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Terms. A general group might be written (G, -, e)
or (I', -,e) or (G, -,1) or (G,+,0). The symbol for
the neutral [i.e, identity| element may change, accord-
ing to whether the group name is a Greek letter, or
whether the group is written multiplicatively or addi-
tively. A vectorspace might be written as (V,+,0) or
(U, +,0). A group of functions, under composition,
might be written (G, o, Id).

We may use 1 (blackboard bold ‘1’) for the trivial
group, but more often will write {e} or {0} or {1} as
appropriate.

For the N cyclic group, use Zy or (Zy,+) when
written additively, but use Yy or (Yy,-) when written
multiplicatively. The Klein-4 group Vi, the Vier-
ergruppe, is isomorphic to YoxVs. [So Vi = {e,a,b,c}
is a commutative-gp with a® = b* = ¢* = e and abc = e.]

Use Sy, Dy for the N™ symmetric and dihedral
groups. So [Sy|=N!and |Dy|=2N and |Yy|=N.

The alternating group Ay is the subgroup of Sy
comprised of even permutations. So |Ag| = |A] =1,
otherwise, ‘AN‘ is N!/Q. [An arbitary set €2 engenders its
symmetric group So of permutations, but there is no corre-
sponding alternating group unless {2 is ﬁnite.]

When each element of G has finite order, we call GG

a torsion group.

To “conjugate g by element x> means to form ex-
pression x-¢g-z~'. For an arbitrary exponent n € Z,
note that [zgz™1]" = [xg"x].

The “commutator of elements o and 37 is

IIav /8]] = O‘BaﬂBﬂ

(which differs from [a, 8], the standard notation).

1: Intersection-of-subgroups Lemma.  Suppose € is a
(possibly infinite) collection of subgroups of group G.

Then ot
e
ne = N
HeC
is a G-subgroup. Proof. Exercise. O
ADDENDUM: A union of subgroups is rarely a group, since
the union is usually not sealed under the gp-operation.

Webpage http://people.clas.ufl.edu/squash/
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Morphisms

A map F:GG—1" is a homomorphism |more precisely,

a ‘“group homomO'r'phism”] if

Vyrx,g€eG: F(y-xz) = F(y)-
F(g') = [F(g)] "

The set of such homomorphisms is written as
Hom(G—TI') or Hom(I'+~G) or, more standardly,
as Hom(G,T).

This F' is an tsomorphism if F' is a bijection and
F':T'—( is a homomorphism. While the following is
not necessarily true in other branches of mathematics,
for groups |and rings| we have:

¥:

2: Fact. If a homomorphism is a bijection, then it
automatically is an isomorphism.  Proof. Exercise.(

When I'= G, then a homomorphism is called an
endomorphism, and an isomorphism is called an au-
tomorphism. My abbreviations are:

G—-T

hom = homomorphism,

G—G
endo = endomorphism,
250 = isomorphism, aut = auto = automorphism.
The set Aut(() of automorphisms G—G forms a
group under composition: the group (Aut(G), o, Idg).
The endomorphisms f:GO form (End(G), 0, Idg); a
monoid.

Inner automorphisms. FEach = € G yields an in-
ner automorphism of G defined by

L(g) = zga.

To “conjugate g by element x” means to form ex-
pression zgz'. The set Inn(():= {J,},ccc forms
a group, (Inn(G),o,ldg), which is a subgroup of
Aut(@). [Indeed, a normal subgp (defined later) of Aut(G).]

The map J:G—Aut(G) by J(z) = J,, is a group
homomorphism.

Morphisms

Prof. JLF King

NB 1: A BEST (Bright Energetic STudent) asked: In defn (¥)
of gp-hom, is condition Vg : F(g™') = F(g)™" necessary?

ANs: Good catch; no! Writing the gps as (G, e) and (T, €),
let p := F(e). So pu-u= F(e)-F(e)=F(ee)=F(e)=p. So

1 = €, since I" has inverses. We’ve shown: | F(e) must be €.
Set v = F(g™"). Then F(g™)-F(g) = F(g™" - g) = e. Multi-
ply from the right by [F(g)]™" yields ’ [F()]* = F(g'h) ‘ O

NB 2: In contrast to homomorphism between groups, a homo-
morphism between monoids does want an extra condition

Let P := P(R), the family of subsets of R. Then (P, U, )
is a commutative monoid; the binary operation is union of sets,
and the identity element is R itself.

Fix an arbitrary “target” set 7 € . Define F:P—2P by
F(X) = 7; a constant-fnc. This F satisfies

o VABeP: F(AUB) = F(A)UF(B),
since 7TUT = 7. Yet the only identity element in P is R € P; so
our F does not send the identity-elt to the identity-elt; ouch/!

Thus our defn of monoid homomorphism F from monoid

(M, e) to monoid (M’,e") should have W as part of

the defn; condition (%) is not sufficient by itself. O

Nota Bene 3: In a semigroup (S, -), hence monoid and group,,
an element 7 is idempotent (or is “an idempotent element”) if
7-7 = 7. The above powerset-monoid is weird in that every
element is idempotent. |

NB 4: The space of functions from a set () to itself, is a
monoid under o, fnc-composition, with identity element /dg,, the
identity-fnc w — w. So a function f is idempotent if fo f = f.

In contrast, “f is an involution” means [ o [ = Idq. ]
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Centralizer/Normalizer. The centralizer of an
element b € G is the subgroup

C(b) = Cu(b) = {z €G|abs™ =b}.
The centralizer of a subset S C G is

C(S) = Ca(S) = () Calb).
besS

Le, each inner-aut J, fixes S pointwise. |Note Cc:({b})
and Cq(b) are synonyms.] When S is the whole group,
rather than Cq(G), we use notation Z(() for the cen-
ter”! of G; those elts that commute with everyone.

The normalizer of a subset S C G is subgroup
N(S) = Ng(S) = {zeG|zSz = S}.

So = € N¢(S) says that inner-aut J, fixes S as a set,
but might permute its elements.

For a subgroup H C G, automatically N (H) D H.
When its normalizer is everything, N (H) = G, then
we say “H is normal in G” and write H <1 G or
G H. By defn, H <9 N¢(H).

3: N/C Theorem (#177203). Consider G, sub-
group H, its normalizer N := Ng(H) and central-
izer C :=Cqg(H). This leads to a group-homomor-
phism F:N—Aut(H) defined by restricting an N-
inner-automorphism to H:

*: F(x) = July-

Then Ker(F) is our C, whence quotient N/C is iso-
morphic to a subgroup of Aut(H).

If index |NC| is finite, then
sx: Index |N.¢| divides Ord(Aut(H)). O
Proof. The index is the cardinality of quotient

group () == %, which is isomorphic to F(N'), a subgp
of Aut(H). Now apply Lagrange. ¢

“1From German Zentrum.
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Equiv-relation result

The thms here proceed by putting an equivalence rela-
tion ~ on a set A, then showing that the equiv-classes
have a common cardinality . Hence

B K-M = |A]
where M is the number of equiv-classes.

4a: Lagrange's theorem (#7.17142). Consider H, a sub-
group of group G. Then

. _ [Number left-cosets| __
f: |H] [oinnG } = |Gl

When G is finite, then, Ord(H) divides Ord(G). ¢

Proof- Define binrel ~ on G by a ~p [ iff
a3 € H. Evidently reflexive and symmetric, we es-
tablish transitivity. Suppose a ~ b and b ~| c¢. Then
H>a'h, ble. Thus H > a'b-b'le pote ale.

ISTShow each ~| equiv-class E is bijective with H.
Fix an a€E. For h € H, note o ' - ah lies in H; hence
ah € E. Thus injection | f(h) := ah indeed maps H
into E.

To see that f is surjective, fix a target 7~ a.
Then /== o ' lies in H. And f(h) 2£ 7. ¢
Remark. The ~| equiv-classes are called the “left-
cosets of H in G”.  The in-same-right-coset rela-
tion, a ~g B, is Pa’! € H. O

Ques. Q1.Suppose G is finite, and posint D ¢ Ord(G).
Must G have a cyclic subgp of order D? How about
just a (non-cyclic) subgp? ]

No.  The N* dihedral group Dy is generated by
flip-on-Vertical-axis F, and an order-N rotation R.

Although Ord(D;5) = 30 and 6 ¢ 30, nonetheless
D15 has no elt of order 6: Its 15 “flip elts”, R'F, each
have order 2. And inside the order-15 rotation-subgp
there are certainly no order-6 elts, courtesy Monsieur
Lagrange.

BTWay, the divisors k of 15 are 15,5,3,1.
number of elts in (R)p _ of each of these orders is

The

El15]5(3]1 ,
And 8 +4+2+1=152

ok) || 84|21

“2Indeed, this yields a proof that Zd_‘N ©(d) equals N.

Equiv-relation result
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Although D15 has no element of order-6, it does
have a subgroup of order 6. The 6-element subgroup
(F,R%) is isomorphic to Dj. ¢

4b: Really really No.  Although Ord(A4) = 12 and
6 o 12, nonetheless A4 has no subgroup of order 6: ¢

Proof. The cycle-structures for even permutations on
four tokens are

Cyc-struct || [1,1,1,1] [2,2] [3,1]
Order 1 2 3
How many 13 (;1) =312 (?) =8

And 1+3+8=12=|Ay|.

Let H be the alleged order-6 subgp of A4. Neces-
sarily there is a § € H with cyc-struct [3,1]. If A
owned a [2,2] elt a, then o/ = Ba3™! would have to
be a different |_2, 2J. (Because there are only 4 tokens, there
is only one way [upto isomorphism| a [2,2] can interact with a
[3,1], and they cannot commute.) But then H includes
the Klein-4"? group (a, o). Yet 4 6.

The upshot is that no elt of H ~ {e} is [2,2], so
each is a [3,1]. And there are 6 — 1 = 5 of them.

Applying the below (5b) to H, says that 5 o ¢o(3).
But 5} 2. ¢

Sa: Defn. For a (possibly infinite) group G and posint D,

define
Spc = {z € G|Ord(z) = D}.

On Sp,g define relation: « ~p y IFF (z)o=(y)q. [

5b: Phi-divides Lemma (#4.4Coro”84). With Sp ¢ and
~p from above: x ~py IFF x € (y). In particular,
each equivalence class has precisely p(D) many ele-
ments. So

- @(D) divides |SD,G| :

p(D)-M = |Spgal,

Indeed,

where M counts the cyclic order-D subgroups of G.¢

“3Why must o & o commute? [Hint: Permuting only 4 tokens.|
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Pf(«<). By hypothesis, () C (y). But these sets
have the same, finite, cardinality. So they are equal.

An element x € G generates an order-D cyclic
subgp IFF 2 € Sp. So the order-D cyclic sub-
groups are in 1-to-1 correspondence with the above
equivalence classes. ¢

Equiv-relation result
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6a: Subset-product: ~ For subsets N,I' C G, let NI'
mean the set of products za, over all x € N and o € T'.
Even when N and I' are subgroups, product NI' need
not be a subgroup.

E.g, let R,F be the rotation and flip in G := Ds.
Subgroups N := {e,F} and I' := {e,FR} make NI’
equal {e,F,FR,R}. This is not a group, since it does
not own RZ. O

6b: Lemma. If at least one of the subgroups N,I' C G
is normal in G, then I'N = NI', and this product is
itself a G-subgroup. O

Proof. (Use letters x,y € N and o, 3 € Fl) WLOG N « G.
Thus 2/ = Bzf! is an N-element. Hence Sz € I'N
equals 2/3. Consequently, 'N C NI'. By symmetry,
then, I'N = NI.

Why is NI' sealed under multiplication? Product
yfB - xa equals ya'Pa n(éte NI'.  Finally, the inverse

element rav = o '2z7! isin I'N = NT. ¢

6c: Prop'n (#7.2%144).  Suppose K.L C G are groups.

Then
|K N L| ° |KL| = |K><L| . Le, product-set
: K| - |L
f ‘KL‘ = W ; needs K or L finite.
[Note: Product-set KL may or may not be a group,] O

Proof. Let PP :=|K N L|. By definition, the map
1: KxL—KL: (k,t) — kt

is onto. We now show that an elt kA € KL has pre-
cisely P many preimages under (}).

Each elt ¢ € KNL yields ke € K and ¢ '\ € L, with
product sc- ¢ '\ equaling .

Conversely, a product k¢ = kA yields a common
element

Kk = M1 = ¢ in KNL.

And kc = k and ¢ '\ = £. So each c gives a preim-

age. ¢

Filename: Problems/Algebra/group-Notes.latex



Page 6 of 26 Equiv-relation result

7: Lemma. Consider F': G—I", a homomorphism. Then
F(G) |i.e, Range(F)]| is a subgroup of I and

‘F(G)’ divides ‘G| . Indeed,
K| |F(G)] = |G

where K := Ker(F). O

Proof. The F-inverse-image of each v € I is a left-coset
of K in G. (Using right-cosets also works, since K <1 G.) #

8a: Group actions. The symbol G O €2 means that

gp G acts on set 2; there is a gp-hom .

For g € G and w € (), write the gp-action as
E(w) or g(w) or just gw.

Define the orbit and stabilizer of a point w, and
the fized-pt set of a group-element g:

Op(w) = {gw|g € G} C Q;
Stabp(w) = {g€ G| gw = w} C G;
Fixp(g) = {w e Q| gw =w} Cc Q.

This Stab(w) is a subgp, but is rarely normal in G:

8b: VfeG:  f-Stab(w)-f! = Stab(fw). O

8c: Orbit-Stabilizer Lemma. For each token w € :

f: Ord(Stabp(w)) - |Op(w)| = Ord(G). O

Proof. Let H := Stab(w). Say two elements g, h € G
are “equivalent”, ¢ ~ h, if g(w) = h(w). [Written
out, Fy(w) = F,(w).] Evidently, the equiv-class of g is
simply the left-coset gH. These equivalence-classes
partition G; hence (f). ¢
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Normalizer mod Centralizer

Call a posint N is Grouply unique if the cyclic group
is the only group of order N. We get a sufficient
condition for a product p - g to be grouply-unique.
Here is a routine generalization of an elegant proof
from Gallian.

9: Thm. [#177203] Suppose p < q are prime numbers
such that

e p—1 > g—1 and
: p $q-1.

Then the only group G of order p - q is cyclic. O

Setup. FTSOC we’ll assume that G is not cyclic. Our
goal is to exhibit commuting elts h, k € GG of orders p
and g, resp.. Necessarily, the product hk will have
order pg.  To produce this miracle, ISTProve that

G has a unique order-q subgp; call it K.
Moreover, its centralizer Cq(K) is all of G.

The uniqueness implies that each elt h € G~ K [such
an h exists, since pg > g| necessarily has order p. And h
commutes with each chosen & € K ~ {e}. O

Proof of (x). We proceed in four steps.

[There exists an order-q element in Gj.
FTSOC, suppose no elt 2z € G~ {e} has order-q; so
each x has order-p. Hence the Phi-divides Lemma says
©(p) "2 p—1 must divide Ord(G) — 1. Observe

pq—1 = [p—1]g+[q—1],

so this would imply p—1 ¢ g—1. But this 3%s (97).
The upshot: There exists an order-g cyclic
subgp K C G.

[This order-q subgp is um’que}. Were  there

another, call it K , then
KNK = {e},

since q is prime. From (6¢t), then,
KK| = %9,

But inequality |G| > |KK| implies p > g; a contra-
diction. So there is but one order-q subgp.

Normalizer mod Centralizer
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LThe normalizer Ng(K) = GJ. Conjugating K
must give a subgp isomorphic to K; thus is K itself.

[The centralizer is all of G}. Let C = Cq(K)
denote the centralizer. Since K is cyclic, it is abelian.
So K C C C (G. By Lagrange's thm, then,

q o Ord(C) ¢ pq.

Since p is prime, [STShow that Ord(C) # q.
Were Ord(C) = g [ie ¢ = K], then the quotient
group

would have order ?¢ = p. This quotient is group-
isomorphic to a subgp of Aut(K). Consequently
p o Ord(Aut(K)).

But K is cyclic so Aut(K) is isomorphic to U(q); i.e

|Aut(K)| = ¢(q). Thus p divides ¢(q) 2% 4—1. But
this annoys (97). ¢

What are some examples of this thm?

Works: || Hypothesis fails: | What exactly
p<q p<gq fails?
3<gq 24 g-1 (1)
3<7 346 (1)
5 <23 5 <13 4612 (1)
5 <19 5 <11 510 (1)
7T<11 7<13 612 (1)
T<17 7 <29 7428 (1)
7 <53 7 <51 Ahem!
11 <13 11 < 67 11466 (1)

Dull CEX. For p=2, and g an odd prime, dihedral
group |Dy| = 2q, yet Dq is not cyclic. The hyp. that
fails is that 2—1 divides g—1. O
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Interesting CEX. Here p=3 and g=7; let = mean =y .

In mult-gp U(7) [which has 6 elts| let Q= {1,2,4}.
This Q is a subgp of U(7), as 2:2 =4 and 2-4 = 1.
Let G be comprise the 2x2 matrices of form

@ ith o € Q) and z € Z
0 1 wi « and x 7.

Multiplying two such matrices gives

. a x| (B y| _ |aB ay+tx
) 0 1{|0 1| |O 1
(arithmetic mod-7), showing the mult. is well-defined.

-1 -1
. a x| . |lat —aw .
The inverse of 0 1] is [ 0 ) ], so G is a

group, whose order is Ord(Q)-Ord(Z;) =3 - 7.

)

Finally, [} 1]-[2 (] =[2 }], whereas in the other
order, [2 ][} 1] =[2 %]. So G is non-abelian. [

Still interesting. Let’s compute the number of elts of
each order in the above G. Consider a non-id element
g =[G 7]. Our G is not cyclic, so the possible orders
of g are 3,7.

First take « = 1: Computing, [} 7{]\ = [} M*].
Hence Nz = 0; so N =0 since  # 0. Thus

Ord([ §]) = 7,

and there are 6 such elements. Luckily, 6 is divisible
by (7).

Consider a#1: Cubing, [§ 7" = {%3 ﬂ =[3 %],
where Z is [a® + a+ 1]z. Now [@? +a + 1][a — 1]
equals [0® — 1] =0. In Z; we may divide by o — 1
to conclude that [a? + a + 1] = 0, whence Z = 0. So

Ord([a?)él :lvb = 3,

and there are 21 — 7 = 14 such elements. Happily, 14
is a multiple of ¢ (3)=2. O
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Cyclic groups

I'll use (Zy,+) when writing a cyclic group addi-
tively, but will use (Yy, -) when writing multiplica-
tively. The infinite group Y is iso to (Z, +).

Defn. For x € G we use Periodsg(z) for the set of
integers k with 2" = e.

For a subgroup H C G, let Py(x) = Pyc(z) be
{keZ | 2 € H}. So Periods(z) is simply Py(z),
when H is the trivial subgp {e}. O

11: Periods Lemma. Fix G, H,x as above, and let Py
mean Py (x). If Py is not just {0}, then Py = NZ,
where N is the least positive element of Pyy.

For G-subgroups H D K, then,

H-Ordg(z) o K-Ordg(z) ¢ Ordg(z). O

Proof. Suppose N := Min(Zy N Pp) is finite. Fixing
a k € Py, we will show that &k o V.

Set D := GCD(N, k). LBolt (well, Bézout's lemma)
produces integers such that D = NS + kKT. Hence
D € Py, since 2P equals [zN]%-[2%]T = e%.eT.
Thus N =D ¢ k. ¢

12: Defn. Use H-Ord(z) or H-Ordg(z) for the
above N; else, if Py is just {0} then H-Ord(z) := oo.
Call this the “H-order of ”. The order of z, writ-
ten Ord(z) or Ordg(z), is simply H-Ordg(z) when
H = {e}. O

Suppose H <1 G. Now [vH|¥ = 2*H, so [zH|*=H
IFF z € H. In terms of the quotient group,

11"
Vz € G: Ordg g (zH) = H-Ordg(z) o Ordg(z).

Dihedral groups

The Klein-4 group is isomorphic to Yo x Yo. Some-
times called the Vierergruppe, it has presentation

13:

each pair commutes, and the prod-

Each of {a,b,c} is an involution,>
uct of each two equals the third.

Vo= <a,b7c

Dihedral groups
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Using fewer generators, but less symmetric, is this
presentation:

13': V = (a,b|a’=e=b% a5b).
For each posint N, the N** dihedral group is

Dy = (R,F|F*=e, FRFR=e, R =e);

14: 9
Dy = (R,F|F°=e, FRFR =€), for N = cc.

Now for some straightforward facts.

15: Fact. For all N € [1..00] and integers j:
R/-F =F-R7.

Lastly, Ord(Dy) = 2N, and Ord(Dy) = No. O

16: Lemma. Groups D1=Yy and Dy=YoxYs (the
Vierergruppe), so each has full center and trivial Inn()-
group.

For each N € [3..00]:

Both Z(Ds) and Z(Dogan) are trivial. Conse-
quently Inn(Dy) = Do, and Inn(Dpgqn) = Dy

When N = 2K is even: Center Z(Dyg) = {e, R},
Consequently D = Inn(Dsg ) via the map

*: R/ Jp; and RIF JriF - O

Proof. The commutator [R/,F] equals

R'FRVF = R¥F? = R%Y.

Thus R/ < F IFF 2j ¢ N. So the only possible nt-

element in the center is R¥, where N = 2K < oo.
Finally, map (%) is a homomorphism, and is onto,

since R® commutes with each element of Dy and thus

each JRKH = ‘]R-f and JRK+J'F = JRjF. ‘
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Misc. theorems

Temporarily here.

17: Lemma. For each N > 2, the full symmetric group
Sy is generated by an N-cyclev := (bo, b1, b2, ..., bn-1)
together with 7 := (Cbo, b1); an “adjacent” 2-cycle. ¢

Proof. WLOGenerality, N > 3.

ISTShow subgroup (v,7) owns all transpositions.
Hence, by our argument from class, IST Just show that
(v, T) owns all adjacent [relative to v| transpositions.

Finally, note that viry = (b, b2). Etc. ¢

18a: Cauchy's Thm for abelian groups (#9.57182). Sup-
pose N = |G| < oo where G is an abelian group,
written multiplicatively. If prime p o N, then there
exists y € G with Ord(y) = p. O

Proof. [From the web.] Enumerate G as g1, 92,...,9N
and let Ky,..., Ky be their orders. ISTProve that

qu:ZHN K, ,

n=1
since then, p must divide some K, [since p is prime];
say, p o K. And then, y = ¢,!"*/Pl has order p.

Additive group G = Lk, X ...x Lk, has order K.
The map

F:G=G by f((l1,-. - lK)) = 1P ga? - gnY

is onto, since f((1,0,...,0)) = g1, etc.. And f
is a group-homomorphism since G is abelian. Thus
Ord(G) ¢ Ord(G). Hence p o Ord(G) ¢ K. ¢

A more standard proof uses induction on quotient
groups.

Pf of (18a). WELOG p := 5. We may assume that

If Q is a finite abelian group with Ord(Q) |e 5,

18b: then ) owns an element of order 5.

holds for each group Q with |Q| < |G].

It suffices to produce a y € G with Ordg(y) e 5.
[ Why? Power y©*W)/> has order 5.|

Since |G| > 1 we can pick a nt-element h € G;
WLOG K := Ord(h)} 5. Thus 5 divides &, which is

Misc. theorems

Prof. JLF King

the order of ) = %, where H := (h). Automatically
H < G since G is abelian. Finally, h # e so |Q] < |G].

Since quotient @) is abelian, our (18b) applies to
produce an element y € G with whose coset yH has
order 5 in Q. Le

x:  Power y°> € H, yet y ¢ H.

Thus Ordg(y) ote 5. Ordg(y°) is a multiple of 5. ¢
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Normality
Consider two gps H C G. Say that “H is normal
in G” , written H < G, if Vo € G: xHx™' = H]. This
is equivalent (see (25), below) to [Vo € G: xHx™ C H].
However, an individual element x could give proper
inclusion, as the following two examples show.
Proper inclusion, x Hx ™ G H, forces that |H| = oo
and Ord(z) = oo and that G is not abelian.

19: B.g. Let G .= Sz. Let H C G comprise those
permutations h:ZO st. [Vn < 0: h(n) = n]; i.e, hly
is the identity-fnc.

Define z € G by x(n) := n—5. For n negative,

T h z!
t: n —— n-5 — n-5 — n,

for an arbitrary h € H. Consequently, tHx™ C H.
Note that (f) holds for all n<5. So no elt n € H
which mowves something in [0..5), e.g, n(2) = 3, can

possibly be in zHz™. We have thus 2Hz™ C H,
proper inclusion. ]

20: E.g. [See file] In G := GL2(Q), the shear S := [} 1]
generates H = (S) ., which is a copy of (Z,+). Con-

jugating by X = [2 9] produces | XSX™* = S%|. Conse-
quently,

xaxt = {[§ 7] |nez}.

This is a proper subset of H. O
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Strengthening normality

Relation N<G is equivalent to [Vz € G: J,(H) C H].
By enlarging the set of endomorphisms under which
this inclusion holds, we get successively stronger ver-
sions of normality.

Defn.  Two subgroups N,I" C G are transverse ,
written N L I', if NN T = {e}. Always, the map

21: [:NxI'=NI', by (z,w) — 2w,

is onto. It is injective IFF N and I' are transverse.
The following result characterises direct product. [

22: Direct—Eroduct Lemma. Suppose N,T" C G groups,
with N < G, and N L T". Let

G = (N,T)5 == NI.

Recalling the bijection. f:NxI'— G from (21), the
following are equivalent:

1: NS T, inside G.
1: f is a homomorphism, hence isomorphism.

wi: I' < G. O

Pf (i)=(ii). Does f respect multiplication? Checking,

((z.0)) - f((5:8) & za-yp = wyap,
since N S T'. And this equals f((zy, af)). ¢

Pf (i1)=-(iii). Always {e}xI" << NxI'. Now apply f. ¢

Pf (iii) = (i). With x € N and @ € T, we need to

show that (zaz o = o).

Note that azla™ € N, since N < G. Hence

1

r-az'a™ € NN ¢ N.

And zaz™ €T, sinceI' < G. So zaz™-at €T.
Thus [z,a] € NNT, so [z,a] = e. ¢

Defn. Let SurEnd(G) denote the monoid of surjective
endomorphisms of G. Evidently

Strengthening normality
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23: Inn(G) C Aut(G) C SwEnd(G) C End(G).

Any of these inclusions can be strict, depending on
the group.

Here are various strengthenings of the notion “H is
a normal subgroup of G”. They are defined by how
many homomorphisms F:GO send H into itself.

Suppose that | F'(H) C H | for every ...

WHicH HoMs? THEN WRITTEN AS

... F € Inn(G) H<G

o1 ... F e Aut(Q) HY'G
... F € SuwEnd(G) HY G

... F € End(G) H'S'G

Aut
925: Note. Inthe H< G and H' 9 G cases, we may
conclude that each (inner-)automorphism « in fact

gives equality |«(H) = H|. This, because inclusion
F(H) C H must hold for both F := a and F :== o™1.00

In the examples below, H, K C (G, -, e) are groups.
Abbrev the normalizer N := N(H) := Ng(H) and
centralizer € :=C(H) := Cq(H) of subgp H. O

26: E.g. Fach z € G engenders a conjugation map
Jo:GO by
To(g) = xga.

Easily Jy o J; = Jy;. Conjugations are called inner
automorphisms of G; the group of conjugations is
written Inn(G). This map

27: J:G—-Inn(G) : x — J,

is a surjective gp-homomorphism. Its kernel is the

center Z(G). So Z(G) < G and

28: Inn(G) = %

A slight generalization, taking a subgp H, is to map

27': Ju : No(H)—Auwt(H) : x— Jp |-
Its kernel is the centralizer Cq(H). So /(\:/((g)) is group-

isomorphic to the subgroup

A = Range(dy) C Aut(H). O
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29: Lemma. Suppose |G H|=2. Then H <1 G.

Pf. Pick b € G~ H. Since the index is 2,
WH|UH = G = [HbUH.

Thus the left and right coset-partitions are equal. So
H < G. ¢

Remark.Index |G- H| = 2 need not imply the stronger

Aut
H < G. In the Vierergruppe, (13'), the (a), sub-
group has index 2 in V. Yet the automorphism that
exhanges a and b moves (a).

Also, |G- H| = 3 is not sufficient to imply normal-
ity. In D3, the non-normal subgp (F) has index 3.
[Conjugating, Ju(F) = RFR™' = R’F # F,] [Also: The natural
embedding of D4 has index-3 in S4, yet is not a normal subgp.]D

30: Lem. Consider groups H C G C F'. Then

Aut Aut Aut
31: [Ha9G<QF] = H<F.
Aut
32: [H<G<F] = H<F.

End _ End

End
And [H < G Q F]=H < F.  Proof. Use (25). O

Sur Sur Sur
Ques. Does [H < G <Q F] imply H < F? A
CEX necessarily has G infinite, since there would be
a F' € SurEnd(F') which maps G properly inside G.[]

33: Normal Grabbag.

)
i+ For two subgps H, K of G, let < be the strongest
?
normality so that both H,K 4 G. Then the com-
mutator-subgp [H, K ja.

.. Sur . End
itz The center Z(G) < G, but not necessarily <.

Au
iz Inn(G) < Aut(G), but not necessarily oy O

Pf of (i). Take an-endomorphism z — Z of the appro-
priate type. Fix h € H and k € K. By hypothesis,
h € H and k € K. Thus

note o —

Th, k] ¢

[H,K] > [h,k]

Strengthening normality
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Pf of (ii). Take an onto-endomorphism z — 7 and a
point z € Z(G). To show zZ € Z(G), we fixa g € G
and show that gZg™' = e. Since the endo is surjective,
there exists an v € G such that 4 = g.

Now z < 7, so e = yzyL. Thus

Pf of (ii)bis. We produce an endomorphism, of a group
G = QxD, which carries its center Z(G) outside of
itself.  Here, Q@ = {w, e} is an order-2 group gener-
ated by w. And D := D3 is a dihedral group; use e
for its neutral elt. So the center of G is
Z(G) = ZQ)x Z(D) = Qx{e}.

Let F be a flip in D3; it generates an order-2 subgp
{F,e} = F C D. The Klein-4 group QxF has an
“exchange the generators” automorphism, A, with

A((w,€e)) = (e,F) and
A((e,F)) = (w,€).

defined by exhanging the generators of subgps (2
and F'. Finally, consider the endomorphism &:G—G
which collapses the D side:

Foralla € Qand x € D: &((a,2)) = (a,€).

Finally, the composition € > A is a G-endo which
carries 2x{e} to {e}xF. ¢

Pfof (iii).  |[See file] Note that D4 has exactly two
subgroups isomorphic to the Vierergruppe,

V = (R°,F) = {e,R*F,FR’} and
V' == (R*,FR) = {e,R’ FR,FR’}.

And o(V) = V', where a € Aut(Dy) is the automor-
phism which sends R — R and F — FR.

Now for the example. Let G := 4. Check that
A = Aut(Dy) = Dy. Its subgp S = Inn(Dy) = Dy is
isomorphic to a Vierergruppe. One can interpret the
above « as in Aut(A), and as carrying S to the other
copy of the Vierergruppe. ¢
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Examples of normal subgps. On ®-dim’al Eu-
clidean space R®, let Guans be the group of trans-
lations. Then Gryans 18 normal inside the gp of all
isometries. Indeed, GTyaps is normal in the gp of in-
vertible affine maps R®0.

Proof. On V := R?®, each vector k € V yields a
translation T,:VO by Tx(v) := v+ k. Evidently a
linear L:VO has commutation

LoTe = Tyeol.

Consequently, a general (we want “invertible”) affine map
can be written A := L o T, for some linear L and trans-
lation T;

So to show Gyans normal in the affines, it is enough
to conjugate by an invertible linear map, L. Our goal
is to show that Lo T, o L™ is some translation. But

LTel™ = LL' Ty = Tiw) - ¢

34: Observation. There exist groups G with
Inn(G) = G, yet with center Z(G) non-trivial. O

Proof. Let G := Dy x Dy x Dg x Dy x .... By (16),
group Inn(G) equals
Inn(D2) X Inn(D4) X Inn(Ds) X Inn(Dqg) X . ..

= 1 X DQ X ]D)4 X ]D)g X oo,

which is isomorphic to G. ¢

Examples of homomorphisms. For posints K,L
and cyclic gps (Zk,+) and (Zp,+), what is the set
H = HOIH(ZK — ZL)?

Let D := GCD(K, L) and write

K=D-A and L=D-B, where Al B.

A homomorphism f € H is determined by where it
sends 1; f(y) =y - f(1). This f is well-defined as long
as it sends 0 and K to the same place. So we need
that

0 =, f(K) == DA-f(1).

le, DA- f(1) o DB. Hence we need A- f(1) o B.
Since A L B, this latter is equiv to f(1) @ B. Writing
f(1) :== jB, we get D many homomorphisms

M = jB, where }

Hom(Zi 1) = {fur| 5%

defined by far(y) == [M - y] mod L-

Strengthening normality
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When L = K. Let E be the set of endomor-
phisms of (Zk,+). So (E,o) is a monoid; in-
deed, a commutative monoid It is semigp-isomorphic
to (Zk,-). Its automorphism subgp is, of course, gp-
isomorphic with (®(K),-).
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Ways to count in groups
35: Burnside's Lemma (#29.17474).

Counting cardi-

nalities,
T: Z|Stab(w)| ks {(g,w) ‘ gw :w} ks Z|Fix(g)|.
wen 9eq

Counting the number of G-orbits, then,

1
I: #Orbits = —- - Z |Fix(g)|
Gl =
. {# of points fixed by an av—} 0O
" |erage element of G ’
Proof. The number of G-orbits equals
1 Orb-Stab, (8cx) 1
%2 O(w)] |G| %
Now apply (357) to earn (35%). ¢
Application: Coloring a cube’s faces. Color the

six faces of a cube red, white and blue; let € be the
set of color-cubes; so || = 36.

How many distinct colorings are there, up to
We will use Burn-
side's Lemma. The group, G, of orientation-preserving
rotations of the cube has 6 - 4 = 24 elts, and is group-

isomorphic to Sy4.

orientation-preserving isometry?

In the 2"  column, below, remark that
1+6+3+8+6=24=|G|

What isom- How many |#Fix(g) = #[Face-orbits
etry g7 such g7 — 3F under (g)].
i 1 3% || I4141+141+1
FaceRot 90° $.2=6 3% || 1+4+1
FaceRot 180° $.1=3 3 || 1+2+2+1
VertexRot 120°| 5.2=38 3% || 3+3
EdgeRot 180° Z.1=6 3% || 24242

The sum 55 - [1-3°+6-3%+3-31+8.32+6- 3%
equals 57. Using K many colors, the number of K-

colorings is 57 - [K® + 3K + 12K3 + 8K, i.e, is

36a: K- [K* 4 3K% 12K +§] /24, [Coloring]

faces

Ways to count in groups
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Coloring a cube’s vertices. K-color the eight
vertices of a cube. How many OP-isometry distinct
colorings are there?

What isom- #{such g iFiX‘Eg N vi=# [Vertex-orbits
etry g7 =K. under (g)].

d 1 K& || 18]

FaceRot 90° 6 K? || [47]

FaceRot 180° 3 K* || 124

VertexRot 120° 8 K* || 1?,3?]

EdgeRot 180° 6 K* || 124

The coeff of K% is 34+8+46 = 17. So the number of
vertex K-colorings is o7 - [K® + 17TK* + 6K i.e, is

36b: K?. [K6 + 17K2 + 6]/24. [Coloring}

vertices

Coloring a cube’s edges. K-color the twelve
edges of a cube. How many OP-isometry distinct col-
orings are there?

hat is # Fi oesio. #[Ede
™ [l ) S
Id 1| K% [1*2], 12
FaceRot 90° 6 K? [4%], 3
FaceRot 180° 3 K° 2%, 6
VertexRot 120° 8| K* [3*], 4
EdgeRot 180° 6 K7 [1%,2°, 7

Collecting terms, the number of “really different”
edge K-colorings is

5 [K'? +6K7 + 3K+ 8K* 4 6K7).

Plausible?Let h(K) = K24+ 6 K7+ 3K6+ 8K+ 6K3.
To verify h(K) @ 24, ISTCheck mod 3 and 8. Firstly,

_J0=0 =0,
2 l1-1=o0,

We now work mod 8. WLOG K is odd [since K even
has 8 of K* o h(K)]. Now, KFv®" =g 1 and KOdd = k.

h(K)

= K2 _ gt when K =3 0; }

when K =3 +1.

So
h(K) =5 K2 —-2K" + 3K% — 2K
=8 1-2K+3-2K =8 4[1 - K] =8 (),
since [1 — K] is even. O
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Application: Coloring a necklace. Consider an
necklace of N pearls, each of one of K colors.

Two necklaces are equivalent, if we can rotate one
to be the other. Let £ (K) be the number of “really
different” neckLace colorings. And let By (K) be the
number of “really different” Bracelets colorings; we
can turn a bracelet over; so Dy is the acting group.

Unfinished: as of 27Mar2024 [The formulas are

correct, but there is not much explanation.]

. 1 -/
Ln(K) = > p(d)- K"
(d,0) st.
d-t=N
For bracelets, which one may turn over, dihedral
group Dy acts.

1 Fli
(d,0) st.

d-{=N

[CASE: N =2H +1 odd] Each flip has H+1 or-
bits, and there are N many flips. So

Flipsy = N- KA1 Thyg
BN(K) = 3LN(K) + gKT

{CASE: N =2H even} A flip through two edge-
midpoints has H orbits, whereas a flip through two
vertices has H+1 orbits, since each vertex |[pearl| is
fixed. There are H flips of each type, so

Flipsy = H-[K" + KA = H-K"[1 + K]. Thus
By(K) = 3LN(K) + TKP[1+ K.
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Class equation

Consider a finite group acting on a finite set, G O 2,
and let S be its set of orbits. The trivial assertion
{|Q| = 0es |O|} leads to a useful formula, when we

consider GG acting on itself via conjugation.

Universally fixed. The Orbit-Stabilizer thm re-
states the circled as

o= >

w€eAIl-Reps

G|
|Stab(w)]’

where “ All-Reps” stands for “all orbit representatives”;
this is one token w per G-orbit. Now let

UnivFix(G) = m Fix(h) .

heG
This is the set of w in 1-point orbits, i.e, O(w) = {w}.

Ex: 3x3 TIT. The TIT-aut group of Q := [1..3]x[1.. 3]
is Dy. And UnivFix(Dy) is singleton {(2,2)}, since
only the center-cell (2, 2) of the 3x3 board is unmoved
by each automorphism. O

Let’s pull out these trivial orbits and define

NT-Reps = All-Reps \. UnivFix(G);

this has one representative in each non-trivial orbit.
We have a primordial class equation,

Gl

37: |9 = [UnivFix(G)| + Y [Stabg (@)]

weNT-Reps

Specializing to conjugation. We now let 2 := G,
and have G act on 2 by conjugation. So we have
a homomorphism J:G—Sq by h — Jp,, where Jp(w)
equals hwh™.

Acting by conjugation, the stabilizer Stabg(w) is
the centralizer Cq(w). The orbit of w is called its
conjugacy class, written

C(w) = {hwh |heG}.

A conjugacy class is “non-trivial” if it has more than
one point. So (C(h) is trivial IFF C(h) = G IFF
h € Z(G), where Z(G) = NpeqC(h) is the center
of G. Below, let “h € All-CC” mean to take one
representative h per (C. Let NT-CC comprise one
representative per Non-Trivial (C.

Class equation
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38: Class-Equation Thm (After*24.17388).  For a finite
group G,

G
38 Gl = [2(0)]+ Y c|
nence 1€ ()]

Each summand |G|/|C(h)| is in [2..]|G|], and is a
proper divisor of |G|. When G is abelian, the y -sum

is empty, hence zero. O

Remark. A less useful form of the class-eqn does not separate
out the size-1 conjugacy classes. It says

G|
Gl = —_— a
SN 0]
Proof.  Everything has been shown, except for the
observation that when the action is conjugation, then
UnivFix(G) is the center Z(G). ¢

We get a nice corollary when G is a “p-group”.
39: p-group non-trivial center (#24.2F389). Suppose

|G| = p*, where p is prime and L € Z. Then Z(QG)
is non-trivial. (So |2(G)| = p* for some K € [1..L].) ¢

Proof. ~ The centralizer of each h € NT-CC(G) is
a proper subgroup, so p divides |G|/|C(h)|. Hence p
divides the sum on RhS(??’). So p divides |Z(G)|. 4

40: Cauchy's Thm for finite groups (After#24.37391).
Suppose N := |G| < oo. If prime p ¢ N, then there
exists y € G with Ord(y) = p. ¢

Proof. This holds when G = 1, so we may assume
Lpr o Ord(Q) then @ has an order-p element. ]

holds for each group @ with |Q| < |G|. So WLOG
we may assume that each centralizer C(h), for h in
NT-CC(G), has order not a multiple of p. Thus p
divides the RhS(??’) sum. So p ¢ Ord(Z(Q)).

We may now apply (18a), Cauchy's thm for abelian
groups, to Z(G), to get a order-p element. ¢

Remark. We get a nice progression of proofs. Note
that (18b) uses induction on quotient groups, but does
not use the Class-Eqn, whereas p-group non-trivial cen-
ter (39) uses the class equation but no induction. The
above Cauchy's thm (40), used quotient-induction to
put the class equation in play.

A jazzed-up (40) argument will give Sylow’s first
theorem. O
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Defn. Fix a prime p. For each natnum k and finite
group (), define this proposition.

If p* o Ord(Q) then Q has a subgroup
of order p*.

P(k,Q):

We now show that this holds universally. O

41: Sylow's First Thm. For each prime p, for each nat-
ural number k and finite group G, proposition P(k, Q)
holds. O

Pf. Always P(0, ) holds, so fixing a K>1 and finite
group G, we show that P(K, G). We may assume that
Ord(G) | p& and

P(K—1,%) holds. Also P(K,Q) obtains,

42: o each group @ with |Q| < |G].

So WLOG p¥ $Cg(h), for each hin NT-CC(G). Thus

p divides the Y -sum in (??’). So p ¢ Ord(Z(G)).
Cauchy's thm for abelian groups now gives us a sub-

group H C Z(G) of order-p. Every subgp of the cen-

ter is G-normal, so we have a quotient group @ = %,

and p&~1 divides its order. By (42), this @ has a
subgroup Q' of order pX—1.

Lastly, H" := Upeq U is a subgroup; it is a union of
H-cosets U. And |H'| = |H|-|Q'| = p-pX~1 =pK.¢

Misc. counting results. We first state a theorem
just for pedagogical purposes.

43: Lemma. We have a subgroup H C Z(G). Sup-
pose that each two left H-cosets, Hi and Hs, have
representatives y; € H; such that y1Sys. Then G is
abelian. O

Proof. Pick two arbitrary x; € G. By hyp., there are
y; € Hx; which commute. Write x; as h;y;. So x1x9
equals

yrhi[y2ha] = y1yahohy, since h; € Z(G),

= yayrhohy,  since y2 Sy,
= yohayrhy, since hy € Z(G).
And this equals xox1. ¢

Class equation
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An immediate corollary is this “G mod Z” lemma.

44: G/Z Lemma. We have a subgroup H C Z(G); nec-
essarily H <« G. If G/H is cyclic, then G is abelian.{

Remark. In the lemma, any of G, H or G/H may be infinite.

Hypothesis “G/H is cyclic” cannot be weakened to “G/H is
abelian”. For example, the 8 elt dihedral group G = Dy is
non-abelian. It has presentation

G = (RF|F°=e FRFR=¢, R' =e).

Its center is H := {e,R?} and the quotient group G/H is isomor-
phic to D2, which is abelian (=2 Z2xZ2). What goes wrong with
the proof, below? Well, the two H-cosets {R,R*} and {F,FR?}
have no representatives which commute. O

Proof. Pick an elt z € G so that coset zH generates
the cyclic group @ := G/H. Each element of @) has
form [zH]™. Since H is G-normal, [zH|" = z"H. So

we let 2" be our representative of coset [zH]". ¢
45: Lemma. In group G, suppose commuting ele-

ments a, ¢ have different prime orders p and q. Then

Ord(ac) = p-q. O

Proof. Let y := ac. Were y = e then p = Ord(a) =
Ord(c?) = Ord(c) = q; 3. So Ord(y) # 1.

Since a 5 ¢,
Ord(y) § LOM(p, q) == p-q.

Were Ord(y) ¢ p, then e = [ac]P = cP, so p |o Ord(c).
I.e p o g. Contradiction.

So Ord(y) +p. Ditto Ord(y) $q. But Ord(y) ¢ pg.
Thus Ord(y) = pgq, ¢
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Sylow Theorems

For a prime p, a “p-group” is a (finite) group whose
order is a power of p. E.g, a p-group for p=>5 has order
in {1,5,25,125,...}.

Normal subgroups

For this section N is a natnum. Here is the theorem
we are shooting for:

46: Thm.  For each N € N~ {4}, the alternating
group Ay is simple. O

Remark.The alternating groups Ag, A1, Ag (i.e, compris-
ing all the even permutations) are each the triv-gp, hence
simple. Since Ord(A3)=3 is prime, group Ag is sim-
ple. So the first case we need consider is N > 5. Some
of the lemmas below hold for lower .

Let a solo 3-cycle mean a perm whose cycle
lengths are 3, 1,1, ¥-31. O

47: 3-cycle Lemma. The solo 3-cycles generate Ay .
Proof.

48: Lemma. Suppose m € Ay has a 3-cycle. Let K be
the smallest normal subgp of Ay owning w. Then K
has a solo 3-cycle. O

Proof.
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§A  Appendix: (Semi)group Axioms

Semigroups & Monoids. A semigroup is a pair

(S,e), where e is an associative binary operation

[binop| on set S. A special case is a monoid. It

is a triple (S, e,e), where e is an associative binop

on S, and e € S is a two-sided identity elt.
Axiomatically:

G1: Binop e is assoctative, i.e Va,8,7 € S, necessar-
ily [ceffley = ae[Fen].

G2: Elt e is a two-sided identity element, i.e
Va € S: acee=«a and ee a = q.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element:
Va, d6 such that e f =¢e and fea =e.

When the binop is ‘4’, addition, then write the
inverse of a as —« and call it “negative o’. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of v as a™! and call it the “reciprocal of o” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes af for cef.

For an abstract binop ‘e’, we often write o' for the
inverse of a [« inverse”|, and omit the binop-symbol.
If e is commutative |[Va,B, necessarily o o 5 = [ o o] then

we call S a commutative group.

Rings/Fields. A ring is a five-tuple (', +,0,,1)
with these axioms.

R1: Elements 0 and 1 are distinct; 0 = 1.

R2: Triple (F, =+, O) is a commutative group.

R3: Triple (F, ., 1) is monoid.

R4: Mult. distributes-over addition from the left,
alr +y| = [az] + [ay], and from the right,
[z + yla = [za] + [ya]; this, for all a,z,y € T.

Our I' is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When T' is commutative: Say that « ¢ ( |a divides
B| if there exists p € T’ s.t ap = B. This is the same
relation as 3 }0 « [ﬂ is a multiple of a].

A APPENDIX: (SEMI)GROUP AXIOMS
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Zero-divisors. Fix a €. Elt g € T is a “(two-
sided) anmnihilator of o” if af =0 = fa. An « is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0-1 = 0 = 1.0, and

1 # 0. We write the set of I'-zero-divisors as
ZDr or ZD(T).

[E.g: In the Zi5 ring, note 9 # 0 and 10 # 0, yet 9-10 is = 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Zl,r,”.]

Ana el isa l-unit if 36 €T st. af = 1 = fa.
Use Ur or U(D)

for the units group. In the special case when I is Zy,
I will write @ for its units group, to emphasize the
relation with the Euler-phi fnc, since ¢(N) = |®y]|.
[Some texts use U(N) for the Zy units group.|

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
7Dr = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F' in which every non-zero element
is a unit [i.e U(F) = F~.{0}] is a field. That is to say, F
is a commRing where triple (F~.{0}, -, 1) is a group.

Ezamples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Zq9 comprise
{£2,+3,+4,6}.

In Z the units are +1. But in Zjo, the ring of in-
tegers mod-12, the set of units, ®(12), is {£1,£5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {£1,£i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Zi2) is not cyclic. For which N is
®(N) cyclic?] (]
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Irreducibles, Primes. Consider (T',+,0,-,1), a
commutative ring”% An elt o € I is a zero-divisor
[abbrev ZD| if there exists a non-zero 5 € I' st. af = 0.

In contrast, an element v € I' is a unit if Jw € I’

st. uww = 1.

This w, written as v, is called the
reciprocal |or multiplicative-inverse| of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer la: If a divides a unit, « o u, then « is a unit.

Exer 1b: If v o z with z € ZD, then ~ is a zero-divisor.

Exer 2: In an arbitrary ring I', the set ZD(T') is disjoint from
Units(T).

An element p € I is:

1: I'-2rreducible if p is a non-unit, non-ZD, such
that for each I'-factorization p = -y, either x or
y is a ['-unit. [Restating, using the definition below:
Either xz~1,y~p, or z=xp, yzl.]

1: I'-prime if p is a non-unit, non-ZD, such that for
each pair c,d € T": If p ¢ [c- d] then either p ¢ c
or ped.

Associates. In a commutative ring, elts o and (8
are assoctates, written « ~ [J, if there exists a
unit u st. 8 = ua. [For emphasis, we might say strong
associates.| They are weak-associates, written
an~ B if e 5 and ale 5 [ie, a€ BT and g € ol

Ex 3: Prove Assoc = weak-Assoc.

Ex4: If o ~ 8 and « ¢ 7D, then «, 8 are (strong) associates.

Ex5: In Zo, zero-divisors 2,4 are weak-associates. [This,

since 22 = 4 and 4-3=12 = 2.] Are 2,4 (strong) associates?
Ex 6: With d ¢ «, prove: If o is a non-ZD, then d is a non-7ZD.

And: If « is a unit, then d is a unit.

49: Lemma.  In a commRing”* T', each prime « is
irreducible. O

Proof. Consider factorization a = zy. Since o ¢ zy,
WLOG « ¢ z, i.e 3¢ with ac = . Hence

*: a = Ty =0ocy.

By defn, a ¢ ZD. We may thus cancel in (x), yielding
1 =cy. So y is a unit. ¢

“4More generally, a commutative monoid.
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There are rings”” with irreducible elements p which
are nonetheless not prime. However. . .

50: Lemma. Suppose commRing I satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible o is prime. O

Pf. Suppose « ¢ c:d.  WLOG « fc. Let

g = GCD(a,c). Were g =~ «, then « ¢ g ¢ ¢, a con-

tradiction. Thus, since « is irreducible, our ¢ ~ 1.
Bézout produces S, T € I' with

1 = Sa+Tec.
*: d = Sad+Ted = Sdao+ Ted.

Hence

By hyp, « ¢ cd, hence a divides RhS(x). So o o d.4

51: Lemma.In commRing I, if prime p divides product
ai---ak then p & o for some j. [Exer. 7] O

52: Prime-uniqueness thm. In commRing T', suppose
P1-P2:P3 Pk = 91°92°93° - qL

are equal products-of-primes. Then [ = K and, after
permuting the p primes, each p, ~ qy. O

Pf. [F‘rom Ex.4, previously, for non-ZD, relations ~ and =~ are
the same.| For notational simplicity, we do this in Z,
in which case p;, ~ g; will be replaced by p;, = q;..
FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L>1. Thus
K>1. [Otherwise, q,; divides a unit, forcing q; to be a
unit; see Ex.la.] By the preceding lemma, q; divides
some p; WLOG q; o pi. Thus q; = py [since py
is prime and g, is not a unit|. Cancelling now gives
P1P2" " PKk—1=q1°92 """ qr_1, giving a CEX with a
smaller (x—1)+ (-1 sum. ¢

“5Consider the ring, I', of polys with coefficients in Zis.
There, 2> — 1 factors as [z — 5|[z + 5] and as [z — 1][z + 1].
Thus none of the four linear terms is prime. Yet each is I'-
irreducible. (Why?) This ring I" has zero-divisors (yuck!),
but there are natural subrings of C where Irred#-Prime.
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Example where ~ # ~. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Q be the ring of real-valued continuous fncs
on [-2,2]. Define €,D € Q by: Fort > 0:

t—1 iftell,2]
0 ift€[0,1])

E(t) = D(t) = {
and D(t) = —@(*t).

[So € is an Even fnc; D is odD,] Note € = fDand D = f¢,
where

1 iftell, 2]
ft) = ¢t iftel1,1]
-1 ifte[2,-1]

Hence € ~ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [-2,2] ~. {0}. Cty of g then forces g = 0.]

Could there be a unit u € 2 with uD = €7 Well

HH

u(2) = b ZEL, and u(2) = s ZE1.

~—

Cty of u() forces u to be zero somewhere on inter-
val (-2,2), hence u is not a unit. O

Addendum. By Ex.4, both €& and D must be zero-
divisors. [EX(‘I.& Exhibit a function g€, not the zero-fnc,
such that &g = 0. ]

Inverses
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Inverses

Consider a not-nec-commutative monoid (.9, e, €) and
anz € S. An elt A € S is a “left inverse of z” if
Aex =e. Of course, then x is a right inverse of \.
Use LInv/RInv for “left /right inverse”.

We will often suppress the binop-symbol and
write zy for x e y.

53: Prop'n. In a monoid (S, e,e):

12 For each x € S: If © has at least one LInv and
one RInv, then x has a unique LInv and RiInv,
and they are equal.

1: Suppose every elt of S has a right-inverse. Then
S is a group. O

Proof of (i). Suppose A is a LInv of z, and p a Rlnv.
Then

A= Azp] = [Mz]p = p.

And if two LInvs, then A\; = p = \o. ¢

Proof of (ii). Given x € S, pick a RInv r and a RInv
to r, call it y. Now

x = zxefryl = [xrjey = y.

Hence z is both a left and right inverse to r. So r is
a right /left inverse to x. [Now apply part (i).] ¢

In the next lemma, we neither assume existence of
left-identity /left-inverses, nor do we assume unique-
ness of right-identity /right-inverses.

54: Lemma. Suppose X is an associative binop on S,
and e € S is a righthand-identity elt. Suppose that
each y € S has a [wrt e| righthand inverse, y'. Then:

Hda: If yx y=y, then y =e.
Moreover:

Each v/ is also a left inverse to y, and e is
54b: . .

also a lefthand-identity.

Thus (S, x,€) is a group, O

Pf (54a).Notey =yxe=yx [y x¢/] = [y x y] x ¢/.
By hypothesis y X y = y, so the above asserts that

y=yxy =e. s
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Pf of (54b).First let’s show that every Rlnv, 3/, of y, is
also a LInv of y.  Let b:= [/ x y|. Courtesy (54a),
it is enough to show that b x b =b. And

bxb = [y x yxy]] xy, by assoc.,

= [y x €] Xy
mote g

:y[)(

We can now show that e is also a lefthand identity.
After all, ex y=[yx ¢ xy=yx [y xy| =y xe,
since 3/ is a LHInverse. l.e, e X y = v. ¢
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Notes to me. Bertrand Postulate.
Burnside's Normal p-complement Theorem.
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§B  Appendix: Miscellaneous results

Here are uncategorized theorems & and examples. My
Algebra notes are spread out over many files; I need
to organize them.

55: Min-prime normality lemma. Consider finite groups
G D H with index p := |G- H| prime. Moreover, p is
the smallest prime dividing |G|. Then H <1 G. O

Proof. Group G acts on the H-left-cosets by mult-on-
the-left, engendering a group-hom :(G—S5, into the
symmetric group. Evidently, g¢ H forces gH # H.
Hence K := Ker(¢)) C H. [Were |G,'K‘ prime, then H
is either K or G, each of which is normal in G.] ISTShow
n=|G K| < p.

Lagrange's thm says: n divides |G|. Hence, the
smallest prime that could divide n is p.

Quotient group % is isomorphic (via ¢) to Sp-subgp
Range(¢)). Hence: n divides p! tote ISp|. So the
largest prime that could divide n is p. Moreover, p’

does not divide p!, hence . ¢
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§Index for Group Notes

On, p(N), 20 idempotent, 2
<, see Group binrel, normal identity element, 20
1, see Group binrel, transverse inner automorphism, 2, 12

integral domain, 20
inverse element, 20
irreducible element, 21
isomorphism, 2

alternating group, 1
annihilator, 20
associates, 21
associative, 20
automorphism, 2 Klein-4, see Group, see Group

center, & monoid, 20
center of a group, Z(G), 17
centralizer, &

class equation, 17
commutative, 20

conjugacy class, 17 orbit, 6
conjugate an element, 2
conjugation map, 12

normalizer, 3

p-group, see Group, p-group
prime element, 21

dihedral group, 9
distributes-over, 20 ring, 20

annihilator, 20
domain, 20

endomorphism, 2
zero-divisor, 20

field, 20

fixed-point, 6 semigroup, 20

stabilizer, see Group

Gaussian integers, 20
Group, 20
p-group, 19
acting on a set, 6
alternating, 1

token, 6
torsion, see Group, torsion
transverse groups, L, 12

dihedral, 9 unit, 20, 21
Klein-4, 9 U(N), 20
of units, 20 Ur, 20

stabilizer, 6
Group binrel

normal, <, 11

transverse, L, 12
Grouply unique, 7

Vierergruppe, see Group, Klein-4,
see Group, Klein-4

7D, i.e: zero-divisor
zero-divisor, 20, 21

homomorphism, 2
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