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ABSTRACT: Heron’s theorem on the area of a triangle.
Maximum area of an articulated polygon.
Edgar’s way to get an equation of a circle.

The Triangle

Let T be the triangle AABC. Following the usual
convention, £A or just A itself will also denote the
interior angle at vertex A. The edge opposite vertex A
is lowercase a, etc. Also, a denotes the length of
edge a.

Tools. Recall the Law of Cosines, which asserts that

LoCos: = a®>+ b —

[2ab - cos(C)] .
Also note that
1: Area(AABC) = 1ab-sin(C),
since b-sin(C') is Len(A-altitude); ie., down to edge a.
2: Heron's formula. Fix T := AABC. Then

[4 - Area(T)]?
9i: = la+b+cla+b+clla—b+clla+b—]
note 2{a2b2+b202+a202} — {a4—|—b4—cﬂ.

Equivalently (and classically ),

2ii:  Area(T) = /o [0 —allo — bllo — ¢,

is the semi-perimeter of T. O

where o = %”*C

Pf. The Pythag thm, in form sin? = 12 — cos 2, gives

[4 - Areal? A0 [2ab - sin(C)]?
Dythag [2ab]? — [2ab - cos(C)]?
LoCos

[2ab]? — [a® + b* — ¢*]?.

This last doesn’t look symmetric in a,b,c, but squar-
ing, then adding, produces RhS(27), as desired. ¢
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Let r
and O denote the radius and center of the in-circle
of T := AABC. Evidently Area(AAOB) = ire.
Adding this to the areas of ABOC and ACOA yields
that Area(T) = 37 - [a + b+ c|. Equivalently

Inscribed radius and circum-radius.

2 - Area(T)

3.1: InRadius(T) = m‘

Now let R denote the radius of CircumCircle(T).
Let 2+ denote the central angle £ AOB of the circle-
arc not owning C. Dropping a perpendicular from O
to chord AB we see that

1
) sc c
Sln(’}/) pry 72R prd 72
Thus
c a-b-c

R = = .
2sin(vy) 2ab - sin(v)

The Central-angle thm asserts that the inscribed £C
equals 7. So (1) hands us

a-b-c

3.2: CircumRadius(T) = m

We get this curious corollary for the radii-ratio:

3.3; CircumRadius _
- InRadius

[a-b-c]la+b+ (]
8 - [Area?]

Reciprocating, then using Heron's formula (2i), gives

[Fa+bte] [a—b+e] [a+b—]
[a-b‘c]

2 - InRadius
CircumRad

3.4:

[bzc—l][achlna—i_b—l}.
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Boomerangs cannot tile a convex polygon

(Problem from David Gale.) A boomerang is a non-
convex quadrilateral; call its >7 interior-angle “fat”.
Conversely, a quadrilat(eral) with each angle <7 is a
kite. A dissection of a polygon P into finitely many
quadrilats is a “quadritiling of P”. The tiles in a
quadritiling need not be congruent to each other.

4.1: Boom-Kite Thm. FEach quadritiling of a convex
polygon P must use a kite. O

4.2: Fails with “Quad” replaced by “Penta”. Let P
be the square with vertices (£2,£2). Cut P with a
polygonal path going from/to

(2,2) = (-1,1) = (1,-1) = (-2,-2) .

This cuts P (which is convex) into two non-convex pen-
tagons (Which are congruent to each other).

FExercise: Each polygon Q, convex or not, admits a
(finite) tiling by non-convex pentagons. O

Nested convex curves

Attributed to Archimedes is the following theorem:

5: Theorem (Archimedes).  Suppose E and D are are
compact convex sets in the plane, with E > D. Then
the arclength (of the boundary of ) E dominates the ar-
clength of D. O

Proof.  Let a chord denote a line-segment having
both its endpoints on 0F and which is tangent to D.
Cut off the “outside piece” of a chord from E to get
the smaller convex body F; D D. Automatically,
Len(0FE}) is less-equal that of Len(0F).

We can do a sequence of cuts to get a sequence of
convex bodies £ D E; D Es D ..., all of which are
supersets of D. Moreover, we can arrange that the
E,, “converge” to D —say, in the Hausdorff metric, or,
even easier, in the sense that (), E, = D.

One can then show, since the objects are convex,
that the arclength of OFE,, is converging to Len(0D).
And n — Len(0E,) is a non-increasing function. 4

Finding an equation of a circle, given a non-colinear triple of points.

Prof. JLF King

Finding an equation of a circle, given a
non-colinear triple of points.

[jk: The 4x4 Det is from edgar@mps. ohio—state.edu]
We have three points (A, &), (B, ) and (C,~) in
the plane and we let

[More generally, the coordinates can come from an arbitrary

commutative ring.]

6.1: Colinearity lemma. The triple of points is colinear
IFF Det(E) = 0. O

Pf of (=). The triple lies in a line, so the three rows
of E, viewed as points in R?, lie in a lift of that line to
the z=1 plane, hence lie in a line in R?. Consequently,
Spn(Lifted points) is at-most 2-dimensional. ¢

Pfof («<). By hyp., the triple of E-rows [viewed as
points in R®] lie in plane, P, through the origin. But
they also lie in the z=1 plane; it misses the origin, so
does not equal P. Hence the intersection of these two
planes lies in a line in the z=1 plane; and this line
projects to a line in R2. ¢

6.2: Circle-eqn lemma.  An equation Fnc(z,y) = 0
of the circle through the non-colinear triple of points
can be given as a 4x4 determinant-eqn:

2?+y? oy 1
A4+ a’® A a1

6.3: Det B+ B B 1 = 0 O
C?’+~4%2 C ~ 1

Proof. Expanding LhS(6.3) along the first row shows
it to be a polynomial with a common coeff for 22 and
for y? of Det(E); this latter is non-zero, courtesy (6.1).
Hence (6.3) is the equation of some circle [which possi-
bly is degenerate or empty].

Certainly (z,y) = (A, a) satisfies (6.3), since a
matrix with two rows equal has Det=0. Ditto (B, 3)
and (C,~) lie on the circle. Hence the circle is not
degenerate, since a non-colinear triple lies on it. ¢
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