“Awful” because B > 8. Hence,

Why? 3 2411
Ag| —= = = 78.
| Ag| |[20 B [8+1]H < ) 78

So |Ac| = [y_fsq] = (%) = 120, and |Ap| = 28.

For pairwise intersections

Why? 3 2+5
AN Ac| —= = = 21.
450 Ac |[20—[8~|—5+2]H ( 2 >

Why?

Also, [ApN Ap| = [207[8i13+2}]] - [[negitive]] 0,
and [Ac N Ap| = [20—[5j—13+2ﬂ] =[] =1

For the sole three-fold intersection
|AgﬂAcﬂAD| = H

Since [[230]] = 231, the number of good triples is
Q| — (\AB| + |Ac| + |AD\)
+ (‘ABﬂAc‘ + |ABﬂAD‘ + |AcﬂAD|)
— |[Ag N Ac N Ap|
= 231 — [78+120+28] + [21+0+1] — 0.

This equals 27. ¢

Incl-Excl Examples

3 3
= = 0.
20 — [8+5+13+3]ﬂ |Llegﬂ

Page 2 of@

Doubting Thomas. Here are the 27 good triples:

(2513) (3413) (835 12) (4 3 13) (4 4 12) (4 5 11)
(6 213) (63 12) (54 11) (565 10) (6 1 13) (6 2 12)
(6 3 11) (64 10) (65 9) (70 13) (7 112) (7 2 11)
(7310) (74 9) (75 8) (80 12) (81 11) (8 2 10)
(83 9) (84 8) (85 7)

O

6: Cardinality independence. In some combina-
torial applications, cardinality |A ;| depends only on
the number of patches being intersected. In that in-
stance, let F'(k) be |A|, for each and every index-set
I satisfying 71 = k. So rewrite as

o~ul = 3 [FF ) F)]

6a: ko:OO
= Y [Fr@)-Fm ],
k=0
where, for k>N, our (]Z )= [[Nljk’]] is zero. O
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7: Probability of getting your own hat. The N guests
leaving your party grab their hats at random from
your dark closet. What does Pr(N), the probability
that no one gets his own hat, tend to as N /‘c0?

Hat soln.  For a subset I of your guests, the prob-
ability that each person in I took his own hat is
P; =[N — k]!/N!, where k := #I. As this probabil-
ity only depends on k, we will also call it .. By the
principle of inclusion /exclusion our Pr(/V') equals

prj —l—Z?] —ZTI +...+ [*1]N Z?]

I:#[=1 [I.:#]=2 [I.#]=3 I: #[=N

Y (V) Py

N 1A
- yEL

k=0

=1 -2+ )R- G)Ps+...+
N

N Lk, N) [N k:
Shr ()

This last is the first N+1 terms of the Taylor series
for el. Thus lim, .. Pr(n) equals 1/e = 0.368. ¢

Derangements. A derangement of an N-set is a
fized-point free permutation of that set; let D be the
set of derangements, and oy = |[Dy| the number of
derangements. Thus

Ta: oy =

is a restatement of the above probability.
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Counting perms with fized-pts. For N =0,1,2, ..., we
define PFixy(f) as the Number of N-Permutations
with precisely f many Fixed-points. So f<0 or f>/N
makes PFixy(f) = 0. [By defn, PFixn(0) = & .| O

7b: Corollary. Fach f in [0.. N] satisfies

NI &)
£l 2 k!

k=0

"'f . PFIXN(f)

Thus, the asymptotic probability of f fixed-pts is

. . PFIXN(f) . 1/6
foo fim —o = o 0

Proof. WLOG, f = 3. The number of permutations
of [1.. N| that fix, say, points 2. 6,9 is the number of
derangements of [1.. N] ~ {2,6,9}; so there are dy_3
such perms.

Token-set [1.. N| has (];) subsets of size 3. Thus

simplify

PFixy(3) = (§) - 0n-3 RhS(f5). ¢
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Below, sets D (Domain) and C (Codomain)
|D| and C = |C|; both finite.

Prelim.
have cardinalities D =

Thus €%, the set of fncs D—EC, has cardinality CP.
Easily:
%2 [The # of injections D%G] = [[C $ D]].

Let’s compute Sur(D, C), the number of surjections.]

8a: Counting surjective fncs. With notation from above

C

te Sur(D,C) = B9 [C — KP. O

Sur. For point y € €, let A, comprise those functions
h() which Avoid y; i.e, Range(h) # y. Thus

o D
i N e A,]
is the set of surjections.

For I C @, let Aj comprise those fncs which miss
each member of I. With k := 7], then,

A ={h € @P | Range(h) NI} and |Af| = [C — k]P.

The number of subsets 7CC with #I =k is (%) Con-

sequently, Inclusion-Exclusion yields (7). ¢
When D<C. There are no surjections, when D<C.
As a (f)-example, Sur(2,3) equals
(0)3% = ()2* + ()12 - (307
=19 — 34 + 31 — 1.0 = 9—-12+3,
which indeed equals zero. O
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[4 Curious Corollary of Counting sur-fncs.]

8b: A Curious Corollary. For N =0,1,2,...

SOFE )N = RV 0

k=0

Proof. When |D| = |€| = N, then we can identify
D with € and view each surjection as a permutation.
There are N! permutations. And RhS(£y) equals
RhS(}1) when D= C = N. ¢

When |D| = |€| = 3. Computing, Sur(3, 3) equals

(03 - 2+ 1 - ()0
=127 — 38 + 31 — 10 = 27— 24+3 = 6,

which, happily, equals 3-factorial. 0

TwoStirling numbers. For natnums D, C, the number
of partitions of a D-set into C many non-void-atoms,

is a ““Stirling # of the 2" kind”, (or Stirling partition num-
ber). Here, I'll write it as S(D, C).

Were the C many atoms labeled, then we could view
a partition as a surjective [each atom is non-empty]| func-
tion from the D-set into the label-set. Consequently,

_ Suwr(D,C) D QO < [c - k]D
S(D, C 1k —
0

8c: 5

(k,n) € NxN Z [ k n

i) © e S1LE

b C k! n!

is the nifty formula we obtain. O
9: Comps avoiding a part. What is f(N), the number
of 3-compositions of N with no PartSize=27 O
Remark. Bona’s text asks for f(12). O
Proof. Not yet typed. ¢
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Recursive Incl-Excl. This formula appears in Reduced

Recursive Inclusion-exclusion Principle for the probability of

union events by S. G. Chen.
When VPN-ed in to UF, the article is lonline.

DEFN: For patches P, ..., Px,let C(Py, ..., Py ) be the car-
L K
dinality of Uj:] P;
Given patches Aq,..., Ay, let Uy = U§:1 Aj; so

Uy = 9. Easily
N

N
U4, = [A; N U],

j=1 j=1
writing a union as a disjoint union.

Taking j = 4 as an example, note

[AsNUs| = [Ad] = C(Aan Ar, AN Ay, A4 As).
Thus
C(Al,...,AN)
#58 N
ZUA|— AjﬂAl,..‘,AjﬁAj_l)}

gives a recursive characterization of C'(-), noting that
C'(Empty list) is zero, since it equals the empty-sum,
from above.
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