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P1: On an arbitrary set X, let IdX be the identity
map x 7→ x. Fix two (possibly infinite) sets X and Y and

a map f :X→Y . Please prove:
a

f is injective (1-to-1)

iff ∃g:Y→X such that g ◦ f = IdX .
b

f is surjective
(onto) iff ∃g:Y→X such that f ◦ g = IdY .

P2:
i

For positive integers N and K, attempt to
define a map θ:ZN→ZK by

θ(x) := 〈x〉K ∈ [0 ..K) .

Prove that θ is well-defined iff N |• K.
When θ is well-defined, prove that θ is a surjective ring-

hom(omorphism).

ii
Suppose that ψ:G→H is a bijective ring-hom. Prove

that ψ 1:H→G is a ring-hom. In consequence, ψ is a ring-
iso(morphsim).

P3: Let f(x) := x3 − 13x2 + 44x− 32.
a

Make a 3-column table listing all solutions to the
congruence f(x) ≡M 0, for M = 3, 5, 7, successively. [Hint:

Rather than randomly plug-in values, first find a small integer root R

of h, then divide x − R into f(x). Now use the Q.F. to factor h as

f(x) = [x−R][x− S][x− T ]. Now work mod M .]

b
Use the CRT to count the number of solutions to

f(x) ≡105 0. (It goes without saying (but I’m going to say it anyway)

that 105 equals 3·5·7.) Use EuclAlg to compute some integers
A,B,C so that

f
(
(((x, y, z)))

)
:= 〈Ax+By + Cz〉1051:

is a ring-iso from Z3 × Z5 × Z7 onto Z105.

c
Use your ring-iso to calculate all twelve solutions

to f(x) ≡105 0. (Check a few!) Try to exhibit the 3-
dimensionality of the solution set.

P4: Let h(·) be the polynomial from the preceding prob-

lem.
d

Let P (K) be the product of the first K primes.
How many solutions does f(x) ≡ 0 have, mod P (K)? Call
the number of solutions s(K). [Hint: Recall the factoring from

part (a).]

e
Let P denote the product of all primes in [1 .. 106].

Use PNT (Prime Number Thm) to estimate the number of
solutions to h(x) ≡P 0. Express your answer in the form
10something.

Chinese Remainder Thm

We work our way towards one version of CRT, in bitsy
steps.

2: Lemma. If ψj :G→Hj are ring-homs, for j
in [1 ..K], then f :G→ H1 ×H2 × . . .×HK is a ring-
hom, where

f(x) :=
(((
ψ1(x), . . . , ψK(x)

)))
2′: ♦

3: Corollary. Suppose P,A1, . . . , AK are posints. Then
mapping

x
f7→
(((
〈x〉A1

, . . . , 〈x〉AK

)))
is a ring-hom from ZP to ZA1×· · ·×ZAK

iff each Aj
divides P . [Exercise: If some two of the Aj fail to be coprime,

then f is not surjective.] ♦

4: Notation. Let ~A = (((A1, . . . , AK))) be a tuple
of posints. Let P :=

∏K
j=1Aj and let ~M be the tu-

ple with Mj := P/Aj . Use z for a general point in
ZA1×· · ·×ZAK

. �

5: Lemma. WNFrom (with notation from) immediately
above: Tuple ~A is pairwise coprime iff Gcd( ~M) = 1.♦

6: Chinese Remainder Theorem (CRT). WNFrom(4),
suppose that ~A is pairwise coprime. Then:

i : There is a unique ring-iso f :ZP→ZA1×· · ·×ZAK

specified by f(x) :=
(((
〈x〉A1

, . . . , 〈x〉AK

)))
.
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ii : Let g := f 1. Suppose ~C is a tuple satisfying
these two conditions:∑K

j=1
Cj ≡P 1 ;6.1:

For all pairs j 6= k: Cj |• Ak .6.2:

Then g(z) =
〈∑K

1 zjCj
〉
P

. (That is, ~C is a “magic

tuple”.) ♦

Remark. Lemma 5 tells us that EuclAlg can provide
us with a tuple ~T so that

∑K
1 TjMj = 1. Thus Cj :=

TjMj defines a particular magic tuple.

An alternative ~C can be compute as follows (Steven
Hicks): Let

Cj := Mj ∗ 〈1/Mj〉Aj .7:

This immediately satisfies (??.2). Thus S :=
∑K

1 Cj ,
taken mod A1, is congruent to M1 ·〈1/M1〉A1 , i.e, to 1.
For each j, then, S ≡Aj 1. Thus S ≡ 1 modP , as
needed by (6.2). �

Observation. Given a point z, consider the sum
S :=

∑K
1 zjCj modulo, say, A5. By (??.2), then,

A5 divides Cj for each j 6= 5. Thus for y an arbi-
trary integer, the product zjCj ≡ yCj modulo A5.
In particular, zjCj is congruent to z5Cj . Thus S is
congruent mod A5 to

K∑
j=1

z5Cj = z5 ·
K∑
j=1

Cj ≡A5 z5 · 1 = z5 .

Nothing is special about “5” in this argument. So
we conclude:

For for each index k and for each tuple z
of integers:

∑K
j=1 zjCj ≡Ak

zk.
8: �

Proof that g and f are well-defined.Note that (6.2) to-
gether with UFT shows that C1 |• A2A3 · · ·AK . More
generally,

∀ j : AjCj ≡P 0 .∗:

Now observe that

g(z1 +A1, z2, . . . , zK) ≡P A1C1 +
K∑
1

zjCj

≡P 0 +
K∑
1

zjCj ≡P g(z) by (∗).

Similarly, the g-value is unchanged if we add a multi-
ple of Aj to zj . Thus g() is well-defined.

That f is well-defined follows from HW prob-
lem P2. �

Proof of (6), the CRT. Courtesy of P1 and P2, we
need but show that f ◦g and g ◦f are the appropriate
identity maps.

Let y := f(g(z)). By definition, y1 ≡P
∑K

1 zjCj .
Thus

y1 ≡A1

∑K

1
zjCj , since A1 •| P ,

≡A1 z1 , by (8).

Similarly, each yj ≡ zj modAj , so f(g(z)) = z.

Establishing that g ◦ f = Id. Fixing x, our goal
is

x ≡P g
(
f(x)

)
.∗:

Let us first work modA1. Since A1 divides P ,

g
(
f(x)

)
≡A1

K∑
j=1

〈x〉Aj
· Cj

≡A1 〈x〉A1
, by (8).

That is, A1 divides the difference x−g
(
f(x)

)
and, sim-

ilarly, so does each Aj . By pairwise coprimeness of ~A,
then, the UFT tells us that the product A1 · · ·AK also
divides x− g

(
f(x)

)
. And this is (∗), as desired. �

The Euler Phi function

For an element α of a commutative group (((G,⊕, 0))),
let “kα” be an abbreviation for

α⊕ α⊕ · · · ⊕ α︸ ︷︷ ︸
k occurrences of α

,

when k is a natural number. When k is negative, let
“kα” mean k · β, where β here means the additive
inverse 	α.

Let Ord(α), the order of α, be the minimum of
positive integers k so that kα = 0. (If there is no such k,
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then the minimum is Ord(α) = ∞.) As an example, in
G := Z15, the order of α := 10 is 3. Evidently,

In ZN : Ord(α) =
N

Gcd(N,α)
, which, for

α 6= 0, equals Lcm(N,α)
α .

9:

If the set of multiples, {kα | α ∈ Z}, is all of G then
we call α a “generator of G”. Easily, a group G has
a generator exactly when G is a copy of some ZN or
of Z.

Let Φ(G) denote the set of generators of G. So
Φ(Z) = {±1} and Φ(ZN ) equals “big Phi of N”, the
set of k ∈ [1 .. N ] which are coprime to N .

Product groups.

Exercise. If N not prime and N 6= 4, then∏(
[1 .. N)

)
≡N 0.

Generalizing Wilson’s thm

Let F (N) be the number of pairs ±R of mod-N
square-roots of 1; R2 ≡N 1.

10: Obs. Suppose N > 3 and b ⊥ N . ♦

11: Wilson’s Thm. For all N > 3:∏(
Φ(N)

)
≡N [ 1]F . ♦
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