

JK Putnam Competition Solns

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 5 November, 2017 (at 09:38)

1.0: B3.2009. (Let \equiv mean \equiv_2 , congruence mod 2.) A subset $\mathbf{S} \subset [1..N]$ is **mediocre**¹ if:

$$1.1: \quad \forall x,y \in \mathbf{S}: \text{ If } x \equiv y \text{ then } \mathbf{S} \ni \frac{x+y}{2}.$$

For $n \in \mathbb{N}$, let V_n be the number of mediocre subsets (including \emptyset) of $[1..n]$. Characterize those “**good**” n st.

$$1.2: \quad V_{n+2} - 2V_{n+1} + V_n = 1. \quad \diamond$$

Prelims. Note that $V_0 = 1$, $V_1 = 2$, $V_2 = 4$ and $V_3 = 7$. So $n=0$ and $n=1$ are each good.

The defn of *mediocre* makes sense for arbitrary subsets of $\mathbf{S} \subset \mathbb{Z}$. The collection, \mathcal{M} , of mediocres is sealed under:

Intersection: $\mathbf{S}_1 \cap \mathbf{S}_2$ is mediocre.

Translation: $\mathbf{S} + k$ is mediocre.

Odd scaling: $D\mathbf{S}$ is mediocre, for each odd integer D .

Stronger than *mediocrity* is *convexity*; \mathbf{S} is **convex** if:

$$\forall x,y \in \mathbf{S}, \forall \lambda \in [0,1]: \text{ If } \lambda x + [1-\lambda]y \text{ is an integer, then } \mathbf{S} \text{ owns it.}$$

Evidently, an $\mathbf{S} \subset \mathbb{Z}$ is convex $\text{IFF } \mathbf{S}$ is an **IntOfInt**, an interval-of-integers (possibly infinite, or empty).

For a set T of integers, generalize to let V_T be the number of mediocre subsets of T . Inclusion/exclusion gives that

$$1.3: \quad V_{[0..n+1]} = V_{[0..n]} + V_{[1..n+1]} - V_{[1..n]} + E_{n+1}.$$

Here, E_{n+1} is the number of **extreme** mediocre subsets $\mathbf{S} \subset [0..n+1]$, in that $\mathbf{S} \supset \{0,n+1\}$. So (1.2) is asking for those natnums n having $E_{n+1} = 1$. \square

¹A pun, I suppose, on “average”. The term “mean” could also have been used.

Soln B3.2009 (JK). I will show that

1.4: $\text{GOOD} = \text{Reduced-PoTs}, \text{ i.e., } n \text{ in } \{0,1,3,7,15, \dots\}.$ So $E_{n+1} = 1$, i.e (1.2), **IFF** $n+1$ is a power-of-two.

Take consecutive members $x < y$ of a mediocre \mathbf{S} ; so $\{x,y\} \stackrel{\text{note}}{=} \mathbf{S} \cap [x..y]$ is mediocre. Average $\frac{x+y}{2}$ is not in \mathbf{S} , necessitating $x \neq y$. Thus:

In a mediocre set, each **gap** between consecutive elements is odd.

Now consider *three* consecutive elements and translate so that the middle is zero; call them $-G < 0 < H$. Since each gap, G and H , is odd, necessarily \mathbf{S} owns $\frac{-G+H}{2}$. So this average **must be** the middle term. Consequently $H = G$; consecutive gaps are equal. Thus:

1.5: A subset $\mathbf{S} \subset \mathbb{Z}$ is mediocre **IFF** \mathbf{S} is an arithmetic progression (finite, 1-sided infinite or 2-sided infinite) with odd gap-length.

(Here, we generously allow \emptyset and singletons to be called “arithmetic progressions”.)

For an $L \in \mathbb{Z}_+$, what are the “extreme” subsets of interval $[0..L]$? There is one such for each positive odd divisor of L , since these are the possible gap-lengths. Write $L = D \cdot 2^m$ with D odd and m a natnum. Since 1 and D are each divisors of D , interval $[0..L]$ has just one extreme subset **IFF** $D = 1$, i.e, L is a power-of-two. Hence (1.5). \diamond

Post mortem. For a posint $D = p_1^{e_1} \cdots p_K^{e_K}$ (distinct primes, with each $e_j \in \mathbb{Z}_+$), recall $\tau(D)$ is the number of positive divisors D has. This equals the product

$$*: \quad [1+e_1] \cdot [1+e_2] \cdots [1+e_K].$$

So the number of “extreme” subsets of $[0..L]$, E_L , is (*), having written $L = D \cdot 2^m$ with D as above. For all n , then,

$$1.2': \quad V_{n+2} - 2V_{n+1} + V_n = \tau(\text{Odd}(n+1)). \quad \square$$

Typeset 1 Putnam problems...

Filename: <Problems/Putnam/putnam-JK-solns.latex>
 As of: Monday 09Jul2012. Typeset: 5Nov2017 at 09:38.