

Homework-1b

Prof. JLF King
10Sep2015

Reading. Please get your copy of his text as soon as possible.

Please read Sect.7, pages 92–108 by Monday, 19Jan.

Please read part of Sect.8, pages 111–121 by Friday, 23Jan.

1b1: Fix a posint \mathfrak{D} . Let $\mathbb{P} = \mathbb{P}^{\mathfrak{D}-1}$ be the simplex of probability vectors $\mathbf{v} \in \mathbb{R}^{\mathfrak{D}}$. Fix a $\mathfrak{D} \times \mathfrak{D}$ (*column*)-*stochastic* matrix \mathbf{M} ; each column is a prob.vec.

Given a vector $\mathbf{v} \in \mathbb{P}$, define the *Cesàro average*

$$\mathbf{v}_N := \mathbb{A}_N(\mathbf{v}) := \frac{1}{N} \sum_{j \in [0..N]} \mathbf{M}^j \mathbf{v}.$$

Prove that

$$\lim_{N \rightarrow \infty} \mathbb{A}_N(\mathbf{v})$$

exists, and is in \mathbb{P} . [Hint: See EE1 on Markov pamphlet.]

1b2: A $\mathfrak{D} \times \mathfrak{D}$ Markov matrix \mathbf{M} determines transition probabilities. Use $\tau(A|B)$ to denote the transition prob from state A to B (it is the A, B -entry in \mathbf{M}). A distribution $\sigma()$ on the states (i.e, an \mathbf{M} -left-invariant col-vector) determines a one-sided Markov process $\vec{Y} = Y_0 Y_1 Y_2 \dots$ where the prob of $Y_0 Y_1 \dots Y_N$ equaling word $w_0 w_1 \dots w_N$ is the product

$$\dagger: \quad \sigma(w_0) \tau(w_0|w_1) \tau(w_1|w_2) \dots \tau(w_{N-1}|w_N).$$

Invariance. Now suppose that $\sigma()$ is an invariant distribution. This gives us a *doubly-infinite* Markov chain

$$\overleftrightarrow{Y} = \dots Y_{-2} Y_{-1} Y_0 Y_1 Y_2 \dots$$

by using (\dagger) to define finite joint-distributions, starting from anywhere in time.

Define the time-reversal r.var $Z_n := Y_{-n}$ and call the resulting bi-infinite process $\overleftrightarrow{Z}_\sigma$ (in principle, it depends on σ). Proof that $\overleftrightarrow{Z}_\sigma$ is itself a Markov process.

Consider this 3-state Markov matrix from the last HW:

- State A goes to B and C each with prob= $\frac{1}{2}$.
- State B goes to states A, B, C with probabilities $\frac{1}{4}, \frac{1}{4}, \frac{1}{2}$.
- State C goes to A, B with probabilities $\frac{1}{3}, \frac{2}{3}$. This has a unique invariant vector (distribution) σ . *Compute the invariant vector* for the time-reversal process $\overleftrightarrow{Z}_\sigma$.