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Terms. A general group might be written (((G, · , e)))
or (((Γ, · , ε))) or (((G, · , 1))) or (((G,+, 0))). The symbol for
the neutral [i.e, identity] element may change, accord-
ing to whether the group name is a Greek letter, or
whether the group is written multiplicatively or addi-
tively. A vectorspace might be written as (((V,+,0))) or
(((U,+,0))). A group of functions, under composition,
might be written (((G, ◦, Id))).

We may use 11 (blackboard bold ‘1’) for the trivial
group, but more often will write {e} or {0} or {1} as
appropriate.

For the N th cyclic group, use ZN or (((ZN ,+++))) when
written additively, but use YN or (((YN , ···))) when written
multiplicatively. The Klein-4 group V4, the Vier-
ergruppe , is isomorphic to Y2×Y2. [So V4 = {e, a, b, c}
is a commutative-gp with a2 = b2 = c2 = e and abc = e.]

Use SN , DN for the N th, symmetric and dihedral
groups. So |SN |=N ! and |DN |=2N and |YN |=N .

The alternating group AN is the subgroup of SN
comprised of even permutations. So |A0| = |A1| = 1;
otherwise, |AN | is N !/2. [An arbitary set Ω engenders its
symmetric group SΩ of permutations, but there is no corre-
sponding alternating group unless Ω is finite.]

When each element of G has finite order, we call G
a torsion group.

To “conjugate g by element x” means to form ex-
pression x·g·x 1. For an arbitrary exponent n ∈ Z,
note that [xgx 1]n = [xgnx 1].

The “commutator of elements α and β ” is

Jα, βK := αβα 1β 1

(which differs from [α, β], the standard notation).

1: Intersection-of-subgroups Lemma. Suppose C is a
(possibly infinite) collection of subgroups of group G.
Then ⋂(

C
) def

==
⋂
H∈C

H

is a G-subgroup. Proof. Exercise. ♦

Addendum: A union of subgroups is rarely a group, since
the union is usually not sealed under the gp-operation.
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Morphisms

A map F :G→Γ is a homomorphism [more precisely,
a “group homomorphism ”] if

∀ y,x,g ∈ G: F (y ·x) = F (y) ·F (x) and

F (g 1) = [F (g)] 1 .
U:

The set of such homomorphisms is written as
Hom(G→Γ) or Hom(Γ←G) or, more standardly,
as Hom(G,Γ).

This F is an isomorphism if F is a bijection and
F 1:Γ→G is a homomorphism. While the following is
not necessarily true in other branches of mathematics,
for groups [and rings] we have:

2: Fact. If a homomorphism is a bijection, then it
automatically is an isomorphism. Proof. Exercise.♦

When Γ = G, then a homomorphism is called an
endomorphism, and an isomorphism is called an au-
tomorphism. My abbreviations are:

G→Γ G→G
hom = homomorphism, endo = endomorphism,
iso = isomorphism, aut = auto = automorphism.

The set Aut(G) of automorphisms G→G forms a
group under composition: the group

(((
Aut(G), ◦, IdG

)))
.

The endomorphisms f :G � form
(((
End(G), ◦, IdG

)))
; a

monoid.

Inner automorphisms. Each x ∈ G yields an in-
ner automorphism of G defined by

Jx(g) := x·g·x 1 .

To “conjugate g by element x” means to form ex-
pression xgx 1. The set Inn(G) := {Jx}x∈G forms
a group,

(((
Inn(G), ◦, IdG

)))
, which is a subgroup of

Aut(G). [Indeed, a normal subgp (defined later) of Aut(G).]
The map J:G→Aut(G) by J(x) := Jx, is a group

homomorphism.

NB 1: A BEST (Bright Energetic STudent) asked: In defn (U)
of gp-hom, is condition ∀g : F (g 1) = F (g) 1 necessary?

Ans: Good catch; no! Writing the gps as (((G, e))) and (((Γ, ε))),
let µ := F (e). So µ·µ = F (e)·F (e) = F (e·e) = F (e) = µ. So
µ = ε, since Γ has inverses. We’ve shown: F (e) must be ε.

Set ν := F (g 1). Then F (g 1)·F (g) = F (g 1 · g) = ε. Multi-

ply from the right by [F (g)] 1 yields [F (g)] 1 = F (g 1) . �

NB 2: In contrast to homomorphism between groups, a homo-
morphism between monoids does want an extra condition

Let P := P(R), the family of subsets of R. Then
(((
P, ∪, R

)))
is a commutative monoid; the binary operation is union of sets,
and the identity element is R itself.

Fix an arbitrary “target” set τ ∈ P. Define F :P→P by
F (X) := τ ; a constant-fnc. This F satisfies

∀A,B ∈ P : F
(
A ∪B

)
= F

(
A
)
∪ F

(
B
)
,∗:

since τ∪τ = τ . Yet the only identity element in P is R ∈ P; so
our F does not send the identity-elt to the identity-elt; ouch!

Thus our defn of monoid homomorphism F from monoid
(((M, e))) to monoid (((M′, e′))) should have F (e) = e′ as part of
the defn; condition (∗) is not sufficient by itself. �

Nota Bene 3: In a semigroup (((S, ·))), hence monoid and group„
an element τ is idempotent (or is “an idempotent element”) if
τ ·τ = τ . The above powerset-monoid is weird in that every
element is idempotent. �

NB 4: The space of functions from a set Ω to itself, is a
monoid under ◦, fnc-composition, with identity element IdΩ, the
identity-fnc ω 7→ ω. So a function f is idempotent if f ◦ f = f .

In contrast, “f is an involution” means f ◦ f = IdΩ. �
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Centralizer/Normalizer. The centralizer of an
element b ∈ G is the subgroup

C(b) = CG(b) :=
{
x ∈ G

∣∣ xbx 1 = b
}
.

The centralizer of a subset S ⊂ G is

C(S) = CG(S) :=
⋂
b∈S
CG(b) .

I.e, each inner-aut Jx fixes S pointwise. [Note CG
(
{b}

)
and CG(b) are synonyms.] When S is the whole group,
rather than CG(G), we use notation Z(G) for the cen-
ter♥1 of G; those elts that commute with everyone.

The normalizer of a subset S ⊂ G is subgroup

N (S) = NG(S) :=
{
x ∈ G

∣∣ xSx 1 = S
}
.

So x ∈ NG(S) says that inner-aut Jx fixes S as a set,
but might permute its elements.

For a subgroup H ⊂ G, automaticallyNG(H) ⊃ H.
When its normalizer is everything, NG(H) = G, then
we say “H is normal in G” and write H C G or
GBH. By defn, H C NG(H).

3: N/C Theorem (#17P.203). Consider G, sub-
group H, its normalizer N := NG(H) and central-
izer C := CG(H). This leads to a group-homomor-
phism F :N→Aut(H) defined by restricting an N -
inner-automorphism to H:

F (x) := Jx�H .∗:

Then Ker(F ) is our C, whence quotient N/C is iso-
morphic to a subgroup of Aut(H).

If index
∣∣N ..C

∣∣ is finite, then
Index

∣∣N ..C
∣∣ divides Ord(Aut(H)).∗∗: ♦

Proof. The index is the cardinality of quotient
group Q := N

C , which is isomorphic to F (N ), a subgp
of Aut(H). Now apply Lagrange. �

♥1From German Zentrum.
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Equiv-relation result

The thms here proceed by putting an equivalence rela-
tion ∼ on a set Λ, then showing that the equiv-classes
have a common cardinality κ. Hence

κ ·M = |Λ|†:
where M is the number of equiv-classes.

4a: Lagrange’s theorem (#7.1P.142). Consider H, a sub-
group of group G. Then

|H| ·
[
Number left-cosets
of H in G

]
= |G| .†:

When G is finite, then, Ord(H) divides Ord(G). ♦

Proof. Define binrel ∼L on G by α ∼L β iff
α 1β ∈ H. Evidently reflexive and symmetric, we es-
tablish transitivity. Suppose a ∼L b and b ∼L c. Then
H 3 a 1b, b 1c. Thus H 3 a 1b · b 1c

note
=== a 1c.

ISTShow each ∼L equiv-class E is bijective with H.
Fix an α∈E. For h ∈ H, note α 1 ·αh lies in H; hence
αh ∈ E. Thus injection f(h) := αh indeed maps H
into E.

To see that f is surjective, fix a target τ ∼L α.
Then ĥ := α 1τ lies in H. And f(ĥ)

note
=== τ . �

Remark. The ∼L equiv-classes are called the “ left-
cosets of H in G” . The in-same-right-coset rela-
tion, α ∼R β, is βα 1 ∈ H. �

Ques.Q1.Suppose G is finite, and posintD •| Ord(G).
Must G have a cyclic subgp of order D? How about
just a (non-cyclic) subgp? �

No. The N th dihedral group DN is generated by
flip-on-Vertical-axis F, and an order-N rotation R.

Although Ord(D15) = 30 and 6 •| 30, nonetheless
D15 has no elt of order 6: Its 15 “flip elts”, RiF, each
have order 2. And inside the order-15 rotation-subgp
there are certainly no order-6 elts, courtesy Monsieur
Lagrange.

BTWay, the divisors k of 15 are 15, 5, 3, 1. The
number of elts in 〈R〉D15

of each of these orders is

k 15 5 3 1

ϕ(k) 8 4 2 1
And 8 + 4 + 2 + 1 = 15.♥2

♥2Indeed, this yields a proof that
∑

d•|N ϕ(d) equals N .

Although D15 has no element of order-6, it does
have a subgroup of order 6. The 6-element subgroup〈
F, R5

〉
is isomorphic to D3. �

4b: Really really No. Although Ord(A4) = 12 and
6 •| 12, nonetheless A4 has no subgroup of order 6: ♦

Proof. The cycle-structures for even permutations on
four tokens are

Cyc-struct d1, 1, 1, 1c d2, 2c d3, 1c

Order 1 2 3

How many 1 1
2 ·
(4
2

)
= 3 2 ·

(4
1

)
= 8

And 1 + 3 + 8 = 12 = |A4|.
Let H be the alleged order-6 subgp of A4. Neces-

sarily there is a β ∈ H with cyc-struct d3, 1c. If H
owned a d2, 2c elt α, then α′ := βαβ 1 would have to
be a different d2, 2c. (Because there are only 4 tokens, there
is only one way [upto isomorphism] a d2, 2c can interact with a
d3, 1c, and they cannot commute.) But then H includes
the Klein-4♥3 group 〈α, α′〉. Yet 4 �r| 6.

The upshot is that no elt of H r {e} is d2, 2c, so
each is a d3, 1c. And there are 6− 1 = 5 of them.

Applying the below (5b) to H, says that 5 |• ϕ(3).
But 5r|� 2. �

5a: Defn.For a (possibly infinite) group G and posint D,
define

SD,G :=
{
x ∈ G

∣∣ Ord(x) = D
}
.

On SD,G define relation: x ∼D y IFF 〈x〉G=〈y〉G. �

5b: Phi-divides Lemma (#4.4CoroP.84). With SD,G and
∼D from above: x ∼D y IFF x ∈ 〈y〉. In particular,
each equivalence class has precisely ϕ(D) many ele-
ments. So

ϕ(D) divides |SD,G| . Indeed,

ϕ(D) ·M = |SD,G| ,
†:

where M counts the cyclic order-D subgroups of G.♦

♥3Why must α & α′ commute? [Hint: Permuting only 4 tokens.]
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Pf (⇐). By hypothesis, 〈x〉 ⊂ 〈y〉. But these sets
have the same, finite, cardinality. So they are equal.

An element x ∈ G generates an order-D cyclic
subgp IFF x ∈ SD,G. So the order-D cyclic sub-
groups are in 1-to-1 correspondence with the above
equivalence classes. �

6a: Subset-product: For subsets N,Γ ⊂ G, let NΓ
mean the set of products xα, over all x ∈ N and α ∈ Γ.
Even when N and Γ are subgroups, product NΓ need
not be a subgroup.

E.g, let R, F be the rotation and flip in G := D3.
Subgroups N := {e, F} and Γ := {e, FR} make NΓ
equal {e, F, FR, R}. This is not a group, since it does
not own R2. �

6b: Lemma. If at least one of the subgroups N,Γ ⊂ G
is normal in G, then ΓN = NΓ, and this product is
itself a G-subgroup. ♦

Proof. (Use letters x, y ∈ N and α, β ∈ Γ.) WLOG N C G.
Thus x′ := βxβ 1 is an N-element. Hence βx ∈ ΓN
equals x′β. Consequently, ΓN ⊂ NΓ. By symmetry,
then, ΓN = NΓ.

Why is NΓ sealed under multiplication? Product
yβ · xα equals yx′βα

note
∈ NΓ. Finally, the inverse

element xα = α 1x 1 is in ΓN = NΓ. �

6c: Prop’n (#7.2P.144). Suppose K,L ⊂ G are groups.
Then

|K ∩ L| · |KL| =
∣∣K×L∣∣ . I.e, product-set∣∣KL∣∣ =
|K| · |L|
|K ∩ L|

; needs K or L finite.
†:

[Note: Product-set KL may or may not be a group.] ♦

Proof. Let P := |K ∩ L|. By definition, the map

K×L→KL : (((k, `))) 7→ k`‡:

is onto. We now show that an elt κλ ∈ KL has pre-
cisely P many preimages under (‡).

Each elt c ∈ K∩L yields κc ∈ K and c 1λ ∈ L, with
product κc · c 1λ equaling κλ.

Conversely, a product k` = κλ yields a common
element

κ 1k = λ` 1 =: c in K ∩ L.

And κc = k and c 1λ = `. So each c gives a preim-
age. �
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7: Lemma.Consider F :G→Γ, a homomorphism. Then
F (G) [i.e, Range(F )] is a subgroup of Γ and∣∣F (G)

∣∣ divides ∣∣G∣∣ . Indeed,

|K| ·
∣∣F (G)

∣∣ = |G|
†:

where K := Ker(F ). ♦

Proof.The F -inverse-image of each γ ∈ Γ is a left-coset
of K in G. (Using right-cosets also works, since K C G.) �

8a: Group actions. The symbol G 	 Ω means that
gp G acts on set Ω; there is a gp-hom

�� ��F :G→SΩ .
For g ∈ G and ω ∈ Ω, write the gp-action as

Fg(ω) or g(ω) or just gω.

Define the orbit and stabilizer of a point ω, and
the fixed-pt set of a group-element g:

OF (ω) := {gω | g ∈ G} ⊂ Ω ;

StabF (ω) := {g ∈ G | gω = ω} ⊂ G ;

FixF (g) := {ω ∈ Ω | gω = ω} ⊂ Ω .

This Stab(ω) is a subgp, but is rarely normal in G:

∀f ∈ G: f · Stab(ω) · f 1 = Stab(fω) .8b: �

8c: Orbit-Stabilizer Lemma. For each token ω ∈ Ω:

Ord
(
StabF (ω)

)
·
∣∣OF (ω)

∣∣ = Ord
(
G
)
.†: ♦

Proof. Let H := Stab(ω). Say two elements g, h ∈ G
are “equivalent” , g ∼ h, if g(ω) = h(ω). [Written
out, Fg(ω) = Fh(ω).] Evidently, the equiv-class of g is
simply the left-coset gH. These equivalence-classes
partition G; hence (†). �
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Normalizer mod Centralizer

Call a posintN isGrouply unique if the cyclic group
is the only group of order N . We get a sufficient
condition for a product p · q to be grouply-unique.
Here is a routine generalization of an elegant proof
from Gallian.

9: Thm. [#17P.203] Suppose p < q are prime numbers
such that

p−1 �r| q−1 and†:
p �r| q−1 .‡:

Then the only group G of order p · q is cyclic. ♦

Setup. FTSOC we’ll assume that G is not cyclic. Our
goal is to exhibit commuting elts h, k ∈ G of orders p
and q, resp.. Necessarily, the product hk will have
order pq. To produce this miracle, ISTProve that

G has a unique order-q subgp; call it K.
Moreover, its centralizer CG(K) is all of G.∗:

The uniqueness implies that each elt h ∈ GrK [such
an h exists, since pq > q] necessarily has order p. And h
commutes with each chosen k ∈ K r {e}. �

Proof of (∗). We proceed in four steps.�� ��There exists an order-q element in G .
FTSOC, suppose no elt x ∈ Gr {e} has order-q; so
each x has order-p. Hence the Phi-divides Lemma says
ϕ(p)

note
=== p−1 must divide Ord(G)− 1. Observe

pq − 1 = [p−1]q + [q−1] ,

so this would imply p−1 •| q−1. But this ### s (9†).
The upshot: There exists an order-q cyclic

subgp K ⊂ G.�� ��This order-q subgp is unique . Were there
another, call it K̂, then

K̂ ∩K = {e} ,

since q is prime. From (6c†), then,

|K̂K| = q·q
1 .

But inequality |G| ≥ |K̂K| implies p ≥ q; a contra-
diction. So there is but one order-q subgp.

�� ��The normalizer NG(K) = G . Conjugating K

must give a subgp isomorphic to K; thus is K itself.

�� ��The centralizer is all of G . Let C := CG(K)
denote the centralizer. Since K is cyclic, it is abelian.
So K ⊂ C ⊂ G. By Lagrange’s thm, then,

q •| Ord(C) •| pq .

Since p is prime, ISTShow that Ord(C) 6= q.
Were Ord(C) = q [i.e C = K], then the quotient

group
NG(K)
C

note
=== G

K

would have order pq
q = p. This quotient is group-

isomorphic to a subgp of Aut(K). Consequently

p •| Ord
(
Aut(K)

)
.

But K is cyclic so Aut(K) is isomorphic to U(q); i.e
|Aut(K)| = ϕ(q). Thus p divides ϕ(q)

note
=== q−1. But

this annoys (9‡). �

What are some examples of this thm?

Works: Hypothesis fails: What exactly
p < q p < q fails?

3 < q 2 •| q−1 (†)

3 < 7 3 •| 6 (‡)

5 < 23 5 < 13 4 •| 12 (†)

5 < 19 5 < 11 5 •| 10 (‡)

7 < 11 7 < 13 6 •| 12 (†)

7 < 17 7 < 29 7 •| 28 (‡)

7 < 53 7 < 51 Ahem!

11 < 13 11 < 67 11 •| 66 (‡)

Dull CEX. For p=2, and q an odd prime, dihedral
group |Dq| = 2q, yet Dq is not cyclic. The hyp. that
fails is that 2−1 divides q−1. �
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Interesting CEX. Here p=3 and q=7; let ≡ mean ≡7 .
In mult-gp U(7) [which has 6 elts] let Ω := {1, 2, 4}.

This Ω is a subgp of U(7), as 2·2 ≡ 4 and 2·4 ≡ 1.
Let G be comprise the 2×2 matrices of form[

α x
0 1

]
with α ∈ Ω and x ∈ Z7.

Multiplying two such matrices gives[
α x
0 1

][
β y
0 1

]
=

[
αβ αy + x
0 1

]
,∗:

(arithmetic mod-7), showing the mult. is well-defined.

The inverse of

[
α x
0 1

]
is

[
α 1 α 1x
0 1

]
, so G is a

group, whose order is Ord(Ω)·Ord(Z7) = 3 · 7.

Finally, [ 1 1
0 1 ] · [ 2 0

0 1 ] = [ 2 1
0 1 ], whereas in the other

order, [ 2 0
0 1 ] · [ 1 1

0 1 ] = [ 2 2
0 1 ]. So G is non-abelian. �

Still interesting. Let’s compute the number of elts of
each order in the above G. Consider a non-id element
g := [ α x

0 1 ]. Our G is not cyclic, so the possible orders
of g are 3, 7.

First take α = 1: Computing, [ 1 x
0 1 ]

N
=
[

1 Nx
0 1

]
.

Hence Nx ≡ 0; so N ≡ 0 since x 6≡ 0. Thus

Ord([ 1 x
0 1 ]) = 7 ,

and there are 6 such elements. Luckily, 6 is divisible
by ϕ(7).

Consider α 6=1: Cubing, [ α x
0 1 ]3 =

[
α3 Z
0 1

]
=
[

1 Z
0 1

]
,

where Z is [α2 + α+ 1]x. Now [α2 + α+ 1][α− 1]

equals [α3 − 1] ≡ 0. In Z7 we may divide by α− 1

to conclude that [α2 + α+ 1] ≡ 0, whence Z ≡ 0. So

Ord(
[
α 6=1 x

0 1

]
) = 3 ,

and there are 21− 7 = 14 such elements. Happily, 14
is a multiple of ϕ(3)=2. �

Filename: Problems/Algebra/group-Notes.latex



Prof. JLF King Dihedral groups Page 9 of 26

Cyclic groups

I’ll use (((ZN ,+))) when writing a cyclic group addi-
tively , but will use (((YN , ·))) when writing multiplica-
tively . The infinite group Y∞ is iso to (((Z,+))).

Defn. For x ∈ G we use PeriodsG(x) for the set of
integers k with xk = e.

For a subgroup H ⊂ G, let PH(x) = PH,G(x) be
{k ∈ Z | xk ∈ H}. So Periods(x) is simply PH(x),
when H is the trivial subgp {e}. �

11: Periods Lemma. Fix G,H, x as above, and let PH
mean PH(x). If PH is not just {0}, then PH = NZ,
where N is the least positive element of PH .

For G-subgroups H ⊃ K, then,

H-OrdG(x) •| K-OrdG(x) •| OrdG(x) . ♦

Proof. Suppose N := Min(Z+ ∩ PH) is finite. Fixing
a k ∈ PH , we will show that k |• N .

Set D := GCD(N, k). LBolt (well, Bézout’s lemma)
produces integers such that D = NS + kT . Hence
D ∈ PH , since xD equals [xN ]S · [xk]T = eS · eT .
Thus N = D •| k. �

12: Defn. Use H-Ord(x) or H-OrdG(x) for the
above N ; else, if PH is just {0} then H-Ord(x) :=∞.
Call this the “H-order of x” . The order of x, writ-
ten Ord(x) or OrdG(x), is simply H-OrdG(x) when
H := {e}. �

Suppose H C G. Now [xH]k = xkH, so [xH]k=H
IFF x ∈ H. In terms of the quotient group,

∀x ∈ G: OrdG/H(xH) = H-OrdG(x) •| OrdG(x) .
11′:

Dihedral groups

The Klein-4 group is isomorphic to Y2 ×Y2. Some-
times called the Vierergruppe, it has presentation

V :=

〈
a, b, c

∣∣∣∣ Each of {a, b, c} is an involution,
each pair commutes, and the prod-
uct of each two equals the third.

〉
.

13:

Using fewer generators, but less symmetric, is this
presentation:

V =
〈
a, b

∣∣ a2 = e = b2, a� b
〉
.13′:

For each posint N , the N th dihedral group is

DN :=
〈
R, F

∣∣ F2 = e, FRFR = e, RN = e
〉

;

D∞ :=
〈
R, F

∣∣ F2 = e, FRFR = e
〉
, for N =∞.

14:

Now for some straightforward facts.

15: Fact. For all N ∈ [1 ..∞] and integers j:

Rj · F = F · R−j .

Lastly, Ord(DN ) = 2N , and Ord(D∞) = ℵ0. ♦

16: Lemma. Groups D1
∼=Y2 and D2

∼=Y2×Y2 (the
Vierergruppe), so each has full center and trivial Inn()-
group.

For each N ∈ [3 ..∞]:
Both Z(D∞) and Z(DOddN ) are trivial. Conse-

quently Inn(D∞) ∼= D∞ and Inn(DOddN ) ∼= DN .
When N = 2K is even: Center Z(D2K) = {e, RK}.

Consequently DK ∼= Inn(D2K) via the map

Rj 7→ JRj and RjF 7→ JRjF .∗: ♦

Proof. The commutator JRj , FK equals

RjFR jF 1 = R2jF2 = R2j .

Thus Rj � F IFF 2j |• N . So the only possible nt-
element in the center is RK , where N = 2K <∞.

Finally, map (∗) is a homomorphism, and is onto,
since RK commutes with each element of D2K and thus
each JRK+j = JRj and JRK+jF = JRjF. �
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Misc. theorems

Temporarily here.

17: Lemma. For each N ≥ 2, the full symmetric group
SN is generated by an N -cycle ν := yb0, b1, b2, . . . , bN−1

y

together with τ := yb0, b1

y

; an “adjacent” 2-cycle. ♦

Proof. WLOGenerality, N ≥ 3.
ISTShow subgroup 〈ν, τ〉 owns all transpositions.

Hence, by our argument from class, ISTJust show that
〈ν, τ〉 owns all adjacent [relative to ν] transpositions.

Finally, note that ν 1τν = yb1, b2

y

. Etc. �

18a: Cauchy’s Thm for abelian groups (#9.5P.182). Sup-
pose N := |G| < ∞ where G is an abelian group,
written multiplicatively. If prime p •| N , then there
exists y ∈ G with Ord(y) = p. ♦

Proof. [From the web.] Enumerate G as g1, g2, . . . , gN
and let K1, . . . ,KN be their orders. ISTProve that

p •| K̃ :=
∏N

n=1
Kn ,

since then, p must divide some Kn [since p is prime];
say, p •| K2. And then, y := g2

[K2/p] has order p.
Additive group G̃ := ZK1 × . . .× ZKN

has order K̃.
The map

f :G̃→G by f
(
(((`1, . . . , `K)))

)
:= g1

`1g2
`2 · · · gN`N

is onto, since f
(
(((1, 0, . . . , 0)))

)
= g1, etc.. And f

is a group-homomorphism since G is abelian. Thus
Ord(G) •| Ord(G̃). Hence p •| Ord(G) •| K̃. �

A more standard proof uses induction on quotient
groups.

Pf of (18a). WELOG p := 5. We may assume that

If Q is a finite abelian group with Ord(Q) |• 5,
then Q owns an element of order 5.

18b:

holds for each group Q with |Q| < |G|.
It suffices to produce a y ∈ G with OrdG(y) |• 5.

[Why? Power yOrd(y)/5 has order 5.]
Since |G| > 1 we can pick a nt-element h ∈ G;

WLOG K := Ord(h)r|� 5. Thus 5 divides N
K , which is

the order of Q := G
H , where H := 〈h〉. Automatically

H C G sinceG is abelian. Finally, h 6= e so |Q| < |G|.
Since quotient Q is abelian, our (18b) applies to

produce an element y ∈ G with whose coset yH has
order 5 in Q. I.e

Power y5 ∈ H, yet y /∈ H.∗:

Thus OrdG(y)
note
=== 5 ·OrdH(y5) is a multiple of 5. �
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Normality

Consider two gps H ⊂ G. Say that “H is normal
inG” , writtenH C G, if [∀x ∈ G: xHx 1 = H]. This
is equivalent (see (25), below) to [∀x ∈ G: xHx 1 ⊂ H].
However, an individual element x could give proper
inclusion, as the following two examples show.
Proper inclusion, xHx 1 $ H, forces that |H| =∞

and Ord(x) =∞ and that G is not abelian.

19: E.g. Let G := SZ. Let H ⊂ G comprise those
permutations h:Z � st. [∀n < 0: h(n) = n ]; i.e, h�Z−
is the identity-fnc.

Define x ∈ G by x(n) := n−5. For n negative,

n
x7−→ n−5

h7−→ n−5
x 1

7−→ n ,†:

for an arbitrary h ∈ H. Consequently, xHx 1 ⊂ H.
Note that (†) holds for all n<5. So no elt η ∈ H

which moves something in [0 .. 5), e.g, η(2) = 3, can
possibly be in xHx 1. We have thus xHx 1 $ H,
proper inclusion. �

20: E.g. [See file.] In G := GL2(Q), the shear S := [ 1 1
0 1 ]

generates H := 〈S〉G, which is a copy of (((Z,+))). Con-
jugating by X := [ 2 0

0 1 ] produces
�� ��XSX 1 = S2 . Conse-

quently,

XHX 1 =
{

[ 1 2n
0 1 ]

∣∣∣ n ∈ Z
}
.

This is a proper subset of H. �
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Strengthening normality

Relation NCG is equivalent to [∀x ∈ G: Jx(H) ⊂ H].
By enlarging the set of endomorphisms under which
this inclusion holds, we get successively stronger ver-
sions of normality.

Defn. Two subgroups N,Γ ⊂ Ĝ are transverse ,
written N ⊥ Γ, if N ∩ Γ = {e}. Always, the map

f :N×Γ→NΓ , by (((x, ω))) 7→ xω,21:

is onto. It is injective IFF N and Γ are transverse.
The following result characterises direct product. �

22: Direct-product Lemma. Suppose N,Γ ⊂ Ĝ groups,
with N C Ĝ, and N ⊥ Γ. Let

G := 〈N,Γ〉
Ĝ

note
=== NΓ .

Recalling the bijection. f :N×Γ→G from (21), the
following are equivalent:

i : N� Γ, inside G.
ii : f is a homomorphism, hence isomorphism.
iii : Γ C G. ♦

Pf (i)⇒(ii). Does f respect multiplication? Checking,

f
(
(((x, α)))

)
· f
(
(((y, β)))

) def
== xα · yβ = xyαβ ,

since N� Γ. And this equals f
(
(((xy, αβ)))

)
. �

Pf (ii)⇒(iii). Always {e}×Γ C N×Γ. Now apply f . �

Pf (iii) ⇒ (i). With x ∈ N and α ∈ Γ, we need to
show that

�� ��xαx 1α 1 = e .
Note that αx 1α 1 ∈ N, since N C Ĝ. Hence

x · αx 1α 1 ∈ NN ⊂ N .

And xαx 1 ∈ Γ, since Γ C G. So xαx 1 · α 1 ∈ Γ.
Thus Jx, αK ∈ N ∩ Γ, so Jx, αK = e. �

Defn. Let SurEnd(G) denote the monoid of surjective
endomorphisms of G. Evidently

Inn(G) ⊂ Aut(G) ⊂ SurEnd(G) ⊂ End(G) .23:

Any of these inclusions can be strict, depending on
the group.

Here are various strengthenings of the notion “H is
a normal subgroup of G”. They are defined by how
many homomorphisms F :G � send H into itself.

Suppose that
�� ��F (H) ⊂ H for every . . .

Which Homs? Then written as

. . . F ∈ Inn(G) H C G

. . . F ∈ Aut(G) H
Aut
C G

. . . F ∈ SurEnd(G) H
Sur
C G

. . . F ∈ End(G) H
End
C G

24:

25: Note. In the H C G and H
Aut
C G cases, we may

conclude that each (inner-)automorphism α in fact
gives equality

�� ��α(H) = H . This, because inclusion
F (H) ⊂ H must hold for both F := α and F := α 1.�

In the examples below, H,K ⊂ (((G, ·, e))) are groups.
Abbrev the normalizer N := N (H) := NG(H) and
centralizer C := C(H) := CG(H) of subgp H. �

26: E.g. Each x ∈ G engenders a conjugation map
Jx:G � by

Jx(g) := xgx 1 .

Easily Jy ◦ Jx = Jyx. Conjugations are called inner
automorphisms of G; the group of conjugations is
written Inn(G). This map

J:G�Inn(G) : x 7→ Jx27:

is a surjective gp-homomorphism. Its kernel is the
center Z(G). So Z(G) C G and

Inn(G) ∼= G
Z(G) .28:

A slight generalization, taking a subgp H, is to map

JH : NG(H)→Aut(H) : x 7→ Jx �H .27′:

Its kernel is the centralizer CG(H). So N (H)
C(H) is group-

isomorphic to the subgroup

A := Range(JH) ⊂ Aut(H) . �
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29: Lemma. Suppose
∣∣G..H

∣∣ = 2. Then H C G. ♦

Pf. Pick b ∈ GrH. Since the index is 2,

[bH] tH = G = [Hb] tH .

Thus the left and right coset-partitions are equal. So
H C G. �

Remark. Index
∣∣G..H

∣∣ = 2 need not imply the stronger

H
Aut
C G. In the Vierergruppe, (13′), the 〈a〉V sub-

group has index 2 in V . Yet the automorphism that
exhanges a and b moves 〈a〉.

Also,
∣∣G..H

∣∣ = 3 is not sufficient to imply normal-
ity. In D3, the non-normal subgp 〈F〉 has index 3.
[Conjugating, JR(F) = RFR 1 = R2F 6= F.] [Also: The natural
embedding of D4 has index-3 in S4, yet is not a normal subgp.]�

30: Lem. Consider groups H ⊂ G ⊂ F . Then[
H

Aut
C G

Aut
C F

]
=⇒ H

Aut
C F .31: [

H
Aut
C G C F

]
=⇒ H C F .32:

And
[
H

End
C G

End
C F

]
⇒H

End
C F . Proof. Use (25). ♦

Ques. Does [H
Sur
C G

Sur
C F ] imply H

Sur
C F? A

CEX necessarily has G infinite, since there would be
a F ∈ SurEnd(F ) which maps G properly inside G.�

33: Normal Grabbag.

i : For two subgps H,K of G, let
?
/ be the strongest

normality so that both H,K
?
/ G. Then the com-

mutator-subgp JH,KK
?
/ G.

ii : The center Z(G)
Sur
C G, but not necessarily

End
C .

iii : Inn(G) C Aut(G), but not necessarily
Aut
C . ♦

Pf of (i). Take an-endomorphism x 7→ x̂ of the appro-
priate type. Fix h ∈ H and k ∈ K. By hypothesis,
ĥ ∈ H and k̂ ∈ K. Thus

JH,KK 3 Jĥ, k̂K note
=== Ĵh, kK . �

Pf of (ii). Take an onto-endomorphism x 7→ x̂ and a
point z ∈ Z(G). To show ẑ ∈ Z(G), we fix a g ∈ G
and show that gẑg 1 = e. Since the endo is surjective,
there exists an γ ∈ G such that γ̂ = g.

Now z � γ, so e = γzγ 1. Thus

e = γ̂zγ 1 = γ̂ · ẑ · γ̂ 1 = g · ẑ · g 1 . �

Pf of (ii)bis.We produce an endomorphism, of a group
G := Ω×D, which carries its center Z(G) outside of
itself. Here, Ω = {ω, ε} is an order-2 group gener-
ated by ω. And D := D3 is a dihedral group; use e
for its neutral elt. So the center of G is

Z(G) = Z(Ω)×Z(D) = Ω× {e} .

Let F be a flip in D3; it generates an order-2 subgp
{F, e} =: F ⊂ D. The Klein-4 group Ω×F has an
“exchange the generators” automorphism, A, with

A
(
(((ω, e)))

)
:= (((ε, F))) and

A
(
(((ε, F)))

)
:= (((ω, e))) .

defined by exhanging the generators of subgps Ω
and F . Finally, consider the endomorphism E:G→G
which collapses the D side:

For all α ∈ Ω and x ∈ D: E
(
(((α, x)))

)
:= (((α, e))) .

Finally, the composition E . A is a G-endo which
carries Ω×{e} to {ε}×F . �

Pf of (iii). [See file.] Note that D4 has exactly two
subgroups isomorphic to the Vierergruppe,

V := 〈R2, F〉 = {e, R2, F, FR2} and

V ′ := 〈R2, FR〉 = {e, R2, FR, FR3} .

And α(V ) = V ′, where α ∈ Aut(D4) is the automor-
phism which sends R 7→ R and F 7→ FR.

Now for the example. Let G := D4. Check that
A := Aut(D4) ∼= D4. Its subgp S := Inn(D4) ∼= D2 is
isomorphic to a Vierergruppe. One can interpret the
above α as in Aut(A), and as carrying S to the other
copy of the Vierergruppe. �
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Examples of normal subgps. On D-dim’al Eu-
clidean space RD, let GTrans be the group of trans-
lations. Then GTrans is normal inside the gp of all
isometries. Indeed, GTrans is normal in the gp of in-
vertible affine maps RD �.

Proof. On V := RD, each vector κ ∈ V yields a
translation Tκ:V � by Tκ(v) := v + κ. Evidently a
linear L:V � has commutation

L ◦ Tκ = TL(κ) ◦ L .

Consequently, a general (we want “invertible”) affine map
can be written A := L ◦ T, for some linear L and trans-
lation T;

So to show GTrans normal in the affines, it is enough
to conjugate by an invertible linear map, L. Our goal
is to show that L ◦ Tκ ◦ L 1 is some translation. But

LTκL
1 = LL 1TL(κ) = TL(κ) . �

34: Observation. There exist groups G with
Inn(G) ∼= G, yet with center Z(G) non-trivial. ♦

Proof. Let G := D2 × D4 × D8 × D16 × . . . . By (16),
group Inn(G) equals

Inn(D2)× Inn(D4)× Inn(D8)× Inn(D16)× . . .
∼= 11 × D2 × D4 × D8 × . . . ,

which is isomorphic to G. �

Examples of homomorphisms. For posints K,L
and cyclic gps (((ZK ,+))) and (((ZL,+))), what is the set
H := Hom(ZK → ZL)?

Let D := GCD(K,L) and write

K = D ·A and L = D ·B , where A ⊥ B.

A homomorphism f ∈ H is determined by where it
sends 1; f(y) = y · f(1). This f is well-defined as long
as it sends 0 and K to the same place. So we need
that

0 ≡L f(K)
note
=== DA · f(1) .

I.e, DA · f(1) |• DB. Hence we need A · f(1) |• B.
Since A ⊥ B, this latter is equiv to f(1) |• B. Writing
f(1) := jB, we get D many homomorphisms

Hom(ZK → ZL) =
{
fM

∣∣∣ M = jB, where
j ∈ [0 .. D)

}
,

defined by fM (y) := [M · y] mod L.

When L = K. Let E be the set of endomor-
phisms of (((ZK ,+))). So (((E, ◦))) is a monoid; in-
deed, a commutative monoid It is semigp-isomorphic
to (((ZK , ·))). Its automorphism subgp is, of course, gp-
isomorphic with (((Φ(K), ·))).
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Ways to count in groups
35: Burnside’s Lemma (#29.1P.474). Counting cardi-
nalities,∑

ω∈Ω

∣∣Stab(ω)
∣∣ #

=
{
(((g, ω)))

∣∣∣ gω = ω
}

#
=
∑
g∈G

∣∣Fix(g)
∣∣ .†:

Counting the number of G-orbits, then,

#Orbits =
1

|G|
·
∑
g∈G

∣∣Fix(g)
∣∣‡:

=
[
# of points fixed by an av-
erage element of G

]
. ♦

Proof. The number of G-orbits equals

∑
ω∈Ω

1

|O(ω)|
Orb-Stab, (8c∗)
============

1

|G|
·
∑
ω∈Ω

|Stab(ω)| .

Now apply (35†) to earn (35‡). �

Application: Coloring a cube’s faces. Color the
six faces of a cube red, white and blue; let Ω be the
set of color-cubes; so |Ω| = 36.

How many distinct colorings are there, up to
orientation-preserving isometry? We will use Burn-
side’s Lemma. The group, G, of orientation-preserving
rotations of the cube has 6 · 4 = 24 elts, and is group-
isomorphic to S4.

In the 2nd column, below, remark that
1 + 6 + 3 + 8 + 6 = 24 = |G|.

What isom-
etry g?

How many
such g?

#Fix(g)

= 3F.
F := # [Face-orbits

under 〈g〉].

Id 1 36 1+1+1+1+1+1

FaceRot 90◦ 6
2
· 2 = 6 33 1+4+1

FaceRot 180◦ 6
2
· 1 = 3 34 1+2+2+1

VertexRot 120◦ 8
2
· 2 = 8 32 3+3

EdgeRot 180◦ 12
2
· 1 = 6 33 2+2+2

The sum 1
24 · [1 · 3

6 + 6 · 33 + 3 · 34 + 8 · 32 + 6 · 33]
equals 57. Using K many colors, the number of K-
colorings is 1

24 · [K
6 + 3K4 + 12K3 + 8K2], i.e, is

K2 · [K4 + 3K2 + 12K + 8]
/

24.
[
Coloring
faces

]
36a:

Coloring a cube’s vertices. K-color the eight
vertices of a cube. How many OP-isometry distinct
colorings are there?
What isom-
etry g?

#{such g}
#Fix(g)

= KV.
V := # [Vertex-orbits

under 〈g〉].

Id 1 K8 d18c

FaceRot 90◦ 6 K2 d42c

FaceRot 180◦ 3 K4 d24c

VertexRot 120◦ 8 K4 d12, 32c

EdgeRot 180◦ 6 K4 d24c

The coeff of K4 is 3 + 8 + 6 = 17. So the number of
vertex K-colorings is 1

24 · [K
8 + 17K4 + 6K2] i.e, is

K2 · [K6 + 17K2 + 6]
/

24.
[
Coloring
vertices

]
36b:

Coloring a cube’s edges. K-color the twelve
edges of a cube. How many OP-isometry distinct col-
orings are there?
What isom-
etry g?

#{such g}
#Fix(g)

= KE.
Cyc-sig, # [Edge-
orbits under g].

Id 1 K12 d112c, 12

FaceRot 90◦ 6 K3 d43c, 3

FaceRot 180◦ 3 K6 d26c, 6

VertexRot 120◦ 8 K4 d34c, 4

EdgeRot 180◦ 6 K7 d12, 25c, 7

Collecting terms, the number of “really different”
edge K-colorings is

1
24
·
[
K12 + 6K7 + 3K6 + 8K4 + 6K3

]
.

Plausible? Let h(K) := K12+ 6K7+ 3K6+ 8K4+ 6K3.
To verify h(K) |• 24, ISTCheck mod 3 and 8. Firstly,

h(K) ≡3 K12 −K4 ≡3

{
0− 0 = 0, when K ≡3 0 ;

1− 1 = 0, when K ≡3 ±1.

}

We now work mod 8. WLOG K is odd [since K even
has 8 •| K3 •| h(K)]. Now, KEven≡8 1 and KOdd≡8K.
So

h(K) ≡8 K12 − 2K7 + 3K6 − 2K3

≡8 1− 2K + 3− 2K ≡8 4 · [1 − K] ≡8 0 ,

since [1−K] is even. �
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Application: Coloring a necklace. Consider an
necklace of N pearls, each of one of K colors.

Two necklaces are equivalent, if we can rotate one
to be the other. Let LN (K) be the number of “really
different” neckLace colorings. And let BN (K) be the
number of “really different” Bracelets colorings; we
can turn a bracelet over; so DN is the acting group.
Unfinished: as of 27Mar2024 [The formulas are

correct, but there is not much explanation.]

LN (K) =
1

N

∑
(((d,`))) st.
d · `=N

ϕ(d) ·K` .

For bracelets, which one may turn over, dihedral
group DN acts.

BN (K) =
1

2N

[
FlipsN +

∑
(((d,`))) st.
d · `=N

ϕ(d)·K`
]

=
FlipsN
2N

+ 1
2LN (K).

�� ��Case: N = 2H + 1 odd Each flip has H+1 or-
bits, and there are N many flips. So

FlipsN = N ·KH+1 . Thus

BN (K) = 1
2LN (K) + 1

2K
H+1.

�� ��Case: N = 2H even A flip through two edge-
midpoints has H orbits, whereas a flip through two
vertices has H+1 orbits, since each vertex [pearl] is
fixed. There are H flips of each type, so

FlipsN = H·
[
KH +KH+1] = H·KH [1 +K]. Thus

BN (K) = 1
2LN (K) + 1

4K
H [1 +K].
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Class equation

Consider a finite group acting on a finite set, G 	 Ω,
and let S be its set of orbits. The trivial assertion�� ��|Ω| =

∑
O∈S |O| leads to a useful formula, when we

consider G acting on itself via conjugation.

Universally fixed. The Orbit-Stabilizer thm re-
states the circled as

|Ω| =
∑

ω∈All-Reps

|G|
|Stab(ω)|

,

where “All-Reps” stands for “all orbit representatives”;
this is one token ω per G-orbit. Now let

UnivFix(G) :=
⋂

h∈G
Fix(h) .

This is the set of ω in 1-point orbits, i.e, O(ω) = {ω}.

Ex: 3×3 TTT. The TTT-aut group of Ω := [1 .. 3]×[1 .. 3]
is D4. And UnivFix(D4) is singleton

{
(((2, 2)))

}
, since

only the center-cell (((2, 2))) of the 3×3 board is unmoved
by each automorphism. �

Let’s pull out these trivial orbits and define

NT-Reps := All-Reps r UnivFix(G) ;

this has one representative in each non-trivial orbit.
We have a primordial class equation,

|Ω| = |UnivFix(G)| +
∑

ω∈NT-Reps

|G|
|StabG(ω)|

.37:

Specializing to conjugation. We now let Ω := G,
and have G act on Ω by conjugation. So we have
a homomorphism J:G→SΩ by h 7→ Jh, where Jh(ω)
equals hωh 1.

Acting by conjugation, the stabilizer StabG(ω) is
the centralizer CG(ω). The orbit of ω is called its
conjugacy class, written

CC(ω) := {hωh 1 | h ∈ G} .

A conjugacy class is “non-trivial” if it has more than
one point. So CC(h) is trivial IFF C(h) = G IFF
h ∈ Z(G), where Z(G) :=

⋂
h∈G C(h) is the center

of G. Below, let “h ∈ All-CC” mean to take one
representative h per CC. Let NT-CC comprise one
representative per Non-Trivial CC.

38: Class-Equation Thm (After#24.1P.388). For a finite
group G,

|G| = |Z(G)| +
∑

h∈NT-CC

|G|
|C(h)|

.38′:

Each summand |G|/|C(h)| is in [2 .. |G|], and is a
proper divisor of |G|. When G is abelian, the

∑
-sum

is empty, hence zero. ♦

Remark. A less useful form of the class-eqn does not separate
out the size-1 conjugacy classes. It says

|G| =
∑

h∈All-CC

|G|
|C(h)| . �

Proof. Everything has been shown, except for the
observation that when the action is conjugation, then
UnivFix(G) is the center Z(G). �

We get a nice corollary when G is a “p-group”.

39: p-group non-trivial center (#24.2P.389). Suppose
|G| = pL, where p is prime and L ∈ Z+. Then Z(G)
is non-trivial. (So |Z(G)| = pK for some K ∈ [1 .. L].) ♦

Proof. The centralizer of each h ∈ NT-CC(G) is
a proper subgroup, so p divides |G|

/
|C(h)|. Hence p

divides the sum on RhS(??′). So p divides |Z(G)|. �

40: Cauchy’s Thm for finite groups (After#24.3P.391).
Suppose N := |G| < ∞. If prime p •| N , then there
exists y ∈ G with Ord(y) = p. ♦

Proof. This holds when G = 11, so we may assume�� ��If p •| Ord(Q) then Q has an order-p element.

holds for each group Q with |Q| < |G|. So WLOG
we may assume that each centralizer C(h), for h in
NT-CC(G), has order not a multiple of p. Thus p
divides the RhS(??′) sum. So p •| Ord(Z(G)).

We may now apply (18a), Cauchy’s thm for abelian
groups, to Z(G), to get a order-p element. �

Remark. We get a nice progression of proofs. Note
that (18b) uses induction on quotient groups, but does
not use the Class-Eqn, whereas p-group non-trivial cen-
ter (39) uses the class equation but no induction. The
above Cauchy’s thm (40), used quotient-induction to
put the class equation in play.

A jazzed-up (40) argument will give Sylow’s first
theorem. �
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Defn. Fix a prime p. For each natnum k and finite
group Q, define this proposition.

If pk •| Ord(Q) thenQ has a subgroup
of order pk.

P(k,Q):

We now show that this holds universally. �

41: Sylow’s First Thm. For each prime p, for each nat-
ural number k and finite group G, proposition P(k,G)
holds. ♦

Pf. Always P(0, ∗) holds, so fixing a K≥1 and finite
group G, we show that P(K,G). We may assume that
Ord(G) |• pK and

P(K−1, ∗) holds. Also P(K,Q) obtains,
for each group Q with |Q| < |G|.42:

So WLOG pK �r| CG(h), for each h in NT-CC(G). Thus
p divides the

∑
-sum in (??′). So p •| Ord(Z(G)).

Cauchy’s thm for abelian groups now gives us a sub-
group H ⊂ Z(G) of order-p. Every subgp of the cen-
ter is G-normal, so we have a quotient group Q := G

H ,
and pK−1 divides its order. By (42), this Q has a
subgroup Q′ of order pK−1.

Lastly, H ′ :=
⋃
U∈Q′ U is a subgroup; it is a union of

H-cosets U . And |H ′| = |H| · |Q′| = p · pK−1 = pK .�

Misc. counting results. We first state a theorem
just for pedagogical purposes.

43: Lemma. We have a subgroup H ⊂ Z(G). Sup-
pose that each two left H-cosets, H1 and H2, have
representatives yi ∈ Hi such that y1�y2. Then G is
abelian. ♦

Proof. Pick two arbitrary xi ∈ G. By hyp., there are
yi ∈ Hxi which commute. Write xi as hiyi. So x1x2

equals

y1h1[y2h2] = y1y2h2h1 , since h1 ∈ Z(G),
= y2y1h2h1 , since y2 � y1,
= y2h2y1h1 , since h2 ∈ Z(G).

And this equals x2x1. �

An immediate corollary is this “G mod Z” lemma.

44: G/Z Lemma.We have a subgroup H ⊂ Z(G); nec-
essarily H C G. If G/H is cyclic, then G is abelian.♦

Remark. In the lemma, any of G, H or G/H may be infinite.
Hypothesis “G/H is cyclic” cannot be weakened to “G/H is

abelian”. For example, the 8 elt dihedral group G := D4 is
non-abelian. It has presentation

G =
〈
R, F

∣∣ F2 = e, FRFR = e, R4 = e
〉
.

Its center isH := {e, R2} and the quotient group G/H is isomor-
phic to D2, which is abelian (∼= Z2×Z2). What goes wrong with
the proof, below? Well, the two H-cosets {R, R3} and {F, FR2}
have no representatives which commute. �

Proof. Pick an elt z ∈ G so that coset zH generates
the cyclic group Q := G/H. Each element of Q has
form [zH]n. Since H is G-normal, [zH]n = znH. So
we let zn be our representative of coset [zH]n. �

45: Lemma. In group G, suppose commuting ele-
ments a, c have different prime orders p and q. Then

Ord(ac) = p · q . ♦

Proof. Let y := ac. Were y = e then p = Ord(a) =
Ord(c 1) = Ord(c) = q; ### . So Ord(y) 6= 1.

Since a� c,

Ord(y) •| LCM(p, q)
note
=== p · q .

Were Ord(y) •| p, then e = [ac]p = cp, so p |• Ord(c).
I.e p |• q. Contradiction.

So Ord(y) �r| p. Ditto Ord(y) �r| q. But Ord(y) •| pq.
Thus Ord(y) = pq, �
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Sylow Theorems
For a prime p, a “p-group ” is a (finite) group whose
order is a power of p. E.g, a p-group for p=5 has order
in {1, 5, 25, 125, . . .}.

Normal subgroups
For this section N is a natnum. Here is the theorem
we are shooting for:

46: Thm. For each N ∈ N r {4}, the alternating
group AN is simple. ♦

Remark.The alternating groups A0,A1,A2 (i.e, compris-
ing all the even permutations) are each the triv-gp, hence
simple. Since Ord(A3)=3 is prime, group A3 is sim-
ple. So the first case we need consider is N ≥ 5. Some
of the lemmas below hold for lower N .

Let a solo 3-cycle mean a perm whose cycle
lengths are 3, 1, 1, N−3. . . 1. �

47: 3-cycle Lemma. The solo 3-cycles generate AN .♦

Proof.

48: Lemma. Suppose π ∈ AN has a 3-cycle. Let K be
the smallest normal subgp of AN owning π. Then K
has a solo 3-cycle. ♦

Proof.
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§A Appendix: (Semi)group Axioms

Semigroups & Monoids. A semigroup is a pair
(((S, •))), where • is an associative binary operation
[binop] on set S. A special case is a monoid. It
is a triple (((S, •, e))), where • is an associative binop
on S, and e ∈ S is a two-sided identity elt.

Axiomatically:

G1: Binop • is associative, i.e ∀α,β,γ ∈ S, necessar-
ily [α • β] • γ = α • [β • γ].

G2: Elt e is a two-sided identity element, i.e
∀α ∈ S: α • e = α and e • α = α.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element :
∀α, ∃β such that α • β = e and β • α = e.

When the binop is ‘+’, addition, then write the
inverse of α as α and call it “negative α”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of α as α 1 and call it the “reciprocal of α” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes αβ for α•β.

For an abstract binop ‘•’, we often write α 1 for the
inverse of α [“α inverse”], and omit the binop-symbol.
If • is commutative [∀α,β, necessarily α • β = β • α] then
we call S a commutative group.

Rings/Fields. A ring is a five-tuple (((Γ,+, 0, ·, 1)))
with these axioms.

R1: Elements 0 and 1 are distinct; 0 6= 1.

R2: Triple
(((

Γ,+, 0
)))
is a commutative group.

R3: Triple
(((

Γ, · , 1
)))
is monoid.

R4: Mult. distributes-over addition from the left,
α[x+ y] = [αx] + [αy], and from the right,
[x+ y]α = [xα] + [yα]; this, for all α,x,y ∈ Γ.

Our Γ is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When Γ is commutative: Say that α •| β [α divides
β] if there exists µ ∈ Γ s.t αµ = β. This is the same
relation as β |• α [β is a multiple of α].

Zero-divisors. Fix α ∈ Γ. Elt β ∈ Γ is a “(two-
sided) annihilator of α” if αβ = 0 = βα. An α is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0 · 1 = 0 = 1· 0, and
1 6= 0. We write the set of Γ–zero-divisors as

ZDΓ or ZD(Γ) .

[E.g: In the Z15 ring, note 9 6≡ 0 and 10 6≡ 0, yet 9·10 is ≡ 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

An α ∈ Γ is a Γ-unit if ∃β ∈ Γ st. αβ = 1 = βα.
Use

UΓ or U(Γ)

for the units group. In the special case when Γ is ZN ,
I will write ΦN for its units group, to emphasize the
relation with the Euler-phi fnc, since ϕ(N) :=

∣∣ΦN

∣∣.
[Some texts use U(N) for the ZN units group.]

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
ZDΓ = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F in which every non-zero element
is a unit [i.e U(F ) = Fr{0}] is a field. That is to say, F
is a commRing where triple

(((
Fr{0}, · , 1

)))
is a group.

Examples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z12 comprise
{±2,±3,±4, 6}.

In Z the units are ±1. But in Z12, the ring of in-
tegers mod-12, the set of units, Φ(12), is {±1,±5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {±1,±i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Z12) is not cyclic. For which N is
Φ(N) cyclic?] �
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Irreducibles, Primes. Consider (((Γ,+, 0, ·, 1))), a
commutative ring♥4. An elt α ∈ Γ is a zero-divisor
[abbrev ZD] if there exists a non-zero β ∈ Γ st. αβ = 0.

In contrast, an element u ∈ Γ is a unit if ∃w ∈ Γ
st. u·w = 1. This w, written as u 1, is called the
reciprocal [or multiplicative-inverse] of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, α •| u, then α is a unit.

Exer 1b: If γ |• z with z ∈ ZD, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ, the set ZD(Γ) is disjoint from
Units(Γ).

An element p ∈ Γ is:

i : Γ-irreducible if p is a non-unit, non-ZD, such
that for each Γ-factorization p = x·y, either x or
y is a Γ-unit. [Restating, using the definition below:
Either x≈1, y≈p, or x≈p, y≈1.]

ii : Γ-prime if p is a non-unit, non-ZD, such that for
each pair c,d ∈ Γ: If p •| [c · d] then either p •| c
or p •| d.

Associates. In a commutative ring, elts α and β
are associates, written α ≈ β , if there exists a
unit u st. β = uα. [For emphasis, we might say strong
associates.] They are weak-associates, written
α ∼ β, if α •| β and α |• β [i.e, α ∈ βΓ and β ∈ αΓ].

Ex 3: Prove Assoc ⇒ weak-Assoc.

Ex 4: If α ∼ β and α /∈ ZD, then α, β are (strong) associates.

Ex 5: In Z10, zero-divisors 2, 4 are weak-associates. [This,
since 2·2 ≡ 4 and 4·3 = 12 ≡ 2.] Are 2, 4 (strong) associates?

Ex 6: With d •| α, prove: If α is a non-ZD, then d is a non-ZD.
And: If α is a unit, then d is a unit.

49: Lemma. In a commRing♥4 Γ, each prime α is
irreducible. ♦

Proof. Consider factorization α = xy. Since α •| xy,
WLOG α •| x, i.e ∃c with αc = x. Hence

α = xy = αcy .∗:

By defn, α /∈ ZD. We may thus cancel in (∗), yielding
1 = cy. So y is a unit. �

♥4More generally, a commutative monoid.

There are rings♥5 with irreducible elements p which
are nonetheless not prime. However. . .

50: Lemma. Suppose commRing Γ satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible α is prime. ♦

Pf. Suppose α •| c·d. WLOG α �r| c. Let
g := GCD(α, c). Were g ≈ α, then α •| g •| c, a con-
tradiction. Thus, since α is irreducible, our g ≈ 1.

Bézout produces S,T ∈ Γ with

1 = Sα+ Tc . Hence

d = Sαd+ Tcd = Sdα+ Tcd .∗:

By hyp, α •| cd, hence α divides RhS(∗). So α •| d.�

51: Lemma.In commRing Γ, if prime p divides product
α1 · · ·αK then p •| αj for some j. [Exer. 7] ♦

52: Prime-uniqueness thm. In commRing Γ, suppose

p1·p2·p3 · · · pK = q1·q2·q3 · · · qL

are equal products-of-primes. Then L = K and, after
permuting the p primes, each pk ≈ qk. ♦

Pf. [From Ex.4, previously, for non-ZD, relations ∼ and ≈ are
the same.] For notational simplicity, we do this in Z+,
in which case pk ≈ qk will be replaced by pk = qk.

FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L≥1. Thus
K≥1. [Otherwise, qL divides a unit, forcing qL to be a
unit; see Ex.1a.] By the preceding lemma, qL divides
some pk; WLOG qL •| pK . Thus qL = pK [since pK

is prime and qL is not a unit]. Cancelling now gives
p1·p2 · · · pK−1 = q1·q2 · · · qL−1, giving a CEX with a
smaller [K−1] + [L−1] sum. �

♥5Consider the ring, Γ, of polys with coefficients in Z12.
There, x2 − 1 factors as [x− 5][x+ 5] and as [x− 1][x+ 1].
Thus none of the four linear terms is prime. Yet each is Γ-
irreducible. (Why?) This ring Γ has zero-divisors (yuck!),
but there are natural subrings of C where Irred 6⇒Prime.
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Example where ∼ 6= ≈. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs
on [ 2, 2]. Define E,D ∈ Ω by: For t ≥ 0 :

E(t) = D(t) :=

{
t− 1 if t ∈ [1, 2]

0 if t ∈ [0, 1]

}
.

And for t ≤ 0 define

E(t) := E( t) and D(t) := −D( t) .

[So E is an Even fnc; D is odD.] Note E = fD and D = fE,
where

f(t) :=


1 if t ∈ [ 1, 2]

t if t ∈ [ 1, 1]

1 if t ∈ [ 2, 1]

 .

Hence E ∼ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [ 2, 2]r {0}. Cty of g then forces g ≡ 0.]

Could there be a unit u ∈ Ω with uD = E? Well

u(2) = E(2)
D(2)

note
=== 1 , and u( 2) = E( 2)

D( 2)
note
=== 1 .

Cty of u() forces u to be zero somewhere on inter-
val ( 2, 2), hence u is not a unit. �

Addendum. By Ex.4, both E and D must be zero-
divisors. [Exer.8: Exhibit a function g∈Ω, not the zero-fnc,
such that E·g ≡ 0.] �

Inverses

Consider a not-nec-commutative monoid (((S, •, e))) and
an x ∈ S. An elt λ ∈ S is a “ left inverse of x” if
λ • x = e. Of course, then x is a right inverse of λ.
Use LInv/RInv for “left/right inverse”.

We will often suppress the binop-symbol and
write xy for x • y.

53: Prop’n. In a monoid (((S, •, e))):

i : For each x ∈ S: If x has at least one LInv and
one RInv, then x has a unique LInv and RInv,
and they are equal.

ii : Suppose every elt of S has a right-inverse. Then
S is a group. ♦

Proof of (i). Suppose λ is a LInv of x, and ρ a RInv.
Then

λ = λ[xρ] = [λx]ρ = ρ .

And if two LInvs, then λ1 = ρ = λ2. �

Proof of (ii). Given x ∈ S, pick a RInv r and a RInv
to r, call it y. Now

x = x • [ry] = [xr] • y = y .

Hence x is both a left and right inverse to r. So r is
a right/left inverse to x. [Now apply part (i).] �

In the next lemma, we neither assume existence of
left-identity/left-inverses, nor do we assume unique-
ness of right-identity/right-inverses.

54: Lemma. Suppose n is an associative binop on S,
and e ∈ S is a righthand-identity elt. Suppose that
each y ∈ S has a [wrt e] righthand inverse, y′. Then:

If y n y = y, then y = e.54a:
Moreover:

Each y′ is also a left inverse to y, and e is
also a lefthand-identity.

54b:

Thus (((S,n, e))) is a group, ♦

Pf (54a). Note y = y n e = y n [y n y′] = [y n y] n y′.
By hypothesis y n y = y, so the above asserts that
y = y n y′

note
=== e. �
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Pf of (54b).First let’s show that every RInv, y′, of y, is
also a LInv of y. Let b := [y′ n y]. Courtesy (54a),
it is enough to show that bn b = b. And

bn b =
[
y′ n [y n y′]

]
n y , by assoc.,

=
[
y′ n e

]
n y

= y′ n y
note
=== b .

We can now show that e is also a lefthand identity.
After all, en y = [y n y′] n y = y n [y′ n y] = y n e,
since y′ is a LHInverse. I.e, en y = y. �
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Notes to me. Bertrand Postulate.
Burnside’s Normal p-complement Theorem.
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§B Appendix: Miscellaneous results

Here are uncategorized theorems & and examples. My
Algebra notes are spread out over many files; I need
to organize them.

55: Min-prime normality lemma. Consider finite groups
G ⊃ H with index p :=

∣∣G..H
∣∣ prime. Moreover, p is

the smallest prime dividing |G|. Then H C G. ♦

Proof. Group G acts on the H-left-cosets by mult-on-
the-left, engendering a group-hom ψ:G→Sp into the
symmetric group. Evidently, g /∈H forces gH 6= H.
Hence K := Ker(ψ) ⊂ H. [Were

∣∣G..K∣∣ prime, then H

is either K or G, each of which is normal in G.] ISTShow
n :=

∣∣G..K
∣∣ ?

= p.
Lagrange’s thm says: n divides |G|. Hence, the

smallest prime that could divide n is p.
Quotient group G

K is isomorphic (via ψ) to Sp-subgp
Range(ψ). Hence: n divides p!

note
=== |Sp|. So the

largest prime that could divide n is p. Moreover, p2

does not divide p!, hence
�� ��n = p . �
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§Index for Group Notes

ΦN , ϕ(N), 20
C, see Group binrel, normal
⊥, see Group binrel, transverse

alternating group, 1
annihilator, 20
associates, 21
associative, 20
automorphism, 2

center, 3
center of a group, Z(G), 17
centralizer, 3
class equation, 17
commutative, 20
conjugacy class, 17
conjugate an element, 2
conjugation map, 12

dihedral group, 9
distributes-over, 20

endomorphism, 2

field, 20
fixed-point, 6

Gaussian integers, 20
Group, 20

p-group, 19
acting on a set, 6
alternating, 1
dihedral, 9
Klein-4, 9
of units, 20
stabilizer, 6

Group binrel
normal, C, 11
transverse, ⊥, 12

Grouply unique, 7

homomorphism, 2

idempotent, 2
identity element, 20
inner automorphism, 2, 12
integral domain, 20
inverse element, 20
irreducible element, 21
isomorphism, 2

Klein-4, see Group, see Group

monoid, 20

normalizer, 3

orbit, 6

p-group, see Group, p-group
prime element, 21

ring, 20
annihilator, 20
domain, 20
zero-divisor, 20

semigroup, 20
stabilizer, see Group

token, 6
torsion, see Group, torsion
transverse groups, ⊥, 12

unit, 20, 21
U(N), 20
UΓ, 20

Vierergruppe, see Group, Klein-4,
see Group, Klein-4

ZD, i.e: zero-divisor
zero-divisor, 20, 21
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