

(Due Monday, 21Sep2009, hopefully. Please **staple this sheet** as the **first page** of your write-up.)

Notation. On a normed vectorspace, the ***operator-norm*** of a linear operator $U: \mathbf{H} \rightarrow \mathbf{H}$, written $\|U\|_{\text{op}}$, is the supremum of $\|Uv\|$ over all unit-vectors $v \in \mathbf{H}$. If $\|U\|_{\text{op}} \leq 1$ then we call U a ***weak contraction***. Finally, use

$$\text{Fix}_U := \{v \in H \mid Uv = v\}$$

for the set of fixed-points of U .

On an *inner-product space* \mathbf{H} , the “*adjoint* of U ” is the linear operator U^* that satisfies

$$\forall \mathbf{v}, \mathbf{w} \in \mathbf{H} : \quad \langle \mathbf{U}^* \mathbf{v}, \mathbf{w} \rangle \quad = \quad \langle \mathbf{v}, \mathbf{U} \mathbf{w} \rangle .$$

H4: Henceforth $U: \mathbf{H} \rightarrow \mathbf{H}$ is a weak contraction on a Hilbert space. (Below, are two facts we used in our proof of the full L^2 Ergodic Thm.)

a Please prove that U^* is a weak contraction. (You are free to establish a stronger statement.)

 Prove that $\text{Fix}_{U^*} = \text{Fix}_U$.

H5: Fix a rotation number $\alpha \in \mathbb{R}$. Let X and Y denote copies of $[0, 1]$, viewed (and topologized) as the circle-group, with \oplus and \ominus denoting addition and subtraction mod 1. Use $m()$ for arclength measure, and let $R=R_\alpha$ be the rotation $x \mapsto x \oplus \alpha$.

Prove that $R \times R$ is measure-theoretically isomorphic to $Id \times R$, by producing an explicit (very simple) bi-mp map $f: X \times Y \rightarrow X \times Y$ such that this diagram

$$\begin{array}{ccc} X \times Y & \xrightarrow{R \times R} & X \times Y \\ f \downarrow & & f \downarrow \\ X \times Y & \xrightarrow{Id \times R} & X \times Y \end{array}$$

commutes. (Here, $Id = Id_X$ is the identity map on X .) The f that I'm imagining is a homeomorphism, and is “algebraic”. Make sure to prove that *your* f is measure-preserving. Please draw a *picture* showing how your f works. (By the way, how does your f vary as a function of α ?)

Finally, use your isomorphism to show that $R \times R$ is *never* ergodic (no matter what α is). Produce an explicit non-trivial $R \times R$ -invariant set.