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Tools. Use GF for “generating function”, and
OGF/EGF for “Ordinary/Exponential GF”. We de-
rived in class, the following:

1

. — o0 n
1.1: = 2

. 1 _ o0 k
More generally, for L a posint,

. 1 0 k+L—-1 k
1.3: Tt = oo (i) et

1 _ 0 1 k‘

1.4: 10g(1—x> = Zk:lg-:v .

Consider A(x) £ G and B(z) £°% b, Recall that

product A(z)B(z) is the OGF of & := @ ® b, the con-
volution of @ with b, where

1.5: Cp = Z [aj 'bk],

jt+k=n

where (7, k) ranges over all ordered-pairs of natnums
with j+k =mn. As a special case, note @ ® (1,1,...)
is the partial-sum seq &, where ¢, = Z?:O aj.

Counting Involutions in Sy

Let ty be the # of involuTions in the N*" symmetric
group; permutations of token set Qy = {1,2,.. ., N}
Involutions are the perms composed only of 1-cycles
and 2-cycles. Easily, to =1, t; = 1 and {5 = 2.

Seq. € grows factorial-ishly because, just counting
perms with the maximun number, h = L%J, of 2-
cycles, shows that

9a: ty > [N—1][N—3][N—5]-- [N —h.

This, since N can be paired [N—1] other tokens. Now
the highest unpaired token has [IN—3] candidate to-
kens to be paired with; etc. ~ Note that RhS(2a)
dominates [N — 2|[N — 4][N — 6] ---[2 or 1]. Thus

2a/: tn >

[N—l]! , forall N >1.

Webpage http://people.clas.ufl.edu/squash/

2b: Lemma. Involution-sequence { satisfies
thio = tpt1 + [nJFl]tn

for all natnums n. O

Proof. There are t,4+1 involutions in S,,4+2 which fix
token n/+\2, since the remaining tokens are permuted
via an involution.

The other case is that n+2 is in 2-cycle. He can be
paired with n+1 many other tokens, leaving n tokens
to be involved. ¢

% (involut 10)

Use Low_k for Ceil(Sqrt(k!))

n: t_n Low_nMO Low_n t_n/n!
0: 1 * 1 1
1: 1 1 1 1
2: 2 1 2 1
3: 4 2 3 2/3
4: 10 3 5 5/12
5: 26 5 11 13/60
6: 76 11 27 19/180
7: 232 27 71 29/630
8: 764 71 201 191/10080
9: 2620 201 603 131/18144
10: 9496 603 1905 1187/453600

OGF or EGF?. The rapid growth of £, (2a), sug-
gests using an EGF rather than an OGF. Define EGF

o
t
G = G(:c) = Zn—ﬁxn Note that
n=0
>t
. Q! = non
¥: -G = anx .
n=0

2¢: Thm. The EGF of £, the count-involutions se-
quence, is
G(z) = exp(ng —i—a:) = exp(:t:-{E —|—1D. O
2 2
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. n
Proof. Multiplying (2b) by &™+2 gives in the above sum, the coeff of 2" is

Ln/2]
tn—i—? .’L'n+2 = 470 tn+1 $n+1 + [L‘2 0 [’I’Z—i—l]tnfﬁn 0 Z ; .
= [n —27]! 412

Dividing by [n+1]! produces
We have established the following.

w42 bnt2 miy2 _ o fndl nia 4 a2 tn n

[n+2]! [n+1]! o 2e: Theorem. For all natnums n,
Courtesy (¥), applying >_»> to LhS(x) gives al L%%J 1 note /2] n L‘
. fn = = [n—2j]! n=2j)! j12 n—2j, 3,7/ 27’
[zG'] - 0-8 - 1.4 = [2G] -
where (n72? i j) denotes a multinomial coefficient.()

since t; = 1. And summing RhS(x) hands us 7

2[G — %(H RN RN Remark. The above summand

. - : n J!
Equating these, then dividing by x, results in <n _95. j) o
2d: G - [z+1]G = 0.

has the combinatorial interpretation of counting the
number of involutions with precisely 7 many 2-cycles.

Pocket-1 holds the n—2j fixed-pts. The j many
tokens in Pocket-2 will be paired with the j tokens
in Pocket-3, and there are j! many ways to do the
pairing.

Finally, we've over-counted by a factor of 27 since,
for each pair, we can reverse which Pocket each is in.[]

This is a FOLDE (First-Order Linear DE)7 solved by
antidifferentiating coefficient-fnc —[z+1], then negat-

ing, producing % + 2. Exponentiaing this gives
W(zx) = exp(% + ). All solns to the DE have form
a-W(z), for a € C. We need the a such that

Bl = o W(0) BE a1,

So a=1. ¢ . L ) .
Matrix description of t,. With matrix
0 1 tn
Non-closed formula for ¢,. From (2c¢), M,, = and column-vector V, = ,
n 1 tn-i—l
<1
I ! tat 2
G(z) z:: o [ + 1} . we can restate recurrence (2b) as
2f: Va4l = Mpy1-vy.

Courtesy the Binomial thm,

5 - 2 (D)

j=0

Hence v,, = M;,M,_1 ---MaMivg. And vg = m, SO

tm 1 [0 1][ 0 1 0o 1]fo 1]fo 1]t
tny1| — |n 1||n—1 1| 7|3 1||2 1||1 1||1|"
Observations. Since Det(M,,) = -n, we have

ZZkl 2] ( ) ZZ ' 2] xj“‘k_ Det(MTLMn—l"'MQMl) — [71]11”'

k=0j=0 kOJO

Hence G(z) equals

The char-poly of M,, is
Fixn:==j+k. Then k=n—j sok—j=n—2j.
Also, the largest value of j is [n/2], since j < k. Thus,

pz) = 22 —z—n = [ = X]- [z = X,
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where the eigenvalues of M,, are

Xoo= 1 Vi+4n], with

)\ZqL)\;:l and )\TZ-A;:*TL.

Corresponding eigenvectors are

o X,/ n e X/ n
n 71 an n T 71 .

Unfinished: as of 12May2024

Remark.

Do eigenvalues bound expand/shrink rate

Consider 2 x 2 matrix M. Let |M||op denote the mawi-
mum, taken over all unit-vectors v (i.e ||v| = 1), of the
ratio

[Mv]|

vl

*3

This ||M||op is called the “operator norm of M”.
For number §>0 to be determined later, define

S2+8 8§82

E=ls_1 sis

Verify that

s [f] e[

are E-eigenvectors, with respective eigenvalues

and (3 = 2S.

But for unit-vector u := [V], product

S3 - §?

Bu = g2,

[Eu]|

So ratio Tal ~ S%. For large S, then, this ratio is

much larger than «, the largest eigenvalue.
1-8
[S+1]/S

Similarly, for w = , note

For large S, note ||w| =~ S, so IEwl ~ 4. O

[[wl]

Counting Involutions in Sy
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Warm-up. Consider sequence a := (ag,ay,as,...)
where

t: ag = 0 and apy1 = 1+ 3a,.

We’ll get a formula for a,, by manipulating the entire
sequence @. The method is to define the correspond-

ing (ordinary) generating function [abbrev. OGF|

Alz) = Z:ozo anp - x" .
1

The RhS, here, converges for all |z| < 3. However,
it turns out that, for most problems, we can view the
RHS as a formal power series, and never worry about
convergence.

Let’s manipulate OGF A(x) so as to get a recur-

rence formula for it. Note first that

e Z Ani1- 2" = [Z 1-2"] + 3[2 anz"]
n=0 n=0 n=0
= L + 3A(2).

OTOHand, product z-LhS(x) equals
oo oo
x-ZanH-:U” = Zak-xk = Ax),
n=0 k=1

since ag = 0. Thus, multiplying (%) by x, gives

A = z-[{5 +34] 5 4 3zA.
Hence A -[1 —3z] = 1%, so A= ioaais): Lhe
partial-fraction decomposition now yields

1/2 1/2 1 n S
SR g 5“2[3‘T] =1 e IE
n=0 n=0
Combining terms gives the power series expansion,
oo
A(x) = Z%[?)” — 1] - 2".
n=0

And you can easily check that the formula

3" —1], forn=0,1,2,...,

N[

an =

indeed satisfies the original (f) recurrence.

Unless mentioned otherwise, the following problems are
from Bona's text.
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5.1: #48 Let g, be the number of (combinato-
rial) simple graphs on [1..n] in which each vertex has

degree 2. With G(z) Eer g, prove that

N

T

—a o

[SIE]

G(r) = 2A— ¢

1—x

Soln. On a k-set, let aj be the number of cyclic simple
graphs using all k of the vertices. Soag =a; =ay =0
(The ao = 0 needs comment). For k>3, there are [k—1]!
circular permutations ¢

Counting Involutions in Sy
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6.1: #43 (People). Let g, be the number of ways
of partitioning n people into groups labeled “E”, “D”
and “A”, and asking each group to form a line, where
group E has an even number of folk, group D oddly
many, and group A has an arbitrary number of people.
Get a closed-formula for q,,. %

Ans.

derivations.

We’ll give an answer first, then show three
The N* triangular number is

N
™ = Y,k = 5 NN+

.) by

Define a sequence § = (sq, 51, - -

6.2: § (To, T1,7T1, 72,72, 73,73, 7'4,7'4,...)
= (0, 1,1, 3,3, 6,6, 10,10,...).
Then, for each natnum n,
6.3: ¢ = nl-s,. U
1%t Soln. For the three groups, the corresponding
EGFs are ! 1
_ o0 M »n  note
Alz) = ano n! - 1-z’

o o0 2k+1 note &
D(z) = Zk:o 1z = T3 =2k

Hence the EGF for gis Q.= A-FE-D. le

T 1
1—222 1-a

6.4: Q(x) =

This RhS(6.4) is the OGF of some sequence §.

Tool (1.2) says ﬁ 208 (1,2,3,...). Hence
OGFE x
0,1,0,2,0,3,0,4,0,...) & —=.
( ) ) b b b b b ) ) ) [1 _ :1',‘2]2
Convolving this sequence with
Ogr 1
1,1,1,...) <=
( ) ) ) ) 1 _ x

forms the partial sums of (0,1,0,2,...). Hence (6.2).
Finally, Q(z) is the EGF of ¢, whence (6.3). ¢

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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279 Soln. This problem is a fancier version of #14
the bookshelf. Make a line of books by choosing one
of the n! orderings. Let s, be the number of ways of:

Taking some even number from the left of the
line, and putting them on shelf “E”, then taking
some oddly many from the left of what remains,
and putting that on shelf “D”.

Hence (6.3), and we just need to compute .
In the plane, consider the triangle of lattice-points,

Q, = {(w,y) € NxN ’ r+y < n}

Interpret a point (g,0) € £, as putting ¢ many books
on “E”; then § many books on “D”, finally n — [e+]
many books on the “Arbitrary” shelf. If ¢ is even and
6 odd, then this is a valid placement. Thus

Our sy, is the number of (Even, Odd) points

0-5: in the Q,, lattice-triangle.

Approximately half have even z-coordinate, about
half have odd y, and these two events are more-or-less

independent. Conclusion: [sn is approx ”72/4j Also,

a valid (e,8) has e+6 odd. E.g, the line of lattice-
pts (x,y) with 24y = 6 has no valid points. Hence

s¢ = S5. More generally, [n odd = s, = sn+1j. Of

course, our (6.2) implies both of the circled stmts.

Counting valid pts. Fix an odd n = 2k — 1, and
consider those (z,y) € NxN with z4+y = n. Cer-
tainly x is even IFF y is odd, so precisely k of those
points are valid. It follows that § comprises the partial
sums of sequence (0,1,0,2,...), as n takes on values
0,1,2,3,.... So we have again derived (6.2). ¢

39 Soln. Back to GFs!
The partial-fraction decom of RhS(6.4) is

-1 1 n 1 4 L 2
16 [1—z 14z 11—z [1+42z]

This looks arduous to do directly, so let’s finesse
things. The “1 — 2” and “1 + 2” will cause even/odd
index terms to behave differently, so let’s separate

Counting Involutions in Sy

Page 5 of 11

them. Write Y02 spa™ = Q(z) = e(x) 4+ 0(z), where

e(x) = anz" and d(z) = anm”.

n even n odd

Now 2¢(z) = Q(x) + Q(-x), which equals

f: 1 [ T o -
o [-2?22 -z 1+4+=x

So e(z) = f(z?), where f(y) == [l_yy]g,. By (1.3),

212
| = ==

f@) =y D (P 2= myh,
=0 Bl

(2

by setting k = i+1. And 79 = 0, so

0o
g(x) = Zk:o T - (IZZk :

this justifies the even-indexed terms in (6.2).
For the odd-index terms, 26(z) = Q(z) — Q(-x)

which equals

1 [x =43

_ ]_ 2z
M—222 ll—-2 1+4ux

T I-2F

Comparing with (}), then, z-§(z) = e(z). L.e, when n
is an even index, then s,—; = s,. Hence (6.2). ¢

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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7.1: #44 From n people, select a committee
of oddly many. From the committee, select a council
of evenly many [allowing the value zero|. Get a closed-
formula for r,, the number of ways of doing this.

Prelim. View this as splitting the people into
e Group E, the council with evenly many.

e Group D with oddly many, where the committee is
EUD.

e Group A, with arbitarily many; those that remain.

While superficially similar to #43 , the lack of or-
dering makes a difference. A seat-of-the-pants growth
estimate is

7.2: 3 > r > 2vh -1,

The first follows by removing the even/odd restric-
tions, so each elt of [1..n] admits 3 colors.

The lower bnd holds for n=0; what about n>17
Well, [1..n] has 2"~ ! even-cardinality subsets. Hence
there are at least [2"~! — 1] even subsets that are not
all of [1..n]; and so we can pick one element of the
complement to make a singleton D. O

Soln.  With R(z) £ 7 we wish to define EGFs so
that R(x) = E(x)D(x)A(z). So E(z) £S5 &, where
ey is the number of ways making an even-sized council
using all k£ people. Le, € =(1,0,1,0,...). Thus

Similarly,

E(x) = Z = Fle* +e™].

]
x| 8
|
D=

[e* —e™].

So E(z)D(z) = 3[e*® — e®]. Since A(z) = €%, our
R(z) is +[e3® — e™]. Thus for each natnum n,

b - F).

BTWay, 3" —[-1]" =4
must. ¢

7.3: Th =

Counting Involutions in Sy

Page 6 of 11

7.4: Rem. Curiously, (7.3) is a sum of exponen-
tials, thus satifies a 2-term linear recurrence. The two
bases, 3 and -1, are roots of the polynomial

fx) = [z =3z +1] 2 2% —22 3.

Each base be{3,-1} satisfies f(b)=0, i.e b> = 2b+ 3,
and thus b"1t2 = 2b"+1 4+ 30", for each n. Conse-
quently, 7 satisfies recurrence

7.5: Tnt2 = 2Tpg1 + 3rp.

Exer: Find a bijective proof of (7.5). O

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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8.1: #38 . Let g,, be the number of ways of select-
ing a permutation of [1..n], then marking a particular
cycle in the permutation. Obtain a formula for g,. ¢

Rem. Bona’s £8.25 asked how many ways to seat n
people around circular tables. The answer was n! [reminding
us of the Canonical cycle notation|, derived from Thmg 24
Equivalent, is to use ""™8.28 but with the outer seq trivial,
the constant-1 sequence, because given j cycles, there is only
one way to take all of them.

In the current problem, our outer sequence is (0,1,2,...),
since there are j ways to pick one cycle from j.

Soln. With ¢p := 0, henceforth let ¢, be the number
of cyclic-permutations of a k-set; so ¢ = [k—1]!. The

EGF of € is thus
o0
1
g log(1 — )
by (1.4). The EGF of picking one object from j is

ooj t

noe
Z— x) z-e’.
:.7

?v\*—‘

Thmg 28 now says g has EGF

B(CW@) = log(+—) T

OGF

— (0, 1,2,3,. J®(1,1,...).
The partial-sum seq of (0, 1, 1 = 3, ...) is the harmonic
number seq, (Ho, H1,Ha,...), Where

n
8.2: Ho = >, 1/t
Consequently,
8.3: gn = nl-H,. ¢

Evidence? Let’s compute g3 by hand.
it From three 1-cycles, pick one; 3 choices.

ii: There are (?) = 3 ways to split into a 2-cycle and
a l-cycle. For each, we have 2 ways to select a
cycle, giving 3 - 2 = 6 choices.

iii: We can just have a single 3-cycle, and we must
choose it. This gives 1 choice.

Counting Involutions in Sy

Page 7 of 11

Thus g3 = 3+6+1 = 10. We now use (8.3) to reassure
ourselves, by computing 3! [1+ 3 + %] =6+3+2,
which equals. .. Fleven?! Ok no! —Mathematics is in-
consistent! -oh, woe is me, of. . .

Wait a darn minute!; n objects can have many dif-
ferent cyclic permutations. For cycles of length 1 or 2,
the cyclic ordering is unique. But in case (iii), above,
there are 2 cyclic permutations of three objects. So
my computation should have been: g3 =3+ 6 + 2,
which —whew!- indeed equals eleven. O

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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9.1: #23 Find a formula for a,, where ag := 1
and ap1 = 3a, + 2" O
Soln.  Set A(x) 255 g, Multiply the recurrence

by "' and sum, to get that A(z) —1 = A(z) — ag
equals 3z A(z) + x> ;2 [2x]". Hence

n Il=
[1-32] Az) = 1+ 1_’““290 note 1_2”;.
%0 1 2 1
— X
A@) = B gi—2s ~ [-34 [-24
=) [[23"] - 2"]a".
n=0
Hence [an = [2:3"] — 2™ |, for each natnum n. ¢

Counting Involutions in Sy
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10.1: #14 (Books). Let t,, be the number of ways
of placing n books, some on shelf A, some on shelf B,
with at least one book one each shelf. Obtain a “closed
formula” for t,,. O

Soln. Since the books can be split arbitrarily between
the two shelves, we’d like to take a product of EGFs.

Let A(x) be the EGF of seq (0, 1!,2!,...), arranging
books [at least one| on shelf A; so

J: 5 not X
g=1

Similarly, the EGF of arranging books on shelf B is

B(z) = . With T(z) the EGF of £, then,

T = AWBE) = ot = <3 (T)af

= Z [n—1]x™.
n=2

For n>2, then, t,/n! = n—1. Consequently,

10.2:  to=t1 =0, and then ¢, = n!-[n—1]. ¢

10.3: Remark. Now we have (10.2), we can see a direct
argument. Pick one of n! orderings of all the books,
then put a separator at any one of the n—1 junctures
between adjacent books. Those on the separator’s
left, go on shelf A. O

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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The partition function. Let p(n) be the number
of partitions of integer n. E.g, the five ptns of 4 are
L1141, 14142, 143, 242, 4; so p(4) = 5. For n neg-
ative, p(n) = 0. And p(0) = 1. For the partition
1+1+3+4 of nine, the summands 1,1,3,4 are called
the parts of the partition.

Recall from class [or pages 98-101 of Bona| the Ferrers
diagram of a ptn, and the conjugate (I also call it the
transpose) of a partition.

Interpret picking the k™-term from sum

note 1
1—a23’

T4+ 23 + [P+ [P 4.+ 25+ ..
as having k copies of the part 3. Consequently,

1
1—2aJ

11a: P(x) = ﬁ
j=1

is the OGF of [n +— p(n)|. More generally, fix a subset
S C Z4 and let pg(n) be the number of ptns of n using
only parts from S. Then

L 0% 1y os(n)].
1—a

11b: Pg(x) == H

jes

12.1: #10 (LargestPart=4). Let b, be the number
of n-partitions whose largest part is 4. Compute the

OcrF, B(z), of b. O

Soln. Picking only size-4 parts, and at least one such,

has OGF [z? + 2% + 2% 4 .. ], which is 1%14. Hence

4 1
Bla)i= "’”4'szlm' ¥

Counting Involutions in Sy
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13.1: #11 (Equal-largest). Let e,, be the number of
n-ptns whose two largest parts are equal. [So e; = 0,
es =1, e3 =1, es = 2.] Prove that

s Vn € Zy: p(n) —p(n—1). O

€n =

Soln. [Rather than the injection argument of T"™5.20 , let’s
use GFs.| Since p(-1) = 0, the OGF of [n — p(n—1)]
is

C(zx) = Z o(n—1)-z" 22 2. P(x).

n=1

Courtesy (11a), then,
S 1

P(z)—C(z) = [1—z]-P(x) = H

_pi’
j:21 T

By (11b), this is Ps(z) where S := [2..00). And the
transpose of an S-ptn is a ptn that either has no parts
li.e, n = 0| or its largest two parts are equal. Defining
ep := 1, then, we’ve shown that P(z) — C(z) equals
the OGF of €. Hence (x). ¢

Filename: Problems/Combinatorics/generating-fncs. jk.latex
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Counting Involutions in Sy
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14.1: #40 (Derangements). Let d,, be the number
of derangements of [1..n]. Compute D(z), the EGF
of d. O

Defn. A derangement of a set, is a fixed-point—free
permutation of the set. So the above d has dy = 1,
d1:0,d2:1andd3:2. J

Soln. A permutation is a derangement IFF each cycle
has length>2. Set ¢y = ¢; = 0 and, for £>2, let ¢
be the number of cyclic-permutations of a k-set; so
cx = [k—1]!. The EGF of € is thus

C(zx) = ]i [i

k—1]!

??'M—‘
I—l

By (1.4), then, C(x) = log(11;
Thm [T"8.24

) —x. Our Exponential

| now implies that

14.2: D(x) = €@ = L .e7, ¢
14.3: #41 (More derangements). For n € Z_, prove
that

14.4: dn — [n-dpaa] = [F1]". O
Soln.Set by, :=k - di_1; so bg := 0. Set a,, == [-1]". Let

B(z) and A(z) be the EGFs of b and @. Thus (14.4)

will follow from

14.5: D(z)— B(z) = Ax).
Computing. So A(z) =372, [%]!n 2" =e™. And
k- dk 1 k note = dn n
B(z) = Z X = xz %
k=1 n=0
= z-D(z)

Thus D(x) — B(x) equals [1 — z]D(x) which, cour-
tesy (14.2), equals e™. ¢

15.1: Bx8.26 . Let t,, be the number of partitions
of an m-set into atoms, each of cardinality 3. Get a

closed formula for t,,. O
Rem. When n} 3, then ¢, = 0. With T(z) £5 ¢,
then, x
k 3k
: T =
where ¢ = t3. O
1°t Soln.  The neat soln in Bona’s text: Let b, be

the number of ptns of an n-set, using a single atom of
cardinality 3. So bs = 1, and every other b, is zero.

Thus b £5 23/3! = B(zx). So our T"™8.24 says
T(x) equals

1 1 3k

ac note Z = Z -
=

= k! = k! [3!]

Equating terms with (x) yields
) [3k]!

15.2: Ck W ’

Amusingly, it is not even evident that the RhS is an
integer. ..

“Bare hands” Soln.  For a k>0, consider a valid ptn
of [1..n], where n := 3k. For the other two mem-
bers of the atom owning n, there are (ngl) choices.
Consequently,

("3") - er-1-

Since ¢g = 1, iterating gives a product of k terms,

cp =

e = (") () ()66
So [2!]* - ¢x equals
1:[n—1]-[n—2] - 1-[n—4]-[n—5] - 1-[n—7]-[n—8§]
154121,

where [ have put an italic-1 in front of each group. Re-
placing these Is successively by n,n—3,n—6,...,6,3
multiplies this product by 3% - k!, and thus:

3k Sk [2|]k -k _ note [31’9]
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Since 3* times [2!]* is [3!]*, we can rewrite this as
KL-[30F e, = [3K].

Solving for ¢ now gives (15.2). But, Oy/, this was so
much more work. . .. ¢
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