

Group Notes

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
27 March, 2024 (at 17:36)

Terms. A general group might be written (G, \cdot, e) or $(\Gamma, \cdot, \varepsilon)$ or $(G, \cdot, 1)$ or $(G, +, 0)$. The symbol for the neutral [i.e, identity] element may change, according to whether the group name is a Greek letter, or whether the group is written multiplicatively or additively. A *vectorspace* might be written as $(V, +, 0)$ or $(U, +, 0)$. A group of *functions*, under composition, might be written (G, \circ, Id) .

We *may* use $\mathbb{1}$ (blackboard bold ‘1’) for the *trivial group*, but more often will write $\{e\}$ or $\{0\}$ or $\{1\}$ as appropriate.

For the N^{th} *cyclic group*, use \mathbb{Z}_N or $(\mathbb{Z}_N, +)$ when written *additively*, but use \mathbb{Y}_N or (\mathbb{Y}_N, \cdot) when written *multiplicatively*. The **Klein-4** group \mathbb{V}_4 , the **Vierergruppe**, is isomorphic to $\mathbb{Y}_2 \times \mathbb{Y}_2$. [So $\mathbb{V}_4 = \{e, a, b, c\}$ is a commutative-gp with $a^2 = b^2 = c^2 = e$ and $abc = e$.]

Use \mathbb{S}_N , \mathbb{D}_N for the N^{th} , *symmetric* and *dihedral* groups. So $|\mathbb{S}_N| = N!$ and $|\mathbb{D}_N| = 2N$ and $|\mathbb{Y}_N| = N$.

The **alternating group** \mathbb{A}_N is the subgroup of \mathbb{S}_N comprised of *even permutations*. So $|\mathbb{A}_0| = |\mathbb{A}_1| = 1$; otherwise, $|\mathbb{A}_N|$ is $N!/2$. [An arbitrary set Ω engenders its symmetric group \mathbb{S}_Ω of permutations, but there is no corresponding alternating group unless Ω is *finite*.]

When each element of G has finite order, we call G a **torsion group**.

To “*conjugate* g by element x ” means to form expression $x \cdot g \cdot x^{-1}$. For an arbitrary exponent $n \in \mathbb{Z}$, note that $[xgx^{-1}]^n = [xg^n x^{-1}]$.

The “**commutator** of elements α and β ” is

$$[\alpha, \beta] := \alpha \beta \alpha^{-1} \beta^{-1}$$

(which differs from $[\alpha, \beta]$, the standard notation).

1: Intersection-of-subgroups Lemma. Suppose \mathcal{C} is a (possibly infinite) collection of subgroups of group G . Then

$$\bigcap(\mathcal{C}) \stackrel{\text{def}}{=} \bigcap_{H \in \mathcal{C}} H$$

is a G -subgroup. *Proof.* Exercise. \diamond

ADDENDUM: A union of subgroups is *rarely* a group, since the union is usually not sealed under the gp-operation.

Morphisms

A map $F: G \rightarrow \Gamma$ is a **homomorphism** [more precisely, a “**group homomorphism**”] if

$$\forall y, x, g \in G: \quad F(y \cdot x) = F(y) \cdot F(x) \quad \text{and} \\ F(g^{-1}) = [F(g)]^{-1}.$$

The *set* of such homomorphisms is written as $\text{Hom}(G \rightarrow \Gamma)$ or $\text{Hom}(\Gamma \leftarrow G)$ or, more standardly, as $\text{Hom}(G, \Gamma)$.

This F is an **isomorphism** if F is a bijection and $F^{-1}: \Gamma \rightarrow G$ is a homomorphism. While the following is not necessarily true in other branches of mathematics, for groups [and rings] we have:

2: Fact. *If a homomorphism is a bijection, then it automatically is an isomorphism.* **Proof.** Exercise. \diamond

When $\Gamma = G$, then a homomorphism is called an **endomorphism**, and an isomorphism is called an **automorphism**. My abbreviations are:

$G \rightarrow \Gamma$	$G \rightarrow G$
<i>hom</i> = homomorphism,	<i>endo</i> = endomorphism,
<i>iso</i> = isomorphism,	<i>aut</i> = <i>auto</i> = automorphism.

The set $\text{Aut}(G)$ of automorphisms $G \rightarrow G$ forms a *group* under composition: the group $(\text{Aut}(G), \circ, \text{Id}_G)$.

The endomorphisms $f: G \rightarrow G$ form $(\text{End}(G), \circ, \text{Id}_G)$; a *monoid*.

Inner automorphisms. Each $x \in G$ yields an **inner automorphism** of G defined by

$$J_x(g) := x \cdot g \cdot x^{-1}.$$

To “**conjugate g by element x** ” means to form expression xgx^{-1} . The set $\text{Inn}(G) := \{J_x\}_{x \in G}$ forms a group, $(\text{Inn}(G), \circ, \text{Id}_G)$, which is a subgroup of $\text{Aut}(G)$. [Indeed, a *normal* subgp (defined later) of $\text{Aut}(G)$.]

The map $\mathcal{J}: G \rightarrow \text{Aut}(G)$ by $\mathcal{J}(x) := J_x$, is a group homomorphism.

NB 1: A **BEST** (Bright Energetic STudent) asked: *In defn (Y) of gp-hom, is condition $\forall g: F(g^{-1}) = F(g)^{-1}$ necessary?*

Ans: Good catch; no! Writing the gps as (G, e) and (Γ, ε) , let $\mu := F(e)$. So $\mu \cdot \mu = F(e) \cdot F(e) = F(e \cdot e) = F(e) = \mu$. So $\mu = \varepsilon$, since Γ has inverses. We've shown: $F(e)$ must be ε .

Set $\nu := F(g^{-1})$. Then $F(g^{-1}) \cdot F(g) = F(g^{-1} \cdot g) = \varepsilon$. Multiply from the right by $[F(g)]^{-1}$ yields $[F(g)]^{-1} = F(g^{-1})$. \square

NB 2: In contrast to homomorphism between groups, a homomorphism between *monoids* does want an extra condition

Let $\mathcal{P} := \mathcal{P}(\mathbb{R})$, the family of subsets of \mathbb{R} . Then $(\mathcal{P}, \cup, \mathbb{R})$ is a commutative monoid; the binary operation is union of sets, and the identity element is \mathbb{R} itself.

Fix an arbitrary “target” set $\tau \in \mathcal{P}$. Define $F: \mathcal{P} \rightarrow \mathcal{P}$ by $F(X) := \tau$; a constant-fnc. This F satisfies

$$* : \quad \forall A, B \in \mathcal{P} : \quad F(A \cup B) = F(A) \cup F(B),$$

since $\tau \cup \tau = \tau$. Yet the *only* identity element in \mathcal{P} is $\mathbb{R} \in \mathcal{P}$; so our F does not send the identity-elt to the identity-elt; *ouch!*

Thus our defn of **monoid homomorphism** F from monoid (M, e) to monoid (M', e') should have $F(e) = e'$ as part of the defn; condition (*) is not sufficient by itself. \square

Nota Bene 3: In a semigroup (S, \cdot) , hence monoid and group, an element τ is **idempotent** (or is “*an idempotent element*”) if $\tau \cdot \tau = \tau$. The above powerset-monoid is weird in that *every* element is idempotent. \square

NB 4: The space of functions from a set Ω to itself, is a monoid under \circ , fnc-composition, with identity element Id_Ω , the identity-fnc $\omega \mapsto \omega$. So a *function* f is **idempotent** if $f \circ f = f$.

In contrast, “ f is an *involution*” means $f \circ f = \text{Id}_\Omega$. \square

Centralizer/Normalizer. The *centralizer* of an element $\mathbf{b} \in G$ is the subgroup

$$\mathcal{C}(\mathbf{b}) = \mathcal{C}_G(\mathbf{b}) := \{x \in G \mid x\mathbf{b}x^{-1} = \mathbf{b}\}.$$

The centralizer of a subset $S \subset G$ is

$$\mathcal{C}(S) = \mathcal{C}_G(S) := \bigcap_{\mathbf{b} \in S} \mathcal{C}_G(\mathbf{b}).$$

I.e, each inner-aut J_x fixes S *pointwise*. [Note $\mathcal{C}_G(\{\mathbf{b}\})$ and $\mathcal{C}_G(\mathbf{b})$ are synonyms.] When S is the whole group, rather than $\mathcal{C}_G(G)$, we use notation $\mathcal{Z}(G)$ for the *center*^{♡1} of G ; those elts that commute with everyone.

The *normalizer* of a subset $S \subset G$ is subgroup

$$\mathcal{N}(S) = \mathcal{N}_G(S) := \{x \in G \mid xSx^{-1} = S\}.$$

So $x \in \mathcal{N}_G(S)$ says that inner-aut J_x fixes S *as a set*, but might permute its elements.

For a subgroup $H \subset G$, automatically $\mathcal{N}_G(H) \supset H$. When its normalizer is everything, $\mathcal{N}_G(H) = G$, then we say “ H is *normal* in G ” and write $H \triangleleft G$ or $G \triangleright H$. By defn, $H \triangleleft \mathcal{N}_G(H)$.

3: N/C Theorem (#17^P203). Consider G , subgroup H , its normalizer $\mathcal{N} := \mathcal{N}_G(H)$ and centralizer $\mathcal{C} := \mathcal{C}_G(H)$. This leads to a group-homomorphism $F: \mathcal{N} \rightarrow \text{Aut}(H)$ defined by restricting an \mathcal{N} -inner-automorphism to H :

$$* : F(x) := J_x|_H.$$

Then $\text{Ker}(F)$ is our \mathcal{C} , whence quotient \mathcal{N}/\mathcal{C} is isomorphic to a subgroup of $\text{Aut}(H)$.

If index $|\mathcal{N}:\mathcal{C}|$ is finite, then

$$** : \text{Index } |\mathcal{N}:\mathcal{C}| \text{ divides } \text{Ord}(\text{Aut}(H)). \quad \diamond$$

Proof. The index is the cardinality of quotient group $Q := \frac{\mathcal{N}}{\mathcal{C}}$, which is isomorphic to $F(\mathcal{N})$, a subgp of $\text{Aut}(H)$. Now apply Lagrange. ♦

^{♡1}From German *Zentrum*.

Equiv-relation result

The thms here proceed by putting an equivalence relation \sim on a set Λ , then showing that the equiv-classes have a common cardinality κ . Hence

$$\dagger: \kappa \cdot M = |\Lambda|$$

where M is the number of equiv-classes.

4a: Lagrange's theorem (#7.1^P142). Consider H , a subgroup of group G . Then

$$\dagger: |H| \cdot [\text{Number of } H \text{ in } G] = |G|.$$

When G is finite, then, $\text{Ord}(H)$ divides $\text{Ord}(G)$. \diamond

Proof. Define binrel \sim_L on G by $\alpha \sim_L \beta$ iff $\alpha^{-1}\beta \in H$. Evidently reflexive and symmetric, we establish transitivity. Suppose $a \sim_L b$ and $b \sim_L c$. Then $H \ni a^{-1}b, b^{-1}c$. Thus $H \ni a^{-1}b \cdot b^{-1}c \stackrel{\text{note}}{=} a^{-1}c$.

ISTShow each \sim_L equiv-class E is bijective with H . Fix an $\alpha \in E$. For $h \in H$, note $\alpha^{-1} \cdot \alpha h$ lies in H ; hence $\alpha h \in E$. Thus injection $f(h) := \alpha h$ indeed maps H into E .

To see that f is surjective, fix a target $\tau \sim_L \alpha$. Then $\hat{h} := \alpha^{-1}\tau$ lies in H . And $f(\hat{h}) \stackrel{\text{note}}{=} \tau$. \diamond

Remark. The \sim_L equiv-classes are called the “left-cosets of H in G ”. The in-same-right-coset relation, $\alpha \sim_R \beta$, is $\beta\alpha^{-1} \in H$. \square

Ques. Q1. Suppose G is finite, and posint $D \bullet \text{Ord}(G)$. Must G have a cyclic subgp of order D ? How about just a (non-cyclic) subgp? \square

No. The N^{th} dihedral group \mathbb{D}_N is generated by flip-on-Vertical-axis F , and an order- N rotation R .

Although $\text{Ord}(\mathbb{D}_{15}) = 30$ and $6 \nmid 30$, nonetheless \mathbb{D}_{15} has no elt of order 6: Its 15 “flip elts”, R^iF , each have order 2. And inside the order-15 rotation-subgp there are certainly no order-6 elts, courtesy Monsieur Lagrange.

BTWay, the divisors k of 15 are 15, 5, 3, 1. The number of elts in $\langle R \rangle_{\mathbb{D}_{15}}$ of each of these orders is

k	15	5	3	1
$\varphi(k)$	8	4	2	1

And $8 + 4 + 2 + 1 = 15$. \heartsuit^2

\heartsuit^2 Indeed, this yields a proof that $\sum_{d \mid N} \varphi(d)$ equals N .

Although \mathbb{D}_{15} has no element of order-6, it does have a subgroup of order 6. The 6-element subgroup $\langle F, R^5 \rangle$ is isomorphic to \mathbb{D}_3 . \spadesuit

4b: Really really No. Although $\text{Ord}(\mathbb{A}_4) = 12$ and $6 \nmid 12$, nonetheless \mathbb{A}_4 has no subgroup of order 6: \diamond

Proof. The cycle-structures for even permutations on four tokens are

Cyc-struct	[1, 1, 1, 1]	[2, 2]	[3, 1]
Order	1	2	3
How many	1	$\frac{1}{2} \cdot \binom{4}{2} = 3$	$2 \cdot \binom{4}{1} = 8$

And $1 + 3 + 8 = 12 = |\mathbb{A}_4|$.

Let H be the alleged order-6 subgp of \mathbb{A}_4 . Necessarily there is a $\beta \in H$ with cyc-struct [3, 1]. If H owned a [2, 2] elt α , then $\alpha' := \beta\alpha\beta^{-1}$ would have to be a different [2, 2]. (Because there are only 4 tokens, there is only one way [upto isomorphism] a [2, 2] can interact with a [3, 1], and they cannot commute.) But then H includes the Klein-4 \heartsuit^3 group $\langle \alpha, \alpha' \rangle$. Yet $4 \nmid 6$.

The upshot is that no elt of $H \setminus \{e\}$ is [2, 2], so each is a [3, 1]. And there are $6 - 1 = 5$ of them.

Applying the below (5b) to H , says that $5 \nmid \varphi(3)$. But $5 \nmid 2$. \spadesuit

5a: Defn. For a (possibly infinite) group G and posint D , define

$$S_{D,G} := \{x \in G \mid \text{Ord}(x) = D\}.$$

On $S_{D,G}$ define relation: $x \sim_D y \text{ IFF } \langle x \rangle_G = \langle y \rangle_G$. \square

5b: Phi-divides Lemma (#4.4Coro^P84). With $S_{D,G}$ and \sim_D from above: $x \sim_D y \text{ IFF } x \in \langle y \rangle$. In particular, each equivalence class has precisely $\varphi(D)$ many elements. So

$$\dagger: \varphi(D) \text{ divides } |S_{D,G}|. \text{ Indeed, } \varphi(D) \cdot M = |S_{D,G}|,$$

where M counts the cyclic order- D subgroups of G . \diamond

\heartsuit^3 Why must α & α' commute? [Hint: Permuting only 4 tokens.]

Pf (\Leftarrow). By hypothesis, $\langle x \rangle \subset \langle y \rangle$. But these sets have the same, *finite*, cardinality. So they are equal.

An element $x \in G$ generates an order- D cyclic subgp IFF $x \in S_{D,G}$. So the order- D cyclic subgroups are in 1-to-1 correspondence with the above equivalence classes. \spadesuit

6a: Subset-product: For subsets $N, \Gamma \subset G$, let $N\Gamma$ mean the set of products $x\alpha$, over all $x \in N$ and $\alpha \in \Gamma$. Even when N and Γ are subgroups, product $N\Gamma$ need not be a subgroup.

E.g., let R, F be the rotation and flip in $G := \mathbb{D}_3$. Subgroups $N := \{e, F\}$ and $\Gamma := \{e, FR\}$ make $N\Gamma$ equal $\{e, F, FR, R\}$. This is not a group, since it does not own R^2 . \square

6b: Lemma. If at least one of the subgroups $N, \Gamma \subset G$ is normal in G , then $\Gamma N = N\Gamma$, and this product is itself a G -subgroup. \diamond

Proof. (Use letters $x, y \in N$ and $\alpha, \beta \in \Gamma$.) WLOG $N \triangleleft G$. Thus $x' := \beta x \beta^{-1}$ is an N -element. Hence $\beta x \in \Gamma N$ equals $x'\beta$. Consequently, $\Gamma N \subset N\Gamma$. By symmetry, then, $\Gamma N = N\Gamma$.

Why is $N\Gamma$ sealed under multiplication? Product $y\beta \cdot x\alpha$ equals $yx'\beta\alpha \stackrel{\text{note}}{\in} N\Gamma$. Finally, the inverse element $x\alpha = \alpha^{-1}x^{-1}$ is in $\Gamma N = N\Gamma$. \spadesuit

6c: Prop'n (#7.2^P144). Suppose $K, L \subset G$ are groups. Then

$$\begin{aligned} |K \cap L| \cdot |KL| &= |K \times L|. \quad \text{I.e, product-set} \\ \dagger: \quad |KL| &= \frac{|K| \cdot |L|}{|K \cap L|}; \text{ needs } K \text{ or } L \text{ finite.} \end{aligned}$$

[Note: Product-set KL may or may not be a group.] \diamond

Proof. Let $P := |K \cap L|$. By definition, the map

$$\dagger: \quad K \times L \rightarrow KL : (k, \ell) \mapsto k\ell$$

is onto. We now show that an elt $\kappa\lambda \in KL$ has precisely P many preimages under (\dagger) .

Each elt $c \in K \cap L$ yields $\kappa c \in K$ and $c^{-1}\lambda \in L$, with product $\kappa c \cdot c^{-1}\lambda$ equaling $\kappa\lambda$.

Conversely, a product $k\ell = \kappa\lambda$ yields a common element

$$\kappa^{-1}k = \lambda\ell^{-1} =: c \quad \text{in } K \cap L.$$

And $\kappa c = k$ and $c^{-1}\lambda = \ell$. So each c gives a preimage. \spadesuit

7: **Lemma.** Consider $F:G \rightarrow \Gamma$, a homomorphism. Then $F(G)$ [i.e, Range(F)] is a subgroup of Γ and

$$\dagger: \quad |F(G)| \text{ divides } |G|. \quad \text{Indeed,} \\ |K| \cdot |F(G)| = |G|$$

where $K := \text{Ker}(F)$. ◇

Proof. The F -inverse-image of each $\gamma \in \Gamma$ is a left-coset of K in G . (Using right-cosets also works, since $K \triangleleft G$.) ◆

8a: **Group actions.** The symbol $G \circ \Omega$ means that gp G **acts on** set Ω ; there is a gp-hom $F:G \rightarrow \mathbb{S}_\Omega$. For $g \in G$ and $\omega \in \Omega$, write the gp-action as

$$F_g(\omega) \text{ or } g(\omega) \text{ or just } g\omega.$$

Define the **orbit** and **stabilizer** of a point ω , and the **fixed-pt set** of a group-element g :

$$\begin{aligned} \mathcal{O}_F(\omega) &:= \{g\omega \mid g \in G\} && \subset \Omega; \\ \text{Stab}_F(\omega) &:= \{g \in G \mid g\omega = \omega\} && \subset G; \\ \text{Fix}_F(g) &:= \{\omega \in \Omega \mid g\omega = \omega\} && \subset \Omega. \end{aligned}$$

This $\text{Stab}(\omega)$ is a subgp, but is rarely normal in G :

$$8b: \quad \forall f \in G: \quad f \cdot \text{Stab}(\omega) \cdot f^{-1} = \text{Stab}(f\omega). \quad \square$$

8c: **Orbit-Stabilizer Lemma.** For each **token** $\omega \in \Omega$:

$$\dagger: \quad \text{Ord}(\text{Stab}_F(\omega)) \cdot |\mathcal{O}_F(\omega)| = \text{Ord}(G). \quad \diamond$$

Proof. Let $H := \text{Stab}(\omega)$. Say two elements $g, h \in G$ are “equivalent”, $g \sim h$, if $g(\omega) = h(\omega)$. [Written out, $F_g(\omega) = F_h(\omega)$.] Evidently, the equiv-class of g is simply the left-coset gH . These equivalence-classes partition G ; hence (\dagger) . ◆

Normalizer mod Centralizer

Call a posint N is **Grouply unique** if the cyclic group is the *only* group of order N . We get a sufficient condition for a product $p \cdot q$ to be grouply-unique. Here is a routine generalization of an elegant proof from Gallian.

9: Thm. [#17P 203] Suppose $p < q$ are prime numbers such that

$$\begin{aligned} \dagger: \quad & p-1 \nmid q-1 \quad \text{and} \\ \ddagger: \quad & p \nmid q-1. \end{aligned}$$

Then the only group G of order $p \cdot q$ is cyclic. \diamond

Setup. FTSOC we'll assume that G is not cyclic. Our goal is to exhibit commuting elts $h, k \in G$ of orders p and q , resp.. Necessarily, the product hk will have order pq . To produce this miracle, ISTProve that

*: G has a unique order- q subgp; call it K .
*: Moreover, its centralizer $\mathcal{C}_G(K)$ is all of G .

The uniqueness implies that each elt $h \in G \setminus K$ [such an h exists, since $pq > q$] necessarily has order p . And h commutes with each chosen $k \in K \setminus \{\mathbf{e}\}$. \square

Proof of (*). We proceed in four steps.

There exists an order- q element in G .

FTSOC, suppose no elt $x \in G \setminus \{\mathbf{e}\}$ has order- q ; so each x has order- p . Hence the Phi-divides Lemma says $\varphi(p) \stackrel{\text{note}}{=} p-1$ must divide $\text{Ord}(G) - 1$. Observe

$$pq - 1 = [p-1]q + [q-1],$$

so this would imply $p-1 \mid q-1$. But this \nmid s (9†).

The upshot: There exists an order- q cyclic subgp $K \subset G$.

This order- q subgp is unique. Were there another, call it \widehat{K} , then

$$\widehat{K} \cap K = \{\mathbf{e}\},$$

since q is prime. From (6c†), then,

$$|\widehat{K}K| = \frac{q \cdot q}{1}.$$

But inequality $|G| \geq |\widehat{K}K|$ implies $p \geq q$; a contradiction. So there is but one order- q subgp.

The normalizer $\mathcal{N}_G(K) = G$. Conjugating K must give a subgp isomorphic to K ; thus is K itself.

The centralizer is all of G . Let $\mathcal{C} := \mathcal{C}_G(K)$ denote the centralizer. Since K is cyclic, it is abelian. So $K \subset \mathcal{C} \subset G$. By Lagrange's thm, then,

$$q \bullet \text{Ord}(\mathcal{C}) \bullet pq.$$

Since p is prime, *ISTShow that* $\text{Ord}(\mathcal{C}) \neq q$.

Were $\text{Ord}(\mathcal{C}) = q$ [i.e $\mathcal{C} = K$], then the quotient group

$$\frac{\mathcal{N}_G(K)}{\mathcal{C}} \stackrel{\text{note}}{=} \frac{G}{K}$$

would have order $\frac{pq}{q} = p$. This quotient is group-isomorphic to a subgp of $\text{Aut}(K)$. Consequently

$$p \bullet \text{Ord}(\text{Aut}(K)).$$

But K is cyclic so $\text{Aut}(K)$ is isomorphic to $\mathbf{U}(q)$; i.e $|\text{Aut}(K)| = \varphi(q)$. Thus p divides $\varphi(q) \stackrel{\text{note}}{=} q-1$. But this annoys (9†). \spadesuit

What are some examples of this thm?

Works: $p < q$	Hypothesis fails: $p < q$	What exactly fails?
	$3 < q$	$2 \bullet q-1$ (†)
	$3 < 7$	$3 \bullet 6$ (‡)
$5 < 23$	$5 < 13$	$4 \bullet 12$ (†)
$5 < 19$	$5 < 11$	$5 \bullet 10$ (‡)
$7 < 11$	$7 < 13$	$6 \bullet 12$ (†)
$7 < 17$	$7 < 29$	$7 \bullet 28$ (‡)
$7 < 53$	$7 < 51$	<i>Ahem!</i>
$11 < 13$	$11 < 67$	$11 \bullet 66$ (‡)

Dull CEX. For $p=2$, and q an odd prime, dihedral group $|\mathbb{D}_q| = 2q$, yet \mathbb{D}_q is not cyclic. The hyp. that fails is that $2-1$ divides $q-1$. \square

Interesting CEX. Here $p=3$ and $q=7$; let \equiv mean \equiv_7 .

In mult-gp $\mathbf{U}(7)$ [which has 6 elts] let $\Omega := \{1, 2, 4\}$.
This Ω is a subgp of $\mathbf{U}(7)$, as $2 \cdot 2 \equiv 4$ and $2 \cdot 4 \equiv 1$.

Let \mathcal{G} be comprise the 2×2 matrices of form

$$\begin{bmatrix} \alpha & x \\ 0 & 1 \end{bmatrix} \quad \text{with } \alpha \in \Omega \text{ and } x \in \mathbb{Z}_7.$$

Multiplying two such matrices gives

$$* : \begin{bmatrix} \alpha & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \beta & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha\beta & \alpha y + x \\ 0 & 1 \end{bmatrix},$$

(arithmetic mod-7), showing the mult. is well-defined.

The inverse of $\begin{bmatrix} \alpha & x \\ 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} \alpha^{-1} & -\alpha^{-1}x \\ 0 & 1 \end{bmatrix}$, so \mathcal{G} is a

group, whose order is $\text{Ord}(\Omega) \cdot \text{Ord}(\mathbb{Z}_7) = 3 \cdot 7$.

Finally, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, whereas in the other order, $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 0 & 1 \end{bmatrix}$. So \mathcal{G} is non-abelian. \square

Still interesting. Let's compute the number of elts of each order in the above \mathcal{G} . Consider a **non-id element** $g := \begin{bmatrix} \alpha & x \\ 0 & 1 \end{bmatrix}$. Our \mathcal{G} is not cyclic, so the possible orders of g are 3, 7.

First take $\alpha = 1$: Computing, $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}^N = \begin{bmatrix} 1 & Nx \\ 0 & 1 \end{bmatrix}$. Hence $Nx \equiv 0$; so $N \equiv 0$ since $x \neq 0$. Thus

$$\text{Ord}(\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}) = 7,$$

and there are 6 such elements. Luckily, 6 is divisible by $\varphi(7)$.

Consider $\alpha \neq 1$: Cubing, $\begin{bmatrix} \alpha & x \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} \alpha^3 & Z \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & Z \\ 0 & 1 \end{bmatrix}$, where Z is $[\alpha^2 + \alpha + 1]x$. Now $[\alpha^2 + \alpha + 1][\alpha - 1]$ equals $[\alpha^3 - 1] \equiv 0$. In \mathbb{Z}_7 we may divide by $\alpha - 1$ to conclude that $[\alpha^2 + \alpha + 1] \equiv 0$, whence $Z \equiv 0$. So

$$\text{Ord}(\begin{bmatrix} \alpha \neq 1 & x \\ 0 & 1 \end{bmatrix}) = 3,$$

and there are $21 - 7 = 14$ such elements. Happily, 14 is a multiple of $\varphi(3) = 2$. \square

Cyclic groups

I'll use $(\mathbb{Z}_N, +)$ when writing a cyclic group *additively*, but will use (\mathbb{Y}_N, \cdot) when writing *multiplicatively*. The infinite group \mathbb{Y}_∞ is iso to $(\mathbb{Z}, +)$.

Defn. For $x \in G$ we use $\text{Periods}_G(x)$ for the set of integers k with $x^k = \mathbf{e}$.

For a subgroup $H \subset G$, let $P_H(x) = P_{H,G}(x)$ be $\{k \in \mathbb{Z} \mid x^k \in H\}$. So $\text{Periods}(x)$ is simply $P_H(x)$, when H is the trivial subgp $\{\mathbf{e}\}$. \square

11: Periods Lemma. Fix G, H, x as above, and let P_H mean $P_H(x)$. If P_H is not just $\{0\}$, then $P_H = N\mathbb{Z}$, where N is the least positive element of P_H .

For G -subgroups $H \supset K$, then,

$$\text{H-Ord}_G(x) \bullet \text{K-Ord}_G(x) \bullet \text{Ord}_G(x). \quad \diamond$$

Proof. Suppose $N := \text{Min}(\mathbb{Z}_+ \cap P_H)$ is finite. Fixing a $k \in P_H$, we will show that $k \bullet N$.

Set $D := \text{GCD}(N, k)$. LBolt (well, Bézout's lemma) produces integers such that $D = NS + kT$. Hence $D \in P_H$, since x^D equals $[x^N]^S \cdot [x^k]^T = \mathbf{e}^S \cdot \mathbf{e}^T$. Thus $N = D \bullet k$. \spadesuit

12: Defn. Use $\text{H-Ord}(x)$ or $\text{H-Ord}_G(x)$ for the above N ; else, if P_H is just $\{0\}$ then $\text{H-Ord}(x) := \infty$. Call this the “*H-order* of x ”. The *order* of x , written $\text{Ord}(x)$ or $\text{Ord}_G(x)$, is simply $\text{H-Ord}_G(x)$ when $H := \{\mathbf{e}\}$. \square

Suppose $H \triangleleft G$. Now $[xH]^k = x^k H$, so $[xH]^k = H$ IFF $x \in H$. In terms of the quotient group,

11':

$$\forall x \in G: \text{Ord}_{G/H}(xH) = \text{H-Ord}_G(x) \bullet \text{Ord}_G(x).$$

Dihedral groups

The **Klein-4** group is isomorphic to $\mathbb{Y}_2 \times \mathbb{Y}_2$. Sometimes called the **Vierergruppe**, it has presentation

13:

$$V := \left\langle \mathbf{a}, \mathbf{b}, \mathbf{c} \mid \begin{array}{l} \text{Each of } \{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \text{ is an involution,} \\ \text{each pair commutes, and the product of each two equals the third.} \end{array} \right\rangle.$$

Using fewer generators, but less symmetric, is this presentation:

$$13': \quad V = \langle \mathbf{a}, \mathbf{b} \mid \mathbf{a}^2 = \mathbf{e} = \mathbf{b}^2, \mathbf{a} \leftrightharpoons \mathbf{b} \rangle.$$

For each posint N , the N^{th} **dihedral group** is

$$14: \quad \begin{aligned} \mathbb{D}_N &:= \langle \mathbf{R}, \mathbf{F} \mid \mathbf{F}^2 = \mathbf{e}, \mathbf{FRFR} = \mathbf{e}, \mathbf{R}^N = \mathbf{e} \rangle; \\ \mathbb{D}_\infty &:= \langle \mathbf{R}, \mathbf{F} \mid \mathbf{F}^2 = \mathbf{e}, \mathbf{FRFR} = \mathbf{e} \rangle, \text{ for } N = \infty. \end{aligned}$$

Now for some straightforward facts.

15: Fact. For all $N \in [1 .. \infty]$ and integers j :

$$\mathbf{R}^j \cdot \mathbf{F} = \mathbf{F} \cdot \mathbf{R}^{-j}.$$

Lastly, $\text{Ord}(\mathbb{D}_N) = 2N$, and $\text{Ord}(\mathbb{D}_\infty) = \aleph_0$. \diamond

16: Lemma. Groups $\mathbb{D}_1 \cong \mathbb{Y}_2$ and $\mathbb{D}_2 \cong \mathbb{Y}_2 \times \mathbb{Y}_2$ (the Vierergruppe), so each has full center and trivial $\text{Inn}()$ -group.

For each $N \in [3 .. \infty]$:

Both $\mathcal{Z}(\mathbb{D}_\infty)$ and $\mathcal{Z}(\mathbb{D}_{\text{Odd } N})$ are trivial. Consequently $\text{Inn}(\mathbb{D}_\infty) \cong \mathbb{D}_\infty$ and $\text{Inn}(\mathbb{D}_{\text{Odd } N}) \cong \mathbb{D}_N$.

When $N = 2K$ is even: Center $\mathcal{Z}(\mathbb{D}_{2K}) = \{\mathbf{e}, \mathbf{R}^K\}$. Consequently $\mathbb{D}_K \cong \text{Inn}(\mathbb{D}_{2K})$ via the map

$$*: \quad \mathbf{R}^j \mapsto J_{\mathbf{R}^j} \quad \text{and} \quad \mathbf{R}^j \mathbf{F} \mapsto J_{\mathbf{R}^j \mathbf{F}}. \quad \diamond$$

Proof. The commutator $[\mathbf{R}^j, \mathbf{F}]$ equals

$$\mathbf{R}^j \mathbf{F} \mathbf{R}^{-j} \mathbf{F}^{-1} = \mathbf{R}^{2j} \mathbf{F}^2 = \mathbf{R}^{2j}.$$

Thus $\mathbf{R}^j \leftrightharpoons \mathbf{F}$ IFF $2j \bullet N$. So the only possible element in the center is \mathbf{R}^K , where $N = 2K < \infty$.

Finally, map $(*)$ is a homomorphism, and is onto, since \mathbf{R}^K commutes with each element of \mathbb{D}_{2K} and thus each $J_{\mathbf{R}^{K+j}} = J_{\mathbf{R}^j}$ and $J_{\mathbf{R}^{K+j} \mathbf{F}} = J_{\mathbf{R}^j \mathbf{F}}$. \spadesuit

Misc. theorems

Temporarily here.

17: **Lemma.** For each $N \geq 2$, the full symmetric group S_N is generated by an N -cycle $\nu := (b_0, b_1, b_2, \dots, b_{N-1})$ together with $\tau := (b_0, b_1)$; an “adjacent” 2-cycle. \diamond

Proof. WLOG generality, $N \geq 3$.

ISTShow subgroup $\langle \nu, \tau \rangle$ owns all transpositions. Hence, by our argument from class, ISTJust show that $\langle \nu, \tau \rangle$ owns all adjacent [relative to ν] transpositions.

Finally, note that $\nu^{-1}\tau\nu = (b_1, b_2)$. Etc. \diamond

18a: **Cauchy's Thm for abelian groups (#9.5^P182).** Suppose $N := |G| < \infty$ where G is an abelian group, written multiplicatively. If prime $p \nmid N$, then there exists $y \in G$ with $\text{Ord}(y) = p$. \diamond

Proof. [From the web.] Enumerate G as g_1, g_2, \dots, g_N and let K_1, \dots, K_N be their orders. ISTProve that

$$p \nmid \widetilde{K} := \prod_{n=1}^N K_n,$$

since then, p must divide some K_n [since p is prime]; say, $p \nmid K_2$. And then, $y := g_2^{[K_2/p]}$ has order p .

Additive group $\tilde{G} := \mathbb{Z}_{K_1} \times \dots \times \mathbb{Z}_{K_N}$ has order \widetilde{K} . The map

$$f: \tilde{G} \rightarrow G \quad \text{by} \quad f((\ell_1, \dots, \ell_N)) := g_1^{\ell_1} g_2^{\ell_2} \cdots g_N^{\ell_N}$$

is onto, since $f((1, 0, \dots, 0)) = g_1$, etc.. And f is a group-homomorphism since G is abelian. Thus $\text{Ord}(G) \nmid \text{Ord}(\tilde{G})$. Hence $p \nmid \text{Ord}(G) \nmid \widetilde{K}$. \diamond

A more standard proof uses induction on quotient groups.

Pf of (18a). WLOG $p := 5$. We may assume that

18b: If Q is a finite abelian group with $\text{Ord}(Q) \nmid 5$, then Q owns an element of order 5.

holds for each group Q with $|Q| < |G|$.

It suffices to produce a $y \in G$ with $\text{Ord}_G(y) \nmid 5$. [Why? Power $y^{\text{Ord}(y)/5}$ has order 5.]

Since $|G| > 1$ we can pick a nt-element $h \in G$; WLOG $K := \text{Ord}(h) \nmid 5$. Thus 5 divides $\frac{N}{K}$, which is

the order of $Q := \frac{G}{H}$, where $H := \langle h \rangle$. Automatically $H \triangleleft G$ since G is abelian. Finally, $h \neq e$ so $|Q| < |G|$.

Since quotient Q is abelian, our (18b) applies to produce an element $y \in G$ with whose coset yH has order 5 in Q . I.e

*: Power $y^5 \in H$, yet $y \notin H$.

Thus $\text{Ord}_G(y) \stackrel{\text{note}}{=} 5 \cdot \text{Ord}_H(y^5)$ is a multiple of 5. \diamond

Normality

Consider two gps $H \subset G$. Say that “ H is **normal** in G ”, written $H \triangleleft G$, if $[\forall x \in G: xHx^{-1} = H]$. This is equivalent (see (25), below) to $[\forall x \in G: xHx^{-1} \subset H]$. However, an individual element x could give *proper* inclusion, as the following two examples show.

Proper inclusion, $xHx^{-1} \subsetneq H$, forces that $|H| = \infty$ and $\text{Ord}(x) = \infty$ and that G is not abelian.

19: E.g. Let $G := \mathbb{S}_{\mathbb{Z}}$. Let $H \subset G$ comprise those permutations $h: \mathbb{Z} \rightarrow \mathbb{Z}$ st. $[\forall n < 0: h(n) = n]$; i.e, $h|_{\mathbb{Z}_-}$ is the identity-fnc.

Define $x \in G$ by $x(n) := n-5$. For n negative,

$$\dagger: \quad n \xrightarrow{x} n-5 \xrightarrow{h} n-5 \xrightarrow{x^{-1}} n,$$

for an arbitrary $h \in H$. Consequently, $xHx^{-1} \subset H$.

Note that (\dagger) holds for all $n < 5$. So no elt $\eta \in H$ which *moves* something in $[0..5)$, e.g, $\eta(2) = 3$, can possibly be in xHx^{-1} . We have thus $xHx^{-1} \subsetneq H$, *proper* inclusion. \square

20: E.g. [See file.] In $G := \text{GL}_2(\mathbb{Q})$, the shear $S := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ generates $H := \langle S \rangle_G$, which is a copy of $(\mathbb{Z}, +)$. Conjugating by $X := \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ produces $\boxed{XSX^{-1} = S^2}$. Consequently,

$$XHX^{-1} = \left\{ \begin{bmatrix} 1 & 2n \\ 0 & 1 \end{bmatrix} \mid n \in \mathbb{Z} \right\}.$$

This is a *proper* subset of H . \square

Strengthening normality

Relation $N \triangleleft G$ is equivalent to $[\forall x \in G: J_x(H) \subset H]$. By enlarging the set of endomorphisms under which this inclusion holds, we get successively stronger versions of normality.

Defn. Two subgroups $N, \Gamma \subset \widehat{G}$ are *transverse*, written $N \perp \Gamma$, if $N \cap \Gamma = \{\mathbf{e}\}$. Always, the map

$$21: \quad f: N \times \Gamma \rightarrow N\Gamma, \quad \text{by } (x, \omega) \mapsto x\omega,$$

is onto. It is injective IFF N and Γ are transverse. The following result characterises direct product. \square

22: Direct-product Lemma. Suppose $N, \Gamma \subset \widehat{G}$ groups, with $N \triangleleft \widehat{G}$, and $N \perp \Gamma$. Let

$$G := \langle N, \Gamma \rangle_{\widehat{G}} \stackrel{\text{note}}{=} N\Gamma.$$

Recalling the bijection. $f: N \times \Gamma \rightarrow G$ from (21), the following are equivalent:

- i: $N \trianglelefteq \Gamma$, inside G .
- ii: f is a homomorphism, hence isomorphism.
- iii: $\Gamma \triangleleft G$. \diamond

Pf (i) \Rightarrow (ii). Does f respect multiplication? Checking,

$$f((x, \alpha)) \cdot f((y, \beta)) \stackrel{\text{def}}{=} x\alpha \cdot y\beta = xy\alpha\beta,$$

since $N \trianglelefteq \Gamma$. And this equals $f((xy, \alpha\beta))$. \diamond

Pf (ii) \Rightarrow (iii). Always $\{\mathbf{e}\} \times \Gamma \triangleleft N \times \Gamma$. Now apply f . \diamond

Pf (iii) \Rightarrow (i). With $x \in N$ and $\alpha \in \Gamma$, we need to show that $[x\alpha x^{-1}\alpha^{-1} = \mathbf{e}]$.

Note that $\alpha x^{-1}\alpha^{-1} \in N$, since $N \triangleleft \widehat{G}$. Hence

$$x \cdot \alpha x^{-1}\alpha^{-1} \in NN \subset N.$$

And $x\alpha x^{-1} \in \Gamma$, since $\Gamma \triangleleft G$. So $x\alpha x^{-1} \cdot \alpha^{-1} \in \Gamma$. Thus $[x, \alpha] \in N \cap \Gamma$, so $[x, \alpha] = \mathbf{e}$. \diamond

Defn. Let $\text{SurEnd}(G)$ denote the monoid of *surjective endomorphisms* of G . Evidently

$$23: \quad \text{Inn}(G) \subset \text{Aut}(G) \subset \text{SurEnd}(G) \subset \text{End}(G).$$

Any of these inclusions can be strict, depending on the group.

Here are various strengthenings of the notion “ H is a normal subgroup of G ”. They are defined by how many homomorphisms $F: G \rightarrow G$ send H into itself.

Suppose that $[F(H) \subset H]$ for every \dots

	WHICH HOMS?	THEN WRITTEN AS
	$\dots F \in \text{Inn}(G)$	$H \triangleleft G$
24:	$\dots F \in \text{Aut}(G)$	$H^{\text{Aut}} \triangleleft G$
	$\dots F \in \text{SurEnd}(G)$	$H^{\text{Sur}} \triangleleft G$
	$\dots F \in \text{End}(G)$	$H^{\text{End}} \triangleleft G$

25: Note. In the $H \triangleleft G$ and $H^{\text{Aut}} \triangleleft G$ cases, we may conclude that each (inner-)automorphism α in fact gives equality $\overline{\alpha(H)} = H$. This, because inclusion $F(H) \subset H$ must hold for both $F := \alpha$ and $F := \alpha^{-1}$. \square

In the examples below, $H, K \subset (G, \cdot, \mathbf{e})$ are groups. Abbrev the normalizer $\mathcal{N} := \mathcal{N}(H) := \mathcal{N}_G(H)$ and centralizer $\mathcal{C} := \mathcal{C}(H) := \mathcal{C}_G(H)$ of subgp H . \square

26: E.g. Each $x \in G$ engenders a *conjugation map* $J_x: G \rightarrow G$ by

$$J_x(g) := xgx^{-1}.$$

Easily $J_y \circ J_x = J_{yx}$. Conjugations are called *inner automorphisms* of G ; the group of conjugations is written $\text{Inn}(G)$. This map

$$27: \quad \mathcal{J}: G \rightarrow \text{Inn}(G) : x \mapsto J_x$$

is a surjective gp-homomorphism. Its kernel is the center $\mathcal{Z}(G)$. So $\mathcal{Z}(G) \triangleleft G$ and

$$28: \quad \text{Inn}(G) \cong \frac{G}{\mathcal{Z}(G)}.$$

A slight generalization, taking a subgp H , is to map

$$27': \quad \mathcal{J}_H: \mathcal{N}_G(H) \rightarrow \text{Aut}(H) : x \mapsto J_x|_H.$$

Its kernel is the centralizer $\mathcal{C}_G(H)$. So $\frac{\mathcal{N}(H)}{\mathcal{C}(H)}$ is group-isomorphic to the subgroup

$$A := \text{Range}(\mathcal{J}_H) \subset \text{Aut}(H).$$

\square

29: **Lemma.** Suppose $|G:H| = 2$. Then $H \triangleleft G$. \diamond

Pf. Pick $b \in G \setminus H$. Since the index is 2,

$$[bH] \sqcup H = G = [Hb] \sqcup H.$$

Thus the left and right coset-partitions are equal. So $H \triangleleft G$. \diamond

Remark. Index $|G:H| = 2$ need *not* imply the stronger $H \overset{\text{Aut}}{\triangleleft} G$. In the Vierergruppe, (13'), the $\langle a \rangle_V$ subgroup has index 2 in V . Yet the automorphism that exchanges a and b moves $\langle a \rangle$.

Also, $|G:H| = 3$ is not sufficient to imply normality. In \mathbb{D}_3 , the non-normal subgp $\langle F \rangle$ has index 3. [Conjugating, $J_R(F) = RFR^{-1} = R^2F \neq F$.] [Also: The natural embedding of \mathbb{D}_4 has index-3 in \mathbb{S}_4 , yet is not a normal subgp.] \square

30: **Lem.** Consider groups $H \subset G \subset F$. Then

$$31: \quad [H \overset{\text{Aut}}{\triangleleft} G \overset{\text{Aut}}{\triangleleft} F] \implies H \overset{\text{Aut}}{\triangleleft} F.$$

$$32: \quad [H \overset{\text{Aut}}{\triangleleft} G \triangleleft F] \implies H \triangleleft F.$$

And $[H \overset{\text{End}}{\triangleleft} G \overset{\text{End}}{\triangleleft} F] \Rightarrow H \overset{\text{End}}{\triangleleft} F$. **Proof.** Use (25). \diamond

Ques. Does $[H \overset{\text{Sur}}{\triangleleft} G \overset{\text{Sur}}{\triangleleft} F]$ imply $H \overset{\text{Sur}}{\triangleleft} F$? A CEX necessarily has G infinite, since there would be a $F \in \text{SurEnd}(F)$ which maps G properly inside G . \square

33: **Normal Grabbag.**

i: For two subgps H, K of G , let $\overset{?}{\triangleleft}$ be the strongest normality so that both $H, K \overset{?}{\triangleleft} G$. Then the commutator-subgp $[\![H, K]\!] \overset{?}{\triangleleft} G$.

ii: The center $\mathcal{Z}(G) \overset{\text{Sur}}{\triangleleft} G$, but not necessarily $\overset{\text{End}}{\triangleleft}$.

iii: $\text{Inn}(G) \triangleleft \text{Aut}(G)$, but not necessarily $\overset{\text{Aut}}{\triangleleft}$. \diamond

Pf of (i). Take an-endomorphism $x \mapsto \hat{x}$ of the appropriate type. Fix $h \in H$ and $k \in K$. By hypothesis, $\hat{h} \in H$ and $\hat{k} \in K$. Thus

$$[\![H, K]\!] \ni [\![\hat{h}, \hat{k}]\!] \stackrel{\text{note}}{=} \widehat{[\![h, k]\!]}.$$

Pf of (ii). Take an onto-endomorphism $x \mapsto \hat{x}$ and a point $z \in \mathcal{Z}(G)$. To show $\hat{z} \in \mathcal{Z}(G)$, we fix a $g \in G$ and show that $g\hat{z}g^{-1} = \mathbf{e}$. Since the endo is surjective, there exists an $\gamma \in G$ such that $\hat{\gamma} = g$.

Now $z \mapsto \gamma$, so $\mathbf{e} = \gamma z \gamma^{-1}$. Thus

$$\mathbf{e} = \widehat{\gamma z \gamma^{-1}} = \hat{\gamma} \cdot \hat{z} \cdot \hat{\gamma}^{-1} = g \cdot \hat{z} \cdot g^{-1}.$$

Pf of (ii) bis. We produce an endomorphism, of a group $G := \Omega \times D$, which carries its center $\mathcal{Z}(G)$ *outside* of itself. Here, $\Omega = \{\omega, \varepsilon\}$ is an order-2 group generated by ω . And $D := \mathbb{D}_3$ is a dihedral group; use \mathbf{e} for its neutral elt. So the center of G is

$$\mathcal{Z}(G) = \mathcal{Z}(\Omega) \times \mathcal{Z}(D) = \Omega \times \{\mathbf{e}\}.$$

Let F be a flip in \mathbb{D}_3 ; it generates an order-2 subgp $\{\mathbf{F}, \mathbf{e}\} =: F \subset D$. The Klein-4 group $\Omega \times F$ has an “exchange the generators” automorphism, \mathcal{A} , with

$$\begin{aligned} \mathcal{A}((\omega, \mathbf{e})) &:= (\varepsilon, \mathbf{F}) \quad \text{and} \\ \mathcal{A}((\varepsilon, \mathbf{F})) &:= (\omega, \mathbf{e}). \end{aligned}$$

defined by exchanging the generators of subgps Ω and F . Finally, consider the endomorphism $\mathcal{E}: G \rightarrow G$ which collapses the D side:

For all $\alpha \in \Omega$ and $x \in D$: $\mathcal{E}((\alpha, x)) := (\alpha, \mathbf{e})$.

Finally, the composition $\mathcal{E} \triangleright \mathcal{A}$ is a G -endo which carries $\Omega \times \{\mathbf{e}\}$ to $\{\varepsilon\} \times F$. \diamond

Pf of (iii). [See file.] Note that \mathbb{D}_4 has exactly two subgroups isomorphic to the Vierergruppe,

$$V := \langle R^2, F \rangle = \{\mathbf{e}, R^2, F, FR^2\} \quad \text{and}$$

$$V' := \langle R^2, FR \rangle = \{\mathbf{e}, R^2, FR, FR^3\}.$$

And $\alpha(V) = V'$, where $\alpha \in \text{Aut}(\mathbb{D}_4)$ is the automorphism which sends $R \mapsto R$ and $F \mapsto FR$.

Now for the example. Let $G := \mathbb{D}_4$. Check that $A := \text{Aut}(\mathbb{D}_4) \cong \mathbb{D}_4$. Its subgp $S := \text{Inn}(\mathbb{D}_4) \cong \mathbb{D}_2$ is isomorphic to a Vierergruppe. One can interpret the above α as in $\text{Aut}(A)$, and as carrying S to the *other* copy of the Vierergruppe. \diamond

Examples of normal subgps. On \mathfrak{D} -dim'el Euclidean space $\mathbb{R}^{\mathfrak{D}}$, let G_{Trans} be the group of translations. Then G_{Trans} is normal inside the gp of all isometries. Indeed, G_{Trans} is normal in the gp of invertible *affine maps* $\mathbb{R}^{\mathfrak{D}} \circlearrowright$.

Proof. On $\mathbf{V} := \mathbb{R}^{\mathfrak{D}}$, each vector $\kappa \in \mathbf{V}$ yields a translation $T_{\kappa}: \mathbf{V} \circlearrowright$ by $T_{\kappa}(\mathbf{v}) := \mathbf{v} + \kappa$. Evidently a linear $L: \mathbf{V} \circlearrowright$ has commutation

$$L \circ T_{\kappa} = T_{L(\kappa)} \circ L.$$

Consequently, a general (we want “invertible”) affine map can be written $A := L \circ T$, for some linear L and translation T ;

So to show G_{Trans} normal in the affines, it is enough to conjugate by an invertible linear map, L . Our goal is to show that $L \circ T_{\kappa} \circ L^{-1}$ is some translation. But

$$L T_{\kappa} L^{-1} = L L^{-1} T_{L(\kappa)} = T_{L(\kappa)}. \quad \diamond$$

34: Observation. There exist groups G with $\text{Inn}(G) \cong G$, yet with center $\mathcal{Z}(G)$ non-trivial. \diamond

Proof. Let $G := \mathbb{D}_2 \times \mathbb{D}_4 \times \mathbb{D}_8 \times \mathbb{D}_{16} \times \dots$. By (16), group $\text{Inn}(G)$ equals

$$\begin{aligned} & \text{Inn}(\mathbb{D}_2) \times \text{Inn}(\mathbb{D}_4) \times \text{Inn}(\mathbb{D}_8) \times \text{Inn}(\mathbb{D}_{16}) \times \dots \\ & \cong \mathbb{1} \times \mathbb{D}_2 \times \mathbb{D}_4 \times \mathbb{D}_8 \times \dots, \end{aligned}$$

which is isomorphic to G . \diamond

Examples of homomorphisms. For posints K, L and cyclic gps $(\mathbb{Z}_K, +)$ and $(\mathbb{Z}_L, +)$, what is the set $H := \text{Hom}(\mathbb{Z}_K \rightarrow \mathbb{Z}_L)$?

Let $D := \text{GCD}(K, L)$ and write

$$K = D \cdot A \quad \text{and} \quad L = D \cdot B, \quad \text{where } A \perp B.$$

A homomorphism $f \in H$ is determined by where it sends 1; $f(y) = y \cdot f(1)$. This f is well-defined as long as it sends 0 and K to the same place. So we need that

$$0 \equiv_L f(K) \stackrel{\text{note}}{=} DA \cdot f(1).$$

I.e., $DA \cdot f(1) \mid \bullet DB$. Hence we need $A \cdot f(1) \mid \bullet B$. Since $A \perp B$, this latter is equiv to $f(1) \mid \bullet B$. Writing $f(1) := jB$, we get D many homomorphisms

$$\text{Hom}(\mathbb{Z}_K \rightarrow \mathbb{Z}_L) = \left\{ f_M \mid \begin{array}{l} M = jB, \text{ where} \\ j \in [0..D] \end{array} \right\},$$

defined by $f_M(y) := [M \cdot y] \bmod L$.

When $L = K$. Let E be the set of endomorphisms of $(\mathbb{Z}_K, +)$. So (E, \circ) is a monoid; indeed, a commutative monoid. It is semigp-isomorphic to (\mathbb{Z}_K, \cdot) . Its automorphism subgp is, of course, gp-isomorphic with $(\Phi(K), \cdot)$.

Ways to count in groups

35: Burnside's Lemma (#29.1^P 474). *Counting cardinalities,*

$$\dagger: \sum_{\omega \in \Omega} |\text{Stab}(\omega)| \stackrel{\#}{=} \{(g, \omega) \mid g\omega = \omega\} \stackrel{\#}{=} \sum_{g \in G} |\text{Fix}(g)|.$$

Counting the number of G -orbits, then,

$$\ddagger: \begin{aligned} \#\text{Orbits} &= \frac{1}{|G|} \cdot \sum_{g \in G} |\text{Fix}(g)| \\ &= [\# \text{ of points fixed by an average element of } G] . \end{aligned} \quad \diamond$$

Proof. The number of G -orbits equals

$$\sum_{\omega \in \Omega} \frac{1}{|\mathcal{O}(\omega)|} \xrightarrow{\text{Orb-Stab, (8c*)}} \frac{1}{|G|} \cdot \sum_{\omega \in \Omega} |\text{Stab}(\omega)| .$$

Now apply (35†) to earn (35‡). \diamond

Application: Coloring a cube's faces. Color the six faces of a cube red, white and blue; let Ω be the set of color-cubes; so $|\Omega| = 3^6$.

How many distinct colorings are there, up to orientation-preserving isometry? We will use Burnside's Lemma. The group, G , of orientation-preserving rotations of the cube has $6 \cdot 4 = 24$ elts, and is group-isomorphic to \mathbb{S}_4 .

In the 2nd column, below, remark that $1 + 6 + 3 + 8 + 6 = 24 = |G|$.

What isometry g ?	How many such g ?	$\#\text{Fix}(g) = 3^F$.	$F := \#\text{[Face-orbits under } \langle g \rangle]$.
<i>Id</i>	1	3^6	$1+1+1+1+1+1$
FaceRot 90°	$\frac{6}{2} \cdot 2 = 6$	3^3	$1+4+1$
FaceRot 180°	$\frac{6}{2} \cdot 1 = 3$	3^4	$1+2+2+1$
VertexRot 120°	$\frac{8}{2} \cdot 2 = 8$	3^2	$3+3$
EdgeRot 180°	$\frac{12}{2} \cdot 1 = 6$	3^3	$2+2+2$

The sum $\frac{1}{24} \cdot [1 \cdot 3^6 + 6 \cdot 3^3 + 3 \cdot 3^4 + 8 \cdot 3^2 + 6 \cdot 3^3]$ equals 57. Using K many colors, the number of K -colorings is $\frac{1}{24} \cdot [K^6 + 3K^4 + 12K^3 + 8K^2]$, i.e, is

$$36a: \quad K^2 \cdot [K^4 + 3K^2 + 12K + 8] / 24. \quad [\text{Coloring faces}]$$

Coloring a cube's vertices. K -color the eight vertices of a cube. How many OP-isometry distinct colorings are there?

What isometry g ?	$\#\{\text{such } g\}$	$\#\text{Fix}(g) = K^V$	$V := \#\text{[Vertex-orbits under } \langle g \rangle]$.
<i>Id</i>	1	K^8	$\lceil 1^8 \rceil$
FaceRot 90°	6	K^2	$\lceil 4^2 \rceil$
FaceRot 180°	3	K^4	$\lceil 2^4 \rceil$
VertexRot 120°	8	K^4	$\lceil 1^2, 3^2 \rceil$
EdgeRot 180°	6	K^4	$\lceil 2^4 \rceil$

The coeff of K^4 is $3 + 8 + 6 = 17$. So the number of vertex K -colorings is $\frac{1}{24} \cdot [K^8 + 17K^4 + 6K^2]$ i.e, is

$$36b: \quad K^2 \cdot [K^6 + 17K^2 + 6] / 24. \quad [\text{Coloring vertices}]$$

Coloring a cube's edges. K -color the twelve edges of a cube. How many OP-isometry distinct colorings are there?

What isometry g ?	$\#\{\text{such } g\}$	$\#\text{Fix}(g) = K^E$	Cyc-sig, $\#\text{[Edge-orbits under } g]$.
<i>Id</i>	1	K^{12}	$\lceil 1^{12} \rceil, 12$
FaceRot 90°	6	K^3	$\lceil 4^3 \rceil, 3$
FaceRot 180°	3	K^6	$\lceil 2^6 \rceil, 6$
VertexRot 120°	8	K^4	$\lceil 3^4 \rceil, 4$
EdgeRot 180°	6	K^7	$\lceil 1^2, 2^5 \rceil, 7$

Collecting terms, the number of “*really different*” edge K -colorings is

$$\frac{1}{24} \cdot [K^{12} + 6K^7 + 3K^6 + 8K^4 + 6K^3].$$

Plausible? Let $h(K) := K^{12} + 6K^7 + 3K^6 + 8K^4 + 6K^3$. To verify $h(K) \equiv 24$, ISTCheck mod 3 and 8. Firstly,

$$h(K) \equiv_3 K^{12} - K^4 \equiv_3 \begin{cases} 0 - 0 = 0, & \text{when } K \equiv_3 0; \\ 1 - 1 = 0, & \text{when } K \equiv_3 \pm 1. \end{cases}$$

We now work mod 8. **WLOG K is odd** [since K even has $8 \nmid K^3 \nmid h(K)$]. Now, $K^{\text{Even}} \equiv_8 1$ and $K^{\text{Odd}} \equiv_8 K$. So

$$\begin{aligned} h(K) &\equiv_8 K^{12} - 2K^7 + 3K^6 - 2K^3 \\ &\equiv_8 1 - 2K + 3 - 2K \equiv_8 4 \cdot [1 - K] \equiv_8 0, \end{aligned}$$

since $[1 - K]$ is even. \square

Application: Coloring a necklace. Consider an necklace of N pearls, each of one of K colors.

Two necklaces are *equivalent*, if we can rotate one to be the other. Let $\mathcal{L}_N(K)$ be the number of “really different” necklace colorings. And let $\mathcal{B}_N(K)$ be the number of “really different” bracelets colorings; we can turn a bracelet over; so \mathbb{D}_N is the acting group.

Unfinished: as of 27Mar2024 [The formulas are correct, but there is not much explanation.]

$$\mathcal{L}_N(K) = \frac{1}{N} \sum_{\substack{(d,\ell) \text{ st.} \\ d \cdot \ell = N}} \varphi(d) \cdot K^\ell.$$

For bracelets, which one may turn over, dihedral group \mathbb{D}_N acts.

$$\mathcal{B}_N(K) = \frac{1}{2N} \left[\text{Flips}_N + \sum_{\substack{(d,\ell) \text{ st.} \\ d \cdot \ell = N}} \varphi(d) \cdot K^\ell \right] = \frac{\text{Flips}_N}{2N} + \frac{1}{2} \mathcal{L}_N(K).$$

CASE: $N = 2H + 1$ odd Each flip has $H+1$ orbits, and there are N many flips. So

$$\begin{aligned} \text{Flips}_N &= N \cdot K^{H+1}. \quad \text{Thus} \\ \mathcal{B}_N(K) &= \frac{1}{2} \mathcal{L}_N(K) + \frac{1}{2} K^{H+1}. \end{aligned}$$

CASE: $N = 2H$ even A flip through two edge-midpoints has H orbits, whereas a flip through two vertices has $H+1$ orbits, since each vertex [pearl] is fixed. There are H flips of each type, so

$$\begin{aligned} \text{Flips}_N &= H \cdot [K^H + K^{H+1}] = H \cdot K^H [1 + K]. \quad \text{Thus} \\ \mathcal{B}_N(K) &= \frac{1}{2} \mathcal{L}_N(K) + \frac{1}{4} K^H [1 + K]. \end{aligned}$$

Class equation

Consider a finite group acting on a finite set, $G \circ \Omega$, and let S be its set of orbits. The trivial assertion $(|\Omega| = \sum_{\mathcal{O} \in S} |\mathcal{O}|)$ leads to a useful formula, when we consider G acting on itself via conjugation.

Universally fixed. The Orbit-Stabilizer thm re-states the circled as

$$|\Omega| = \sum_{\omega \in \text{All-Reps}} \frac{|G|}{|\text{Stab}(\omega)|},$$

where “All-Reps” stands for “all orbit representatives”; this is one token ω per G -orbit. Now let

$$\text{UnivFix}(G) := \bigcap_{h \in G} \text{Fix}(h).$$

This is the set of ω in 1-point orbits, i.e., $\mathcal{O}(\omega) = \{\omega\}$.

Ex: 3x3 TTT. The TTT-aut group of $\Omega := [1..3] \times [1..3]$ is \mathbb{D}_4 . And $\text{UnivFix}(\mathbb{D}_4)$ is singleton $\{(2, 2)\}$, since only the center-cell $(2, 2)$ of the 3x3 board is unmoved by each automorphism. \square

Let's pull out these *trivial orbits* and define

$$\text{NT-Reps} := \text{All-Reps} \setminus \text{UnivFix}(G);$$

this has one representative in each *non-trivial* orbit. We have a primordial *class equation*,

$$37: |\Omega| = |\text{UnivFix}(G)| + \sum_{\omega \in \text{NT-Reps}} \frac{|G|}{|\text{Stab}_G(\omega)|}.$$

Specializing to conjugation. We now let $\Omega := G$, and have G act on Ω by conjugation. So we have a homomorphism $\mathcal{J}: G \rightarrow \mathbb{S}_\Omega$ by $h \mapsto J_h$, where $J_h(\omega)$ equals $h\omega h^{-1}$.

Acting by conjugation, the stabilizer $\text{Stab}_G(\omega)$ is the *centralizer* $\mathcal{C}_G(\omega)$. The orbit of ω is called its *conjugacy class*, written

$$\mathbb{C}(\omega) := \{h\omega h^{-1} \mid h \in G\}.$$

A conjugacy class is “non-trivial” if it has more than one point. So $\mathbb{C}(h)$ is trivial IFF $\mathcal{C}(h) = G$ IFF $h \in \mathcal{Z}(G)$, where $\mathcal{Z}(G) := \bigcap_{h \in G} \mathcal{C}(h)$ is the *center* of G . Below, let “ $h \in \text{All-CC}$ ” mean to take one representative h per \mathbb{C} . Let NT-CC comprise one representative per **Non-Trivial** \mathbb{C} .

38: Class-Equation Thm (After #24.1^P388). For a finite group G ,

$$38': |G| = |\mathcal{Z}(G)| + \sum_{h \in \text{NT-CC}} \frac{|G|}{|\mathcal{C}(h)|}.$$

Each summand $|G|/|\mathcal{C}(h)|$ is in $[2..|G|]$, and is a proper divisor of $|G|$. When G is abelian, the Σ -sum is empty, hence zero. \diamond

Remark. A less useful form of the class-eqn does not separate out the size-1 conjugacy classes. It says

$$|G| = \sum_{h \in \text{All-CC}} \frac{|G|}{|\mathcal{C}(h)|}.$$

Proof. Everything has been shown, except for the observation that when the action is conjugation, then $\text{UnivFix}(G)$ is the center $\mathcal{Z}(G)$. \spadesuit

We get a nice corollary when G is a “ p -group”.

39: p -group non-trivial center (#24.2^P389). Suppose $|G| = p^L$, where p is prime and $L \in \mathbb{Z}_+$. Then $\mathcal{Z}(G)$ is non-trivial. (So $|\mathcal{Z}(G)| = p^K$ for some $K \in [1..L]$). \diamond

Proof. The centralizer of each $h \in \text{NT-CC}(G)$ is a proper subgroup, so p divides $|G|/|\mathcal{C}(h)|$. Hence p divides the sum on RhS(??'). So p divides $|\mathcal{Z}(G)|$. \spadesuit

40: Cauchy's Thm for finite groups (After #24.3^P391).

Suppose $N := |G| < \infty$. If prime $p \nmid N$, then there exists $y \in G$ with $\text{Ord}(y) = p$. \diamond

Proof. This holds when $G = \mathbb{1}$, so we may assume

If $p \nmid \text{Ord}(Q)$ then Q has an order- p element.

holds for each group Q with $|Q| < |G|$. So WLOG we may assume that each centralizer $\mathcal{C}(h)$, for h in $\text{NT-CC}(G)$, has order not a multiple of p . Thus p divides the RhS(??') sum. So $p \nmid \text{Ord}(\mathcal{Z}(G))$.

We may now apply (18a), Cauchy's thm for *abelian* groups, to $\mathcal{Z}(G)$, to get a order- p element. \spadesuit

Remark. We get a nice progression of proofs. Note that (18b) uses induction on quotient groups, but does not use the Class-Eqn, whereas p -group non-trivial center (39) uses the class equation but no induction. The above Cauchy's thm (40), used quotient-induction to put the class equation in play.

A jazzed-up (40) argument will give Sylow's first theorem. \square

Defn. Fix a prime p . For each natnum k and finite group Q , define this proposition.

$P(k, Q)$: If $p^k \mid \text{Ord}(Q)$ then Q has a subgroup of order p^k .

We now show that this holds universally. □

41: Sylow's First Thm. For each prime p , for each natural number k and finite group G , proposition $P(k, G)$ holds. ◊

Pf. Always $P(0, *)$ holds, so fixing a $K \geq 1$ and finite group G , we show that $P(K, G)$. We may assume that $\text{Ord}(G) \nmid p^K$ and

42: $P(K-1, *)$ holds. Also $P(K, Q)$ obtains, for each group Q with $|Q| < |G|$.

So WLOG $p^K \nmid \mathcal{C}_G(h)$, for each h in **NT-CC**(G). Thus p divides the \sum -sum in $(??')$. So $p \nmid \text{Ord}(\mathcal{Z}(G))$.

Cauchy's thm for abelian groups now gives us a subgroup $H \subset \mathcal{Z}(G)$ of order- p . Every subgp of the center is G -normal, so we have a quotient group $Q := \frac{G}{H}$, and p^{K-1} divides its order. By (42), this Q has a subgroup Q' of order p^{K-1} .

Lastly, $H' := \bigcup_{U \in Q'} U$ is a subgroup; it is a union of H -cosets U . And $|H'| = |H| \cdot |Q'| = p \cdot p^{K-1} = p^K$. ◆

Misc. counting results. We first state a theorem just for pedagogical purposes.

43: Lemma. We have a subgroup $H \subset \mathcal{Z}(G)$. Suppose that each two left H -cosets, H_1 and H_2 , have representatives $y_i \in H_i$ such that $y_1 \leftrightharpoons y_2$. Then G is abelian. ◊

Proof. Pick two arbitrary $x_i \in G$. By hyp., there are $y_i \in Hx_i$ which commute. Write x_i as $h_i y_i$. So $x_1 x_2$ equals

$$\begin{aligned} y_1 h_1 [y_2 h_2] &= y_1 y_2 h_2 h_1, & \text{since } h_1 \in \mathcal{Z}(G), \\ &= y_2 y_1 h_2 h_1, & \text{since } y_2 \leftrightharpoons y_1, \\ &= y_2 h_2 y_1 h_1, & \text{since } h_2 \in \mathcal{Z}(G). \end{aligned}$$

And this equals $x_2 x_1$. ◆

An immediate corollary is this “ G mod \mathcal{Z} ” lemma.

44: G/Z Lemma. We have a subgroup $H \subset \mathcal{Z}(G)$; necessarily $H \triangleleft G$. If G/H is cyclic, then G is abelian. ◊

Remark. In the lemma, any of G , H or G/H may be infinite.

Hypothesis “ G/H is cyclic” cannot be weakened to “ G/H is abelian”. For example, the 8 elt dihedral group $G := \mathbb{D}_4$ is non-abelian. It has presentation

$$G = \langle R, F \mid F^2 = e, FRFR = e, R^4 = e \rangle.$$

Its center is $H := \{e, R^2\}$ and the quotient group G/H is isomorphic to \mathbb{D}_2 , which is abelian ($\cong \mathbb{Z}_2 \times \mathbb{Z}_2$). What goes wrong with the proof, below? Well, the two H -cosets $\{R, R^3\}$ and $\{F, FR^2\}$ have no representatives which commute. □

Proof. Pick an elt $z \in G$ so that coset zH generates the cyclic group $Q := G/H$. Each element of Q has form $[zH]^n$. Since H is G -normal, $[zH]^n = z^n H$. So we let z^n be our representative of coset $[zH]^n$. ◆

45: Lemma. In group G , suppose commuting elements a, c have **different prime** orders p and q . Then

$$\text{Ord}(ac) = p \cdot q. \quad \text{◊}$$

Proof. Let $y := ac$. Were $y = e$ then $p = \text{Ord}(a) = \text{Ord}(c^{-1}) = \text{Ord}(c) = q$; ✖. So $\text{Ord}(y) \neq 1$.

Since $a \leftrightharpoons c$,

$$\text{Ord}(y) \bullet \text{LCM}(p, q) \stackrel{\text{note}}{=} p \cdot q.$$

Were $\text{Ord}(y) \bullet p$, then $e = [ac]^p = c^p$, so $p \mid \text{Ord}(c)$. I.e $p \bullet q$. Contradiction.

So $\text{Ord}(y) \nmid p$. Ditto $\text{Ord}(y) \nmid q$. But $\text{Ord}(y) \bullet pq$. Thus $\text{Ord}(y) = pq$. ◆

Sylow Theorems

For a prime p , a “ p -group” is a (finite) group whose order is a power of p . E.g, a p -group for $p=5$ has order in $\{1, 5, 25, 125, \dots\}$.

Normal subgroups

For this section N is a natnum. Here is the theorem we are shooting for:

46: Thm. *For each $N \in \mathbb{N} \setminus \{4\}$, the alternating group \mathbb{A}_N is simple.* \diamond

Remark. The alternating groups $\mathbb{A}_0, \mathbb{A}_1, \mathbb{A}_2$ (i.e, comprising all the even permutations) are each the triv-gp, hence simple. Since $\text{Ord}(\mathbb{A}_3)=3$ is prime, group \mathbb{A}_3 is simple. So the first case we need consider is $N \geq 5$. Some of the lemmas below hold for lower N .

Let a *solo 3-cycle* mean a perm whose cycle lengths are 3, 1, 1, $\stackrel{N-3}{\dots} 1$. \square

47: 3-cycle Lemma. *The solo 3-cycles generate \mathbb{A}_N .* \diamond

Proof.

48: Lemma. *Suppose $\pi \in \mathbb{A}_N$ has a 3-cycle. Let K be the smallest normal subgp of \mathbb{A}_N owning π . Then K has a solo 3-cycle.* \diamond

Proof.

§A Appendix: (Semi)group Axioms

Semigroups & Monoids. A *semigroup* is a pair (S, \bullet) , where \bullet is an associative *binary operation* [*binop*] on set S . A special case is a *monoid*. It is a triple (S, \bullet, \mathbf{e}) , where \bullet is an associative binop on S , and $\mathbf{e} \in S$ is a two-sided identity elt.

Axiomatically:

G1: Binop \bullet is *associative*, i.e. $\forall \alpha, \beta, \gamma \in S$, necessarily $[\alpha \bullet \beta] \bullet \gamma = \alpha \bullet [\beta \bullet \gamma]$.

G2: Elt \mathbf{e} is a *two-sided identity element*, i.e. $\forall \alpha \in S$: $\alpha \bullet \mathbf{e} = \alpha$ and $\mathbf{e} \bullet \alpha = \alpha$.

Moreover, we call S a *Group* if t.fol also holds.

G3: Each elt admits a *two-sided inverse element*: $\forall \alpha, \exists \beta$ such that $\alpha \bullet \beta = \mathbf{e}$ and $\beta \bullet \alpha = \mathbf{e}$.

When the binop is ‘+’, *addition*, then write the inverse of α as $-\alpha$ and call it “*negative* α ”. We then use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse of α as α^{-1} and call it the “*reciprocal* of α ”. We use 1 for the id-elt. Usually, one omits the binop-symbol and writes $\alpha\beta$ for $\alpha \bullet \beta$.

For an *abstract* binop ‘ \bullet ’, we often write α^{-1} for the inverse of α [“ α inverse”], and omit the binop-symbol. If \bullet is *commutative* [$\forall \alpha, \beta$, necessarily $\alpha \bullet \beta = \beta \bullet \alpha$] then we call S a *commutative group*.

Rings/Fields. A *ring* is a five-tuple $(\Gamma, +, 0, \cdot, 1)$ with these axioms.

R1: Elements 0 and 1 are distinct; $0 \neq 1$.

R2: Triple $(\Gamma, +, 0)$ is a commutative group.

R3: Triple $(\Gamma, \cdot, 1)$ is monoid.

R4: Mult. *distributes-over* addition from the *left*, $\alpha[x + y] = [\alpha x] + [\alpha y]$, and from the *right*, $[x + y]\alpha = [x\alpha] + [y\alpha]$; this, for all $\alpha, x, y \in \Gamma$.

Our Γ is a *commutative ring* (abbrev.: *commRing*) if the multiplication is commutative.

When Γ is commutative: Say that $\alpha \bullet \beta$ [α *divides* β] if *there exists* $\mu \in \Gamma$ s.t. $\alpha\mu = \beta$. This is the same relation as $\beta \bullet \alpha$ [β is a multiple of α].

Zero-divisors. Fix $\alpha \in \Gamma$. Elt $\beta \in \Gamma$ is a “(*two-sided*) *annihilator* of α ” if $\alpha\beta = 0 = \beta\alpha$. An α is a (*two-sided*) *zero-divisor* if it admits a *non-zero* annihilator. So 0 is a ZD, since $0 \cdot 1 = 0 = 1 \cdot 0$, and $1 \neq 0$. We write the set of Γ -zero-divisors as

$$\text{ZD}_\Gamma \quad \text{or} \quad \text{ZD}(\Gamma).$$

[E.g: In the \mathbb{Z}_{15} ring, note $9 \not\equiv 0$ and $10 \not\equiv 0$, yet $9 \cdot 10 \text{ is } \equiv 0$. So each of 9 and 10 is a “*non-trivial zero-divisor* in \mathbb{Z}_{15} ”.]

An $\alpha \in \Gamma$ is a Γ -*unit* if $\exists \beta \in \Gamma$ st. $\alpha\beta = 1 = \beta\alpha$. Use

$$\mathbf{U}_\Gamma \quad \text{or} \quad \mathbf{U}(\Gamma)$$

for the units group. In the special case when Γ is \mathbb{Z}_N , I will write Φ_N for its units group, to emphasize the relation with the Euler-phi fnc, since $\varphi(N) := |\Phi_N|$. [Some texts use $\mathbf{U}(N)$ for the \mathbb{Z}_N units group.]

Integral domains, Fields. A *commutative ring* is a ring in which the multiplication is commutative. A commRing with no (non-zero) zero-divisors [that is, $\text{ZD}_\Gamma = \{0\}$] is called an *integral domain* (*intDomain*), or sometimes just a *domain*.

An intDomain F in which every non-zero element is a unit [i.e. $\mathbf{U}(F) = F \setminus \{0\}$] is a *field*. That is to say, F is a commRing where triple $(F \setminus \{0\}, \cdot, 1)$ is a group.

Examples. The fields we know are: \mathbb{Q} , \mathbb{R} , \mathbb{C} and, for p prime, \mathbb{Z}_p .

Every ring has the “trivial zero-divisor” —zero itself. The ring of integers doesn’t have others. In contrast, the non-trivial zero-divisors of \mathbb{Z}_{12} comprise $\{\pm 2, \pm 3, \pm 4, 6\}$.

In \mathbb{Z} the units are ± 1 . But in \mathbb{Z}_{12} , the ring of integers mod-12, the set of units, $\Phi(12)$, is $\{\pm 1, \pm 5\}$. In the ring \mathbb{Q} of rationals, *each* non-zero element is a unit. In the ring $\mathbb{G} := \mathbb{Z} + i\mathbb{Z}$ of *Gaussian integers*, the units group is $\{\pm 1, \pm i\}$. [Aside: Units(\mathbb{G}) is cyclic, generated by i . And Units(\mathbb{Z}_{12}) is not cyclic. For which N is $\Phi(N)$ cyclic?] □

Irreducibles, Primes. Consider $(\Gamma, +, 0, \cdot, 1)$, a commutative ring⁹⁴. An elt $\alpha \in \Gamma$ is a **zero-divisor** [abbrev ZD] if there exists a non-zero $\beta \in \Gamma$ st. $\alpha\beta = 0$.

In contrast, an element $u \in \Gamma$ is a **unit** if $\exists w \in \Gamma$ st. $u \cdot w = 1$. This w , written as u^{-1} , is called the **reciprocal** [or **multiplicative-inverse**] of u . [When an element *has* a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, $\alpha \mid u$, then α is a unit.

Exer 1b: If $\gamma \mid z$ with $z \in \text{ZD}$, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ , the set $\text{ZD}(\Gamma)$ is *disjoint* from $\text{Units}(\Gamma)$.

An element $p \in \Gamma$ is:

i: **Γ -irreducible** if p is a non-unit, non-ZD, such that for each Γ -factorization $p = x \cdot y$, either x or y is a Γ -unit. [Restating, using the definition below: Either $x \approx 1, y \approx p$, or $x \approx p, y \approx 1$.]

ii: **Γ -prime** if p is a non-unit, non-ZD, such that for each pair $c, d \in \Gamma$: If $p \mid [c \cdot d]$ then either $p \mid c$ or $p \mid d$.

Associates. In a *commutative* ring, elts α and β are **associates**, written $\alpha \approx \beta$, if *there exists* a unit u st. $\beta = u\alpha$. [For emphasis, we might say **strong associates**.] They are **weak-associates**, written $\alpha \sim \beta$, if $\alpha \mid \beta$ and $\alpha \mid \beta$ [i.e. $\alpha \in \beta\Gamma$ and $\beta \in \alpha\Gamma$].

Ex 3: Prove $\text{Assoc} \Rightarrow \text{weak-Assoc}$.

Ex 4: If $\alpha \sim \beta$ and $\alpha \notin \text{ZD}$, then α, β are (strong) associates.

Ex 5: In \mathbb{Z}_{10} , zero-divisors 2, 4 are weak-associates. [This, since $2 \cdot 2 \equiv 4$ and $4 \cdot 3 = 12 \equiv 2$.] Are 2, 4 (strong) associates?

Ex 6: With $d \mid \alpha$, prove: If α is a non-ZD, then d is a non-ZD.

And: If α is a unit, then d is a unit.

49: Lemma. In a commRing⁹⁴ Γ , each prime α is irreducible. ◊

Proof. Consider factorization $\alpha = xy$. Since $\alpha \mid xy$, WLOG $\alpha \mid x$, i.e. $\exists c$ with $\alpha c = x$. Hence

$$* : \alpha = xy = \alpha cy.$$

By defn, $\alpha \notin \text{ZD}$. We may thus cancel in (*), yielding $1 = cy$. So y is a unit. ◊

⁹⁴More generally, a commutative monoid.

There are rings⁹⁵ with irreducible elements p which are nonetheless not prime. However...

50: Lemma. Suppose commRing Γ satisfies the Bézout condition, that each GCD is a linear-combination. Then each irreducible α is prime. ◊

Pf. Suppose $\alpha \nmid c \cdot d$. WLOG $\alpha \nmid c$. Let $g := \text{GCD}(\alpha, c)$. Were $g \approx \alpha$, then $\alpha \mid g \mid c$, a contradiction. Thus, since α is irreducible, our $g \approx 1$. Bézout produces $S, T \in \Gamma$ with

$$1 = S\alpha + Tc. \text{ Hence}$$

$$* : d = S\alpha d + Tcd = Sd\alpha + Tcd.$$

By hyp, $\alpha \mid cd$, hence α divides RhS(*). So $\alpha \mid d$. ♦

51: Lemma. In commRing Γ , if prime p divides product $\alpha_1 \cdots \alpha_K$ then $p \mid \alpha_j$ for some j . [Exer. 7] ◊

52: Prime-uniqueness thm. In commRing Γ , suppose

$$p_1 \cdot p_2 \cdot p_3 \cdots p_K = q_1 \cdot q_2 \cdot q_3 \cdots q_L$$

are equal products-of-primes. Then $L = K$ and, after permuting the p primes, each $p_k \approx q_k$. ◊

Pf. [From Ex.4, previously, for non-ZD, relations \sim and \approx are the same.] For notational simplicity, we do this in \mathbb{Z}_+ , in which case $p_k \approx q_k$ will be replaced by $p_k = q_k$.

FTSOC, consider a CEX which minimizes sum $K+L$; necessarily positive. WLOG $L \geq 1$. Thus $K \geq 1$. [Otherwise, q_L divides a unit, forcing q_L to be a unit; see Ex.1a.] By the preceding lemma, q_L divides *some* p_k ; WLOG $q_L \mid p_K$. Thus $q_L = p_K$ [since p_K is prime and q_L is not a unit]. Cancelling now gives $p_1 \cdot p_2 \cdots p_{K-1} = q_1 \cdot q_2 \cdots q_{L-1}$, giving a CEX with a smaller $[K-1] + [L-1]$ sum. ♦

⁹⁵Consider the ring, Γ , of polys with coefficients in \mathbb{Z}_{12} . There, $x^2 - 1$ factors as $[x - 5][x + 5]$ and as $[x - 1][x + 1]$. Thus none of the four linear terms is prime. Yet each is Γ -irreducible. (Why?) This ring Γ has zero-divisors (yuck!), but there are natural subrings of \mathbb{C} where $\text{Irred} \neq \text{Prime}$.

Example where $\sim \neq \approx$. Here a modification of an example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued *continuous* fncs on $[-2, 2]$. Define $\mathcal{E}, \mathcal{D} \in \Omega$ by: For $t \geq 0$:

$$\mathcal{E}(t) = \mathcal{D}(t) := \begin{cases} t-1 & \text{if } t \in [1, 2] \\ 0 & \text{if } t \in [0, 1] \end{cases}.$$

And for $t \leq 0$ define

$$\mathcal{E}(t) := \mathcal{E}(-t) \quad \text{and} \quad \mathcal{D}(t) := -\mathcal{D}(-t).$$

[So \mathcal{E} is an Even fnc; \mathcal{D} is odd.] Note $\mathcal{E} = f\mathcal{D}$ and $\mathcal{D} = f\mathcal{E}$, where

$$f(t) := \begin{cases} 1 & \text{if } t \in [1, 2] \\ t & \text{if } t \in [-1, 1] \\ -1 & \text{if } t \in [-2, -1] \end{cases}.$$

Hence $\mathcal{E} \sim \mathcal{D}$. [This f is not a unit, since $f(0) = 0$ has no reciprocal. However, f is a *non-ZD*: For if $fg = 0$, then g must be zero on $[-2, 2] \setminus \{0\}$. Cty of g then forces $g \equiv 0$.]

Could there be a unit $u \in \Omega$ with $u\mathcal{D} = \mathcal{E}$? Well

$$u(2) = \frac{\mathcal{E}(2)}{\mathcal{D}(2)} \stackrel{\text{note}}{=} 1, \quad \text{and} \quad u(-2) = \frac{\mathcal{E}(-2)}{\mathcal{D}(-2)} \stackrel{\text{note}}{=} -1.$$

Cty of $u()$ forces u to be zero somewhere on interval $(-2, 2)$, hence u is *not* a unit. \square

Addendum. By Ex.4, both \mathcal{E} and \mathcal{D} must be zero-divisors. [Exer.8: Exhibit a function $g \in \Omega$, *not* the zero-fnc, such that $\mathcal{E} \cdot g \equiv 0$.] \square

Inverses

Consider a not-nec-commutative monoid (S, \bullet, \mathbf{e}) and an $x \in S$. An elt $\lambda \in S$ is a “*left inverse* of x ” if $\lambda \bullet x = \mathbf{e}$. Of course, then x is a *right inverse* of λ . Use $LInv/RInv$ for “left/right inverse”.

We will often suppress the binop-symbol and write xy for $x \bullet y$.

53: Prop'n. In a monoid (S, \bullet, \mathbf{e}) :

i: For each $x \in S$: If x has at least one *LInv* and one *RInv*, then x has a unique *LInv* and *RInv*, and they are equal.

ii: Suppose every elt of S has a right-inverse. Then S is a group. \diamond

Proof of (i). Suppose λ is a *LInv* of x , and ρ a *RInv*. Then

$$\lambda = \lambda[x\rho] = [\lambda x]\rho = \rho.$$

And if two *LInvs*, then $\lambda_1 = \rho = \lambda_2$. \diamond

Proof of (ii). Given $x \in S$, pick a *RInv* r and a *RInv* to r , call it y . Now

$$x = x \bullet [ry] = [xr] \bullet y = y.$$

Hence x is both a left and right inverse to r . So r is a right/left inverse to x . [Now apply part (i).] \diamond

In the next lemma, we **neither** assume *existence* of left-identity/left-inverses, **nor** do we assume *uniqueness* of right-identity/right-inverses.

54: Lemma. Suppose \times is an associative binop on S , and $\mathbf{e} \in S$ is a righthand-identity elt. Suppose that each $y \in S$ has a [wrt \mathbf{e}] righthand inverse, y' . Then:

54a: If $y \times y = y$, then $y = \mathbf{e}$.

Moreover:

54b: Each y' is also a left inverse to y , and \mathbf{e} is also a lefthand-identity.

Thus (S, \times, \mathbf{e}) is a group, \diamond

Pf (54a). Note $y = y \times \mathbf{e} = y \times [y \times y'] = [y \times y] \times y'$. By hypothesis $y \times y = y$, so the above asserts that $y = y \times y' \stackrel{\text{note}}{=} \mathbf{e}$. \diamond

Pf of (54b). First let's show that every RInv, y' , of y , is also a LInv of y . Let $b := [y' \ltimes y]$. Courtesy (54a), it is enough to show that $b \ltimes b = b$. And

$$\begin{aligned} b \ltimes b &= [y' \ltimes [y \ltimes y']] \ltimes y, \quad \text{by assoc.,} \\ &= [y' \ltimes \mathbf{e}] \quad \ltimes y \\ &= y' \ltimes y \stackrel{\text{note}}{=} b. \end{aligned}$$

We can now show that \mathbf{e} is also a *lefthand* identity. After all, $\mathbf{e} \ltimes y = [y \ltimes y'] \ltimes y = y \ltimes [y' \ltimes y] = y \ltimes \mathbf{e}$, since y' is a LHIverse. I.e, $\mathbf{e} \ltimes y = y$.

Notes to me. Bertrand Postulate.

Burnside's Normal p -complement Theorem.

§B Appendix: Miscellaneous results

Here are uncategorized theorems & and examples. My Algebra notes are spread out over many files; I need to organize them.

55: **Min-prime normality lemma.** Consider finite groups $G \supset H$ with index $p := |G:H|$ prime. Moreover, p is the smallest prime dividing $|G|$. Then $H \triangleleft G$. \diamond

Proof. Group G acts on the H -left-cosets by mult-on-the-left, engendering a group-hom $\psi: G \rightarrow \mathbb{S}_p$ into the symmetric group. Evidently, $g \notin H$ forces $gH \neq H$. Hence $K := \text{Ker}(\psi) \subset H$. [Were $|G:K|$ prime, then H is either K or G , each of which is normal in G .] `ISTShow`
 $n := |G:K| \stackrel{?}{=} p$.

Lagrange's thm says: n divides $|G|$. Hence, the *smallest* prime that could divide n is p .

Quotient group $\frac{G}{K}$ is isomorphic (via ψ) to \mathbb{S}_p -subgp $\text{Range}(\psi)$. Hence: n divides $p! \stackrel{\text{note}}{=} |\mathbb{S}_p|$. So the *largest* prime that could divide n is p . Moreover, p^2 does not divide $p!$, hence $n = p$. \spadesuit

§Index for Group Notes

Φ_N , $\varphi(N)$, 20 \triangleleft , <i>see</i> Group binrel, normal \perp , <i>see</i> Group binrel, transverse alternating group, 1 annihilator, 20 associates, 21 associative, 20 automorphism, 2 center, 3 center of a group, $\mathcal{Z}(G)$, 17 centralizer, 3 class equation, 17 commutative, 20 conjugacy class, 17 conjugate an element, 2 conjugation map, 12 dihedral group, 9 distributes-over, 20 endomorphism, 2 field, 20 fixed-point, 6 Gaussian integers, 20 Group, 20	idempotent, 2 identity element, 20 inner automorphism, 2, 12 integral domain, 20 inverse element, 20 irreducible element, 21 isomorphism, 2 Klein-4, <i>see</i> Group, <i>see</i> Group monoid, 20 normalizer, 3 orbit, 6 p -group, <i>see</i> Group, p -group prime element, 21 ring, 20
	annihilator, 20 domain, 20 zero-divisor, 20
	semigroup, 20 stabilizer, <i>see</i> Group
	token, 6 torsion, <i>see</i> Group, torsion transverse groups, \perp , 12
	unit, 20, 21 $\mathbf{U}(N)$, 20 \mathbf{U}_Γ , 20
	Vierergruppe, <i>see</i> Group, Klein-4, <i>see</i> Group, Klein-4
	ZD, <i>i.e.</i> : zero-divisor zero-divisor, 20, 21