

Homework due 20Mar2000

Number Theory
MAS 4203

Jonathan L.F. King
University of Florida, Gainesville 32611-2082, USA
squash@ufl.edu
Webpage <http://squash.1gainesville.com/>
3 August, 2016 (at 17:44)

P1: On an arbitrary set X , let Id_X be the *identity map* $x \mapsto x$. Fix two (possibly infinite) sets X and Y and a map $f: X \rightarrow Y$. Please prove:

- [a] f is injective (1-to-1) *iff* $\exists g: Y \rightarrow X$ such that $g \circ f = Id_X$.
- [b] f is surjective (onto) *iff* $\exists g: Y \rightarrow X$ such that $f \circ g = Id_Y$.

P2: [i] For positive integers N and K , attempt to define a map $\theta: \mathbb{Z}_N \rightarrow \mathbb{Z}_K$ by

$$\theta(x) := \langle x \rangle_K \in [0..K].$$

Prove that θ is well-defined *iff* $N \mid K$.

When θ is well-defined, prove that θ is a surjective ring hom(omorphism).

[ii] Suppose that $\psi: G \rightarrow H$ is a bijective ring-hom. Prove that $\psi^{-1}: H \rightarrow G$ is a ring-hom. In consequence, ψ is a ring-iso(morphsim).

P3: Let $f(x) := x^3 - 13x^2 + 44x - 32$.

[a] Make a 3-column table listing all solutions to the congruence $f(x) \equiv_M 0$, for $M = 3, 5, 7$, successively. [Hint: Rather than randomly plug-in values, first find a small integer root R of h , then divide $x - R$ into $f(x)$. Now use the Q.F. to factor h as $f(x) = [x - R][x - S][x - T]$. Now work mod M .]

[b] Use the CRT to count the number of solutions to $f(x) \equiv_{105} 0$. (It goes without saying (but I'm going to say it anyway) that 105 equals $3 \cdot 5 \cdot 7$.) Use EuclAlg to compute some integers A, B, C so that

$$1: \quad f((x, y, z)) := \langle Ax + By + Cz \rangle_{105}$$

is a ring-iso from $\mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7$ onto \mathbb{Z}_{105} .

[c] Use your ring-iso to calculate all twelve solutions to $f(x) \equiv_{105} 0$. (Check a few!) Try to exhibit the 3-dimensionality of the solution set.

P4: Let $h(\cdot)$ be the polynomial from the preceding problem.

[d]

Let $P(K)$ be the product of the first K primes. How many solutions does $f(x) \equiv 0$ have, mod $P(K)$? Call the number of solutions $s(K)$. [Hint: Recall the factoring from part (a).]

[e]

Let P denote the product of all primes in $[1..10^6]$. Use PNT (Prime Number Thm) to estimate the number of solutions to $h(x) \equiv_P 0$. Express your answer in the form $10^{\text{something}}$.

Chinese Remainder Thm

We work our way towards one version of CRT, in bitsy steps.

2: Lemma. If $\psi_j: G \rightarrow H_j$ are ring-homs, for j in $[1..K]$, then $f: G \rightarrow H_1 \times H_2 \times \dots \times H_K$ is a ring-hom, where

$$2': \quad f(x) := (\psi_1(x), \dots, \psi_K(x)) \quad \diamond$$

3: Corollary. Suppose P, A_1, \dots, A_K are posints. Then mapping

$$x \xrightarrow{f} (\langle x \rangle_{A_1}, \dots, \langle x \rangle_{A_K})$$

is a ring-hom from \mathbb{Z}_P to $\mathbb{Z}_{A_1} \times \dots \times \mathbb{Z}_{A_K}$ iff each A_j divides P . [Exercise: If some two of the A_j fail to be coprime, then f is not surjective.] \diamond

4: Notation. Let $\vec{A} = (A_1, \dots, A_K)$ be a tuple of posints. Let $P := \prod_{j=1}^K A_j$ and let \vec{M} be the tuple with $M_j := P/A_j$. Use \mathbf{z} for a general point in $\mathbb{Z}_{A_1} \times \dots \times \mathbb{Z}_{A_K}$. \square

5: Lemma. WNFrom (with notation from) immediately above: Tuple \vec{A} is pairwise coprime iff $\text{Gcd}(\vec{M}) = 1$. \diamond

6: Chinese Remainder Theorem (CRT). WNFrom(4), suppose that \vec{A} is pairwise coprime. Then:

i: There is a unique ring-iso $f: \mathbb{Z}_P \rightarrow \mathbb{Z}_{A_1} \times \dots \times \mathbb{Z}_{A_K}$ specified by $f(x) := (\langle x \rangle_{A_1}, \dots, \langle x \rangle_{A_K})$.

ii: Let $g := f^{-1}$. Suppose \vec{C} is a tuple satisfying these two conditions:

$$6.1: \quad \sum_{j=1}^K C_j \equiv_P 1;$$

$$6.2: \quad \text{For all pairs } j \neq k: \quad C_j \bullet A_k.$$

Then $g(\mathbf{z}) = \langle \sum_1^K z_j C_j \rangle_P$. (That is, \vec{C} is a “magic tuple”.) \diamond

Remark. Lemma 5 tells us that EuclAlg can provide us with a tuple \vec{T} so that $\sum_1^K T_j M_j = 1$. Thus $C_j := T_j M_j$ defines a particular magic tuple.

An alternative \vec{C} can be compute as follows (Steven Hicks): Let

$$7: \quad C_j := M_j * \langle 1/M_j \rangle_{A_j}.$$

This immediately satisfies (??.2). Thus $S := \sum_1^K C_j$, taken mod A_1 , is congruent to $M_1 \cdot \langle 1/M_1 \rangle_{A_1}$, i.e, to 1. For each j , then, $S \equiv_{A_j} 1$. Thus $S \equiv 1 \pmod{P}$, as needed by (6.2). \square

Observation. Given a point \mathbf{z} , consider the sum $S := \sum_1^K z_j C_j$ modulo, say, A_5 . By (??.2), then, A_5 divides C_j for each $j \neq 5$. Thus for y an arbitrary integer, the product $z_j C_j \equiv y C_j$ modulo A_5 . In particular, $z_j C_j$ is congruent to $z_5 C_j$. Thus S is congruent mod A_5 to

$$\sum_{j=1}^K z_j C_j = z_5 \cdot \sum_{j=1}^K C_j \equiv_{A_5} z_5 \cdot 1 = z_5.$$

Nothing is special about “5” in this argument. So we conclude:

$$8: \quad \text{For each index } k \text{ and for each tuple } \mathbf{z} \text{ of integers: } \sum_{j=1}^K z_j C_j \equiv_{A_k} z_k. \quad \square$$

Proof that g and f are well-defined. Note that (6.2) together with UFT shows that $C_1 \bullet A_2 A_3 \cdots A_K$. More generally,

$$*: \quad \forall j: \quad A_j C_j \equiv_P 0.$$

Now observe that

$$\begin{aligned} g(z_1 + A_1, z_2, \dots, z_K) &\equiv_P A_1 C_1 + \sum_1^K z_j C_j \\ &\equiv_P 0 + \sum_1^K z_j C_j \equiv_P g(\mathbf{z}) \quad \text{by } (*). \end{aligned}$$

Similarly, the g -value is unchanged if we add a multiple of A_j to z_j . Thus $g()$ is well-defined.

That f is well-defined follows from HW problem **P2**. \spadesuit

Proof of (6), the CRT. Courtesy of **P1** and **P2**, we need but show that $f \circ g$ and $g \circ f$ are the appropriate identity maps.

Let $\mathbf{y} := f(g(\mathbf{z}))$. By definition, $y_1 \equiv_P \sum_1^K z_j C_j$. Thus

$$\begin{aligned} y_1 &\equiv_{A_1} \sum_1^K z_j C_j, \quad \text{since } A_1 \bullet P, \\ &\equiv_{A_1} z_1, \quad \text{by (8).} \end{aligned}$$

Similarly, each $y_j \equiv z_j \pmod{A_j}$, so $f(g(\mathbf{z})) = \mathbf{z}$.

Establishing that $g \circ f = Id$. Fixing x , our goal is

$$*: \quad x \equiv_P g(f(x)).$$

Let us first work mod A_1 . Since A_1 divides P ,

$$\begin{aligned} g(f(x)) &\equiv_{A_1} \sum_{j=1}^K \langle x \rangle_{A_j} \cdot C_j \\ &\equiv_{A_1} \langle x \rangle_{A_1}, \quad \text{by (8).} \end{aligned}$$

That is, A_1 divides the difference $x - g(f(x))$ and, similarly, so does each A_j . By pairwise coprimeness of \vec{A} , then, the UFT tells us that the product $A_1 \cdots A_K$ also divides $x - g(f(x))$. And this is (*), as desired. \spadesuit

The Euler Phi function

For an element α of a commutative group $(G, \oplus, 0)$, let “ $k\alpha$ ” be an abbreviation for

$$\underbrace{\alpha \oplus \alpha \oplus \cdots \oplus \alpha}_{k \text{ occurrences of } \alpha},$$

when k is a natural number. When k is negative, let “ $k\alpha$ ” mean $-k \cdot \beta$, where β here means the additive inverse $\ominus \alpha$.

Let $\text{Ord}(\alpha)$, the *order* of α , be the minimum of positive integers k so that $k\alpha = 0$. (If there is no such k ,

then the minimum is $\text{Ord}(\alpha) = +\infty$.) As an example, in $G := \mathbb{Z}_{15}$, the order of $\alpha := 10$ is 3. Evidently,

9: In \mathbb{Z}_N : $\text{Ord}(\alpha) = \frac{N}{\text{Gcd}(N, \alpha)}$, which, for $\alpha \neq 0$, equals $\frac{\text{Lcm}(N, \alpha)}{\alpha}$.

If the set of multiples, $\{k\alpha \mid \alpha \in \mathbb{Z}\}$, is all of G then we call α a “**generator** of G ”. Easily, a group G has a generator exactly when G is a copy of some \mathbb{Z}_N or of \mathbb{Z} .

Let $\Phi(G)$ denote the set of generators of G . So $\Phi(\mathbb{Z}) = \{\pm 1\}$ and $\Phi(\mathbb{Z}_N)$ equals “big Phi of N ”, the set of $k \in [1..N]$ which are coprime to N .

Product groups.

Exercise. If N not prime and $N \neq 4$, then $\prod([1..N]) \equiv_N 0$.

Generalizing Wilson's thm

Let $F(N)$ be the number of pairs $\pm R$ of mod- N square-roots of 1; $R^2 \equiv_N 1$.

10: Obs. Suppose $N \geq 3$ and $b \perp N$. ◊

11: Wilson's Thm. For all $N \geq 3$:

$$\prod(\Phi(N)) \equiv_N [-1]^F. \quad \diamond$$