

W1: Let $\mathbb{K} \subset \mathbb{C}$ be the unit-circle in the complex plane, equipped with normalized arclength measure. Let $S: \mathbb{K} \rightarrow \mathbb{K}$ be the squaring-map $z \mapsto z^2$, which is a measure-preserving 2-to-1 map on \mathbb{K} .

Prove that S is measure-theoretically isomorphic to the 1-sided shift on head-tails coin-flip space, where

$$\begin{aligned}\text{Prob(HEADS)} &= 1/2 \quad \text{and} \\ \text{Prob(TAILS)} &= 1/2.\end{aligned}$$

Of course, S is not *topologically* isomorphic to the shift, since S lives on a circle, and the shift lives on a Cantor-set.

W2: For B a complex number, let \mathcal{N}_B be the Newton's method map to find a zero of polynomial

$$\begin{aligned}g_B(x) &:= x^2 - B^2. \quad \text{Thus} \\ \mathcal{N}_B(x) &= [x^2 + B^2]/[2x].\end{aligned}$$

Use $\mathbf{N}()$ as a shorthand for $\mathcal{N}_1()$. Since $\mathbf{N}(z)$ equals $\frac{1}{2}[z + \frac{1}{z}]$, it averages a number and its reciprocal.

a Argue that \mathcal{N}_B is well-defined as a map of the Riemann-sphere, $\dot{\mathbb{C}}$, to itself.

b For $B \neq 0$, show that \mathcal{N}_B is *topologically conjugate* to \mathcal{N}_1 . That is, find a homeomorphism $f: \dot{\mathbb{C}} \rightarrow \dot{\mathbb{C}}$ such that this diagram commutes:

$$1: \quad \begin{array}{ccc} \dot{\mathbb{C}} & \xrightarrow{\mathcal{N}_B} & \dot{\mathbb{C}} \\ f \downarrow & & \downarrow f \\ \dot{\mathbb{C}} & \xrightarrow{\mathcal{N}_1} & \dot{\mathbb{C}} \end{array}$$

Thus \mathcal{N}_B and \mathcal{N}_1 have “identical dynamics”.

Is \mathcal{N}_0 well-defined on $\dot{\mathbb{C}}$? Is it conjugate to \mathcal{N}_1 ?

c Find a topological conjugacy, h , which carries \mathbf{N} to the squaring-map $z \mapsto z^2$ on $\dot{\mathbb{C}}$.

Use symbol $\dot{\mathbb{I}} := [\text{Imaginary axis}] \cup \{\infty\}$, for the “imaginary circle” in the Riemann-sphere. Show that the restriction $\mathbf{N}|_{\dot{\mathbb{I}}}$ is conjugate to the squaring-map S on the circle \mathbb{K} . Hence $\mathbf{N}|_{\dot{\mathbb{I}}}$ is chaotic. Call a point $z \in \dot{\mathbb{I}}$ “bad” if its forward \mathbf{N} -orbit is dense in $\dot{\mathbb{I}}$. Then the isomorphism of (W1) tells us that there is a dense set of bad points in $\dot{\mathbb{I}}$.

d Use the above h to show that, under \mathbf{N} : The Basin-of-Attraction of fixed-point -1 is $\{z \mid \text{Re}(z) < 0\}$, the open left half-plane. And the \mathbf{N} BoA of $+1$ is the open right half-plane.

ADDENDUM. Here are some comments on (W2).

W2b: Define $f(z) = f_B(z) := z/B$. So

$$2: \quad f^{-1}(\mathbf{N}(f(z))) = B \cdot \frac{[\frac{z}{B}]^2 + 1^2}{2 \cdot \frac{z}{B}},$$

which indeed equals $\mathcal{N}_B(z)$.

Certainly $\mathcal{N}_0 \stackrel{\text{note}}{=} [x \mapsto \frac{x}{2}]$ is well-defined, but diagram (??) fails, since f_B needs $B \neq 0$ in order to be invertible. To see that there is no *other* topological conjugacy, note:

On the Riemann-sphere, the set of fixed-points of \mathcal{N}_B is precisely $\{B, -B, \infty\}$.

So \mathcal{N}_0 has only *two* fixed-points, but each other \mathcal{N}_B has *three* fixed-points. \square

W2c: We do both parts in one swell foop.

On $\dot{\mathbb{I}}$: Our \mathbf{N} fixes ∞ , and sends $i \mapsto 0 \mapsto \infty$.

On \mathbb{K} : Our S fixes 1 , and sends $i \mapsto -1 \mapsto 1$.

So we consider the Möbius transformation

$$3: \quad \begin{array}{l} \infty \mapsto 1 \\ 0 \mapsto -1 \quad \text{by} \quad y = h(x) := \frac{x-1}{x+1} \\ i \mapsto i \end{array}$$

Its inverse-fnc is $h^{-1}(y) = \frac{1+y}{1-y}$. Composing gives

$$4: \quad \begin{array}{ccc} \dot{\mathbb{C}} & \xrightarrow{\mathbf{N}} & \dot{\mathbb{C}} \\ h \downarrow & & \downarrow h \\ \dot{\mathbb{C}} & \xrightarrow{z \mapsto z^2} & \dot{\mathbb{C}} \end{array}$$

Composing (??) with (??) carries \mathcal{N}_B to squaring. \square

Filename: Classwork/Analysis/Erg2009t-2010g/hw0.Erg2009t.
latex
As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:10.