

(Due Wednesday, 30Sep2009. Please **staple this sheet as the first page of your write-up.**)

Notation. Our prob. space $\mathbb{X} := (X, \mathcal{X}, \mu)$ engenders a *complex* Hilbert space $\mathbf{H} := \mathbb{L}^2(\mu, \mathbb{C})$.

H6: With T is a bi-mpt on \mathbb{X} , define $\mathbf{U} = \mathbf{U}_T$ by $\mathbf{U}f := f \circ T$, a unitary op on \mathbf{H} .

a For each convergence notion Reg/AbsCes/Cesàro of a sequence of numbers, prove that if

$$* : \langle f, \mathbf{U}^n g \rangle \xrightarrow{n \rightarrow \infty} \langle f, \mathbf{1} \rangle \cdot \langle \mathbf{1}, g \rangle$$

for all fncs f, g in some dense subset of \mathbf{H} , then it holds for *every* pair $f, g \in \mathbf{H}$.

b Prove that T is *mixing/weak-mixing/ergodic* as $\forall f, g \in \mathbf{H}$:

$$** : \langle f, \mathbf{U}^n g \rangle \xrightarrow{n \rightarrow \infty} \langle f, \mathbf{1} \rangle \cdot \langle \mathbf{1}, g \rangle$$

in the Regular/AbsCesàro/Cesàro sense. Our defn/conclusion-of-thm, for these three properties, is that $(**)$ holds when f and g are indicator-fncs of sets.

H7: Here, $Z_1, Z_2, Z_3, \dots \subset \mathbb{N}$ are zero-density sets.

i Prove that each *finite* union $U_K := Z_1 \cup \dots \cup Z_K$ has zero-density.

ii For sets $Y, Z \subset \mathbb{N}$, say that “set Y *eventually includes* Z ” if there exists $n \in \mathbb{N}$ with

$$Y \supset Z \cap [n.. \infty).$$

Construct a *zero-density* Y such that for every index j , our Y eventually-includes Z_j .

APPENDIX. For a sequence $\vec{c} := (c_0, c_1, \dots)$, write $c_n \xrightarrow[n \rightarrow \infty]{\text{Reg}} 0$ for “regular convergence”.

Use $c_n \xrightarrow[n \rightarrow \infty]{\text{AbsCes}} 0$ for **absolute Cesàro** convergence: $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} |c_k| = 0$.

Use $c_n \xrightarrow[n \rightarrow \infty]{\text{Cesàro}} 0$ for plain **Cesàro** convergence: $\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} c_k = 0$.

More generally, for a complex number α , say

$$c_n \xrightarrow[n \rightarrow \infty]{\text{Reg/AbsCes/Ces}} \alpha$$

IFF $[c_n - \alpha] \xrightarrow[n \rightarrow \infty]{\text{Reg/AbsCes/Ces}} 0$, respectively. \square

APPENDIX. The **upper density** of a subset $Y \subset \mathbb{N}$ is

$$\overline{\text{Den}}(Y) := \limsup_{n \rightarrow \infty} \frac{|Y \cap [1..n]|}{n}.$$

Its **lower density** $\underline{\text{Den}}(Y)$ is defined by $\liminf_{n \rightarrow \infty}$. If the two are equal, then Y has a **density**, written $\text{Den}(Y)$.

So a set with $\overline{\text{Den}} = 0$ has density-zero, and a set with $\underline{\text{Den}} = 1$ has **full density**, i.e density-one.

Example. Let E be the set of n whose high-order digit is 1. Lower density occurs at numerals

OTForm $\underbrace{9\dots9}_k$. Each block of **numerals-that-start-with-1** is one of nine equal-length blocks (starting with “1”, “2”, …, “9”), so $\underline{\text{Den}}(E) = \frac{1}{9}$.

Upper density occurs at $\underbrace{19\dots9}_k$, but $\underbrace{20\dots0}_k$, suffices for asymptotics. With $n := 2 \cdot 10^k$, then,

$$|E \cap [1..n]| = \frac{1}{9} \cdot [10^k - 1] + 10^k.$$

Dividing by n , then sending $k \rightarrow \infty$, gives $\overline{\text{Den}}(E) = \frac{10}{18} = \frac{5}{9}$. So E is a set whose upper-density is five times its lower. \square