

Prof. JLF King
10Sep2015

Reading. Please read examples 8.1 and 8.2 on P.112 of Billingsley, as well as 8.3 and 8.4. Note that Billingsley's MChains may have *countably*-many states; hence there need not be an invariant distribution.

Notation in force. Fix a positive integer \mathfrak{D} . Let $\mathbb{P} = \mathbb{P}^{\mathfrak{D}-1}$ be the simplex of probability vectors $\mathbf{v} \in \mathbb{R}^{\mathfrak{D}}$. Fix a $\mathfrak{D} \times \mathfrak{D}$ (*column*)-*stochastic* matrix \mathbf{M} ; each column is a probability vector.

2.1: Let $K_0 := \mathbb{P}$. For each posint n let

$$K_n := \mathbf{M}^n(\mathbb{P}) \xrightarrow{\text{note}} \mathbf{M}(K_{n-1}).$$

Then $\Lambda := \bigcap_0^\infty K_n$ is compact and non-void.

Prove that $\mathbf{M}()$ maps Λ into itself (not necessarily properly).

Since each K_n is convex, so is Λ . Prove or disprove: Λ is a simplex.

Give an example where

$$\mathbb{P} \supsetneq \Lambda \supsetneq \text{FixPoint}(\mathbf{M}).$$

By $\text{FixPoint}(\mathbf{M})$ I mean the set of \mathbf{M} -invariant probability vectors.

2.2: With Λ as above: Prove or disprove: The \mathbf{M} mapping sends Λ onto itself.

Optional. (no points, other than brownie points) For those who like Topology: Suppose $f:X \circlearrowright$ is a continuous map on a compact metric space. Let $\Lambda := \bigcap_{n=0}^\infty f^n(X)$. Give sufficient and necessary conditions on (X, f) for f to map Λ onto Λ . Give examples of various possibilities.