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ABSTRACT: Examples of generating-fnc use. As usual,
we will ignore the issue of series convergence. The ex-
ample by Derek Ledbetter uses the Md&bius inversion
formula.

Nomenclature. We use Wilf’s notation from
his book, GENERATINGFUNCTIONOLOGY.

Counting irreducible monic
polynomials over a finite field

This is Derek Ledbetter’s solution. Let Kk be a
finite field; let F = |k|. Henceforth

All “polys” (polynomials) have coeffi-
cients in Kk and are monic.

[In particular, a “poly” is not Zip.] Let A, denote the
number of (All, monic) polys of degree-D. Thus
FD

Ap = for D=0,1,2....

Each poly can be written uniquely as a product
of irreducibles; the constant poly 1 is the empty
product. For each N € Z., let 7y denote the
number of irreducible”’ polys of deg-N. Hence
T, = F since, for each ¢ € k, the x + ¢ polynomial
is irreducible.

2: Theorem.  For each posint N, the number of
irreducible degree—N monic polynomials is

77" — Z F~.

Ny ko N

w(N/K) |

(Our convention for such sums is that the wvariable,

here “k”, ranges only over positive divisors.)

“In a commutative ring, my defn of irreducible is
a non—zero-divisor, non-unit which only factors trivially.
The only monic degree-zero poly is 1, which is a unit in
this ring.
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Remark. The p(-) above is the M6bius func-
tion. (See NumberTheory/multiplicative_fncs.latex
for more on this fnc.) The M&bius inversion formula
says, for an arbitrary function ¢:7Z, —C, that the

relation
h(k) = Z g(N), can be inverted to
N:Nek
g(N) = > h(k)- p(N/E).
k: ko N

An application of (??) gives Fermat's Little
Thm: Take N = p prime. So 7, = * {FP — F]. But
1, is an integer, so FP is mod-p congruent to F.[J

Proof. Enumerate the irreducible deg-N polys as

gN1 4N 2 4N, gNIn—-1 4N Iy -

Fix a poly y(-), and use D for its degree. Let Yy,
count the number of times the factor ¢, occurs
in the [unique| factorization of y. Thus

c© In

3: y(x) = H H|:qN’L($):|HV7

N=1i=1

where Yy, is zero for all but finitely many (/V,7)
pairs. We can thus write the degree of y as

OOIN

DB

N=11i=1

4: D =

Consider the product

OOIN

ot HH

N=11i=1

6],

J=0

For each pair NV, there is a sum —in big brackets—
corresponding to it. To the poly y(x) above, asso-

ciate a particular product of monomials in (??) by

N } i :

selecting from the (NV,7)"-sum the term [z
i.e, the J* monomial, where J = Yy;;. The prod-
uct of the co-many monomials so obtained [all but
finitely-many are “1”| evidently equals zP.
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We have constructed a bijection between all
deg-D polys —rather, their factorizations (?77?)-
and products of monomials in (??) whose prod-

uct is . Thus
6 Y Ap-a® = T B
D=0 N=1 Li=o

Obtaining Ap in terms of (Zy)y_,- In
RhS(??), the N '-sum equals

1/[1— 2™

And, since Ap = FP, the LhS equals 1/[1 — Fz].
Taking reciprocals gives

1—Fo = J[ 11—
N>1

Take log of both sides
log(l—2) = =232, ¢ 4"

>

using the expansion
to yield

w \
M
5
]

\

N>1 K=1

Apply the “x - operator to remove the fractions:

Z Frok = Z Z {IN . NxNK} )
k=1 N>1K=1

Finally, equating coefficients of 2* yields

S N-Iy.

N: Nk

7 FF =

Applying Mobius inversion to (?7) yields
the (??7) formula. ¢

Keating’s proof of integrality
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Keating’s proof of integrality

With « and S ranging over the posints, define

8: [NF] = > p()

a-f=N
9: Thm.  For each posint N and integer F, we
have that [N,F] o N. O
Proof (Keating). ~ For each N-clump p® ¢ N, we

need to show that

10: [N.F] b p°.

CASE: p F| Thus p¢ L F, so we can apply
Dirichlet's Thm to conclude that there is a prime
r € [F+ p°Z). Courtesy (?7'),

note

[N/l o N o p°

But F =, r and [N,:] is an
[N,F] =pe [N, r]. Hence (?7).

intpoly, so
In order to establish (?77), IST-
Show, for each pair « -3 = N, that
() # 0] F7 0 p]

Now p(a) # 0 means p?  «, i.e p“'d 3. So
3> p¢ ! since f3 is positive. Thus

—

e—1 e
F/ o p” o pf,
by (27+%). 0
11: Prop'n.  For each p € [2..00) and posint e:
p~! > e. Consequently
e—1 e
*: I I O

Filename: Problems/Combinatorics/generating_func.latex



Prof. JLF King

Pf. Trivially, p'~' = 1 > 1. Inducting on e, then,

e

P =ppt > pe=1+[p-1le,

since e > 1. Thus p® > 1+ e, courtesy p > 2. ¢

Keating’s proof of positivity

Below, for posreals x, let [Y mean log(:L')j.

Given a real T', define the discrete derivative
[Drh|(s) = h(s+T)— h(s).

For two reals T" and V, their discrete deriv-ops,
D+ and Dy, commute with each other.

Defn. A fnc h:R—R is hyper-increasing
(Keating) if: h is oo-ly diff’able and

Vposints © R is strictly-increasing. O

12: Verifying hyper-increasing. Suppose h is hyper-
increasing and T > 0. Then g :== Dy(h) is hyper-
increasing. O

Proof. Note g™ (s) = h™W(s+T)—hM(s). &

S

13: Prop'. Fix a real F>1. Then h(s) = F® is
hyper-increasing. O

Proof.  Temporarily, a “pospoly” r() is a poly
whose coeffs are posreals. ISTShow, for each n,
that 4" (s) has form r(e®) - F¢". Diff’ing this gives

S

[(e°) - &' + r(e) - [F" - Fe’] = p(e) - F,

where p(e®) is {r/(e's) o r(e’*)ﬂ -e*. And this p()
is a pospoly, because F > 1 and therefore F>0.4

14: Positivity Thm. For each posreal F and
posint N, expression [N, F] from (??) is positive.{

Keating’s proof of positivity
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Pf. Write N = P-L, where P =p, - py- ...  px
is the product of the distinct primes in /N. Since
p(a) is zero whenever some p® divides «, neces-
sarily

[N,F] = [;#(@) FPL] 22 [P Fo].

So [WLOGenerality, N is square—free].
Write N = p;-ps-. .. pg as a product of distinct
primes.

‘Wﬁoa! Is this unfinished?
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