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Tools. Use GF for “generating function”, and
Ogf/Egf for “Ordinary/Exponential GF”. We de-
rived in class, the following:

1

1− x
=
∑∞

n=0
xn .1.1:

1
[1−x]2 =

∑∞
k=0

[k+1] · xk .1.2:

More generally, for L a posint,
1

[1− x]L
=
∑∞

k=0

(k+L−1
L−1

)
· xk .1.3:

log
( 1

1− x

)
=
∑∞

k=1

1
k · x

k .1.4:

Consider A(x)
Ogf←→ ~a and B(x)

Ogf←→ ~b. Recall that
product A(x)B(x) is the Ogf of ~c := ~a~ ~b, the con-
volution of ~a with ~b, where

cn :=
∑

j+k=n

[aj · bk] ,1.5:

where (((j, k))) ranges over all ordered-pairs of natnums
with j+k = n. As a special case, note ~a ~ (((1, 1, . . .)))
is the partial-sum seq ~c, where cn =

∑n
j=0 aj .

Counting Involutions in SN
Let tN be the # of involuTions in the N th symmetric
group; permutations of token set ΩN := {1̂, 2̂, . . . , N̂}.
Involutions are the perms composed only of 1-cycles
and 2-cycles. Easily, t0 = 1, t1 = 1 and t2 = 2.

Seq. ~t grows factorial-ishly because, just counting
perms with the maximun number, h := bN2 c, of 2-
cycles, shows that

tN ≥ [N − 1][N − 3][N − 5] · · · [N − h] .2a:

This, since N̂ can be paired [N−1] other tokens. Now
the highest unpaired token has [N−3] candidate to-
kens to be paired with; etc. Note that RhS(2a)
dominates [N − 2][N − 4][N − 6] · · · [2 or 1]. Thus

tN ≥
√

[N−1]! , for all N ≥ 1.2a′:

2b: Lemma. Involution-sequence ~t satisfies

tn+2 = tn+1 + [n+1]tn

for all natnums n. ♦

Proof. There are tn+1 involutions in Sn+2 which fix
token n̂+2, since the remaining tokens are permuted
via an involution.

The other case is that n̂+2 is in 2-cycle. He can be
paired with n+1 many other tokens, leaving n tokens
to be involved. �

% (involut 10)

Use Low_k for Ceil(Sqrt(k!))

n: t_n Low_nMO Low_n t_n/n!
0: 1 * 1 1
1: 1 1 1 1
2: 2 1 2 1
3: 4 2 3 2/3
4: 10 3 5 5/12
5: 26 5 11 13/60
6: 76 11 27 19/180
7: 232 27 71 29/630
8: 764 71 201 191/10080
9: 2620 201 603 131/18144

10: 9496 603 1905 1187/453600

OGF or EGF?. The rapid growth of ~t, (2a), sug-
gests using an EGF rather than an OGF. Define EGF

G = G(x) :=
∞∑
n=0

tn
n!
xn . Note that

x·G′ =
∞∑
n=0

n· tn
n!
xn .U:

2c: Thm. The EGF of ~t, the count-involutions se-
quence, is

G(x) = exp
(x2

2
+ x

)
= exp

(
x·
[x

2
+ 1

])
. ♦
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Proof. Multiplying (2b) by xn+2 gives

tn+2 x
n+2 = x · tn+1 x

n+1 + x2 · [n+1]tnx
n .

Dividing by [n+1]! produces

[n+2]· tn+2

[n+2]!
xn+2 = x· tn+1

[n+1]!
xn+1 + x2· tn

n!
xn .∗:

Courtesy (U), applying
∑∞

n=0 to LhS(∗) gives

[xG′]− 0· t00! − 1· t11!x
note
=== [xG′]− x ,

since t1 = 1. And summing RhS(∗) hands us

x·[G− t0
0! ] + x2·G note

=== xG− x+ x2·G .

Equating these, then dividing by x, results in

G′ − [x+ 1]G = 0 .2d:

This is a FOLDE (First-Order Linear DE), solved by
antidifferentiating coefficient-fnc [x+1], then negat-
ing, producing x2

2 + x. Exponentiaing this gives
W (x) := exp(x

2

2 + x). All solns to the DE have form
α·W (x), for α ∈ C. We need the α such that

1
note
=== t0

0! = α ·W (0)
note
=== α · 1 .

So α = 1. �

Non-closed formula for tn. From (2c),

G(x) =
∞∑
k=0

1

k!
xk
[x

2
+ 1

]k
.

Courtesy the Binomial thm,

[x
2

+ 1
]k

=
k∑

j=0

(
k

j

)[x
2

]j
.

Hence G(x) equals

∞∑
k=0

k∑
j=0

1

k!

1

2j

(
k

j

)
xj+k =

∞∑
k=0

k∑
j=0

1

[k − j]! j! 2j
xj+k.

Fix n := j + k. Then k = n− j so k − j = n− 2j.
Also, the largest value of j is bn/2c, since j ≤ k. Thus,

in the above sum, the coeff of xn is

bn/2c∑
j=0

1

[n− 2j]! j! 2j
.

We have established the following.

2e: Theorem. For all natnums n,

tn = n! ·
bn/2c∑
j=0

1

[n−2j]! j! 2j
note
===

bn/2c∑
j=0

(
n

n−2j, j, j

)
j!

2j
,

where
( n
n−2j, j, j

)
denotes a multinomial coefficient.♦

Remark. The above summand(
n

n− 2j, j, j

)
· j!

2j

has the combinatorial interpretation of counting the
number of involutions with precisely j many 2-cycles.

Pocket-1 holds the n−2j fixed-pts. The j many
tokens in Pocket-2 will be paired with the j tokens
in Pocket-3, and there are j! many ways to do the
pairing.

Finally, we’ve over-counted by a factor of 2j since,
for each pair, we can reverse which Pocket each is in.�

Matrix description of tn. With matrix

Mn :=

[
0 1
n 1

]
and column-vector vn :=

[
tn
tn+1

]
,

we can restate recurrence (2b) as

vn+1 = Mn+1 · vn .2f:

Hence vn = MnMn−1 · · ·M2M1v0. And v0 =
[
1
1

]
, so

[
tn
tn+1

]
=

[
0 1
n 1

][
0 1

n−1 1

]
· · ·

[
0 1
3 1

][
0 1
2 1

][
0 1
1 1

][
1
1

]
.

Observations. Since Det(Mn) = n, we have

Det(MnMn−1 · · ·M2M1) = [ 1]n · n! .

The char-poly of Mn is

℘(z) = z2 − z − n = [z − λ+n] · [z − λ−n] ,
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where the eigenvalues of Mn are

λ±n := 1
2

[
1±
√

1 + 4n
]
, with

λ+n + λ−n = 1 and λ+n · λ−n = n .

Corresponding eigenvectors are

e+n :=

λ−n / n
1

 and e−n :=

λ+n / n
1

 .
Unfinished: as of 12May2024

Remark.

Do eigenvalues bound expand/shrink rate

Consider 2×2 matrix M. Let ‖M‖op denote the maxi-
mum, taken over all unit-vectors v (i.e ‖v‖ = 1), of the
ratio

‖Mv‖
‖v‖

.∗:

This ‖M‖op is called the “operator norm of M” .
For number S>0 to be determined later, define

E :=

[
S2 + S S3 − S2
S − 1 S2 + S

]
.

Verify that

a :=

[
S
1

]
and b :=

[
S
1

]
3:

are E-eigenvectors, with respective eigenvalues

α := 2S2 and β := 2S .

But for unit-vector u :=
[
0
1

]
, product

Eu =

[
S3 − S2
S2 + S

]
.

So ratio ‖Eu‖‖u‖ ≈ S
3. For large S, then, this ratio is

much larger than α, the largest eigenvalue.

Similarly, for w :=

[
1− S

[S+1]/S

]
, note

Ew =

[
0

4S

]
.

For large S, note ‖w‖ ≈ S, so ‖Ew‖‖w‖ ≈ 4. �

Warm-up. Consider sequence ~a := (((a0, a1, a2, . . .)))
where

a0 := 0 and an+1 := 1 + 3an .†:

We’ll get a formula for an, by manipulating the entire
sequence ~a. The method is to define the correspond-
ing (ordinary) generating function [abbrev. OGF ]

A(x) :=
∑∞

n=0
an · xn .

The RhS, here, converges for all |x| < 1
3 . However,

it turns out that, for most problems, we can view the
RHS as a formal power series, and never worry about
convergence.

Let’s manipulate OGF A(x) so as to get a recur-
rence formula for it. Note first that

∞∑
n=0

an+1 · xn =
[ ∞∑
n=0

1 · xn
]

+ 3
[ ∞∑
n=0

anx
n]∗:

= 1
1−x + 3A(x) .

OTOHand, product x·LhS(∗) equals

x ·
∞∑
n=0

an+1 · xn =
∞∑
k=1

ak · xk = A(x) ,

since a0 = 0. Thus, multiplying (∗) by x, gives

A = x ·
[

1
1−x + 3A

]
= x

1−x + 3xA .

Hence A · [1 − 3x] = x
1−x , so A = x

[1−3x][1−x] . The
partial-fraction decomposition now yields

A =
1/2

1− 3x
− 1/2

1− x
=

1

2

[[ ∞∑
n=0

[3x]n
]
−
[ ∞∑
n=0

xn
]]
.

Combining terms gives the power series expansion,

A(x) =
∞∑
n=0

1
2 [3n − 1] · xn .

And you can easily check that the formula

an := 1
2 [3n − 1] , for n = 0, 1, 2, . . . ,

indeed satisfies the original (†) recurrence.

Unless mentioned otherwise, the following problems are
from Bona’s text.
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5.1: #48P.207. Let gn be the number of (combinato-
rial) simple graphs on [1 .. n] in which each vertex has
degree 2. With G(x)

Egf←→ ~g, prove that

G(x) = 1√
1−x · e

x
2
−x2

4 . ♦

Soln. On a k-set, let ak be the number of cyclic simple
graphs using all k of the vertices. So a0 = a1 = a2 = 0
(The a0 = 0 needs comment). For k≥3, there are [k−1]!
circular permutations �

6.1: #43P.176 (People). Let qn be the number of ways
of partitioning n people into groups labeled “E”, “D”
and “A”, and asking each group to form a line, where
group E has an even number of folk, group D oddly
many, and group A has an arbitrary number of people.
Get a closed-formula for qn. ♦

Ans. We’ll give an answer first, then show three
derivations. The N th triangular number is

τN :=
∑N

k=1
k = 1

2 ·N [N+1] .

Define a sequence ~s = (((s0, s1, . . .))) by

~s = (((τ0, τ1, τ1, τ2, τ2, τ3, τ3, τ4, τ4, . . .)))6.2:
= (((0, 1, 1, 3, 3, 6, 6, 10, 10, . . .))) .

Then, for each natnum n,
qn = n! · sn .6.3: �

1st Soln. For the three groups, the corresponding
Egfs are

A(x) :=
∑∞

n=0

n!

n!
· xn note

===
1

1− x
;

E(x) :=
∑∞

j=0
1 · x2j note

===
1

1− [x2]
;

D(x) :=
∑∞

k=0
1 · x2k+1 note

===
x

1− [x2]
.

Hence the Egf for ~q is Q := A · E ·D. I.e

Q(x) =
x

[1− x2]2
· 1

1− x
.6.4:

This RhS(6.4) is the Ogf of some sequence ~s.
Tool (1.2) says 1

[1−y]2
Ogf←→ (((1, 2, 3, . . .))). Hence

(((0, 1, 0, 2, 0, 3, 0, 4, 0, . . .)))
Ogf←→ x

[1− x2]2
.

Convolving this sequence with

(((1, 1, 1, . . .)))
Ogf←→ 1

1− x

forms the partial sums of (((0, 1, 0, 2, . . .))). Hence (6.2).
Finally, Q(x) is the EGF of ~q, whence (6.3). �
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2nd Soln.This problem is a fancier version of #14P.176,
the bookshelf. Make a line of books by choosing one
of the n! orderings. Let sn be the number of ways of:

Taking some even number from the left of the
line, and putting them on shelf “E”, then taking
some oddly many from the left of what remains,
and putting that on shelf “D”.

Hence (6.3), and we just need to compute ~s.
In the plane, consider the triangle of lattice-points,

Ωn :=
{
(((x, y))) ∈ N×N

∣∣∣ x+y ≤ n
}
.

Interpret a point (((ε, δ))) ∈ Ωn as putting ε many books
on “E”, then δ many books on “D”, finally n− [ε+δ]
many books on the “Arbitrary” shelf. If ε is even and
δ odd, then this is a valid placement. Thus

Our sn is the number of (((Even,Odd))) points
in the Ωn lattice-triangle.

6.5:

Approximately half have even x-coordinate, about
half have odd y, and these two events are more-or-less

independent. Conclusion:
�
�

�
�sn is approx n2

2 /4 . Also,
a valid (((ε, δ))) has ε+δ odd. E.g, the line of lattice-
pts (((x, y))) with x+y = 6 has no valid points. Hence
s6 = s5. More generally,

�� ��n odd ⇒ sn = sn+1 . Of
course, our (6.2) implies both of the circled stmts.

Counting valid pts. Fix an odd n = 2k − 1, and
consider those (((x, y))) ∈ N×N with x+y = n. Cer-
tainly x is even IFF y is odd, so precisely k of those
points are valid. It follows that ~s comprises the partial
sums of sequence (((0, 1, 0, 2, . . .))), as n takes on values
0, 1, 2, 3, . . .. So we have again derived (6.2). �

3rd Soln. Back to GFs!
The partial-fraction decom of RhS(6.4) is

1

16
·
[

1

1− x
+

1

1 + x
+

4

[1− x]3
+

2

[1 + x]2

]
.

This looks arduous to do directly, so let’s finesse
things. The “1− x” and “1 + x” will cause even/odd
index terms to behave differently, so let’s separate

them. Write
∑∞

n=0 snx
n := Q(x) = ε(x)+δ(x), where

ε(x) :=
∑

n even
snx

n and δ(x) :=
∑

n odd
snx

n .

Now 2ε(x) = Q(x) +Q( x), which equals

1

[1− x2]2
·
[ x

1− x
+

x

1 + x

]
=

2x2

[1− x2]3
.†:

So ε(x) = f(x2), where f(y) := y
[1−y]3 . By (1.3),

f(y) = y ·
∞∑
i=0

(i+2
2

)
yi

note
===

∞∑
k=1

τk · yk ,

by setting k = i+1. And τ0 = 0, so

ε(x) =
∑∞

k=0
τk · x2k ;

this justifies the even-indexed terms in (6.2).
For the odd-index terms, 2δ(x) = Q(x) − Q( x)

which equals

1

[1− x2]2
·
[ x

1− x
− x

1 + x

]
=

2x

[1− x2]3
.‡:

Comparing with (†), then, x·δ(x) = ε(x). I.e, when n
is an even index, then sn−1 = sn. Hence (6.2). �
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7.1: #44P.176. From n people, select a committee
of oddly many. From the committee, select a council
of evenly many [allowing the value zero]. Get a closed-
formula for rn, the number of ways of doing this. ♦

Prelim. View this as splitting the people into

• Group E, the council with evenly many.

• Group D with oddly many, where the committee is
EtD.

• Group A, with arbitarily many; those that remain.

While superficially similar to #43P.176, the lack of or-
dering makes a difference. A seat-of-the-pants growth
estimate is

3n ≥ rn ≥ 2n−1 − 1 .7.2:

The first follows by removing the even/odd restric-
tions, so each elt of [1 .. n] admits 3 colors.

The lower bnd holds for n=0; what about n≥1?
Well, [1 .. n] has 2n−1 even-cardinality subsets. Hence
there are at least [2n−1 − 1] even subsets that are not
all of [1 .. n]; and so we can pick one element of the
complement to make a singleton D. �

Soln. With R(x)
Egf←→ ~r, we wish to define Egfs so

that R(x) = E(x)D(x)A(x). So E(x)
Egf←→ ~e, where

ek is the number of ways making an even-sized council
using all k people. I.e, ~e = (((1, 0, 1, 0, . . .))). Thus

E(x) =
∑

k even

xk

k!
= 1

2 [ex + e x] . Similarly,

D(x) =
∑
k odd

xk

k!
= 1

2 [ex − e x] .

So E(x)D(x) = 1
4 [e2x − e 2x]. Since A(x) = ex, our

R(x) is 1
4
[e3x − e x]. Thus for each natnum n,

rn = 1
4
·
[
3n − [ 1]n

]
.7.3:

BTWay, 3n − [ 1]n ≡4 [ 1]n − [ 1]n = 0, as it
must. �

7.4: Rem. Curiously, (7.3) is a sum of exponen-
tials, thus satifies a 2-term linear recurrence. The two
bases, 3 and 1, are roots of the polynomial

f(x) := [x− 3][x+ 1]
note
=== x2 − 2x− 3 .

Each base b∈{3, 1} satisfies f(b)=0, i.e b2 = 2b+ 3,
and thus bn+2 = 2bn+1 + 3bn, for each n. Conse-
quently, ~r satisfies recurrence

rn+2 = 2rn+1 + 3rn .7.5:

Exer: Find a bijective proof of (7.5). �
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8.1: #38P.176. Let gn be the number of ways of select-
ing a permutation of [1 .. n], then marking a particular
cycle in the permutation. Obtain a formula for gn. ♦

Rem. Bona’s Ex8.25P.171 asked how many ways to seat n
people around circular tables. The answer was n! [reminding
us of the Canonical cycle notation], derived from Thm8.24P.171.
Equivalent, is to use Thm8.28P.172 but with the outer seq trivial,
the constant-1 sequence, because given j cycles, there is only
one way to take all of them.

In the current problem, our outer sequence is (((0, 1, 2, . . .))),
since there are j ways to pick one cycle from j. �

Soln. With c0 := 0, henceforth let ck be the number
of cyclic-permutations of a k-set; so ck = [k−1]!. The
Egf of ~c is thus

C(x) :=
∞∑
k=1

[k−1]!

k!
xk =

∞∑
k=1

1

k
·xk = log

( 1

1− x

)
,

by (1.4). The Egf of picking one object from j is

B(x) :=
∞∑
j=1

j

j!
· xj note

=== x · ex .

Thm8.28P.172 now says ~g has Egf

B
(
C(x)

)
= log

( 1

1− x

)
· 1

1− x
Ogf←→ (((0, 1, 12 ,

1
3 , . . .)))~ (((1, 1, . . .))) .

The partial-sum seq of (((0, 1, 12 ,
1
3 , . . .))) is the harmonic

number seq, (((H0,H1,H2, . . .))), where

Hn :=
∑n

`=1
1/` .8.2:

Consequently,

gn = n! · Hn .8.3: �

Evidence? Let’s compute g3 by hand.

i: From three 1-cycles, pick one; 3 choices.

ii: There are
(3
1

)
= 3 ways to split into a 2-cycle and

a 1-cycle. For each, we have 2 ways to select a
cycle, giving 3 · 2 = 6 choices.

iii: We can just have a single 3-cycle, and we must
choose it. This gives 1 choice.

Thus g3 = 3+6+1 = 10. We now use (8.3) to reassure
ourselves, by computing 3! · [1 + 1

2 + 1
3 ] = 6 + 3 + 2,

which equals. . .Eleven?! Oh no! –Mathematics is in-
consistent! -oh, woe is me, oh. . .

Wait a darn minute! ; n objects can have many dif-
ferent cyclic permutations. For cycles of length 1 or 2,
the cyclic ordering is unique. But in case (iii), above,
there are 2 cyclic permutations of three objects. So
my computation should have been: g3 = 3 + 6 + 2,
which –whew!– indeed equals eleven. �
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9.1: #23P.176. Find a formula for an, where a0 := 1
and an+1 = 3an + 2n. ♦

Soln. Set A(x)
Ogf←→ ~a. Multiply the recurrence

by xn+1 and sum, to get that A(x)− 1 = A(x)− a0
equals 3xA(x) + x·

∑∞
n=0 [2x]n. Hence

[1− 3x] ·A(x) = 1 +
x

1− 2x
note
===

1− x
1− 2x

.

So

A(x) =
1− x

[1− 3x][1− 2x]
=

2

[1− 3x]
− 1

[1− 2x]

=
∞∑
n=0

[
[2·3n] − 2n

]
xn .

Hence
�� ��an = [2·3n] − 2n , for each natnum n. �

10.1: #14P.176 (Books). Let tn be the number of ways
of placing n books, some on shelf A, some on shelf B,
with at least one book one each shelf. Obtain a “closed
formula” for tn. ♦

Soln. Since the books can be split arbitrarily between
the two shelves, we’d like to take a product of Egfs.

Let A(x) be the Egf of seq (((0, 1!, 2!, . . .))), arranging
books [at least one] on shelf A; so

A(x) =
∞∑
j=1

j!

j!
xj

note
===

x

1− x
.

Similarly, the Egf of arranging books on shelf B is
B(x) = x

1−x . With T (x) the Egf of ~t, then,

T (x) = A(x)B(x) = x2· 1
[1−x]2 = x2·

∞∑
`=0

(`+1
1

)
x`

=
∞∑
n=2

[n−1]xn .

For n≥2, then, tn/n! = n−1. Consequently,

t0 = t1 = 0 , and then tn = n! · [n−1] .10.2: �

10.3: Remark.Now we have (10.2), we can see a direct
argument. Pick one of n! orderings of all the books,
then put a separator at any one of the n−1 junctures
between adjacent books. Those on the separator’s
left, go on shelf A. �
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The partition function. Let ℘(n) be the number
of partitions of integer n. E.g, the five ptns of 4 are
1+1+1+1, 1+1+2, 1+3, 2+2, 4; so ℘(4) = 5. For n neg-
ative, ℘(n) = 0. And ℘(0) = 1. For the partition
1+1+3+4 of nine, the summands 1, 1, 3, 4 are called
the parts of the partition.

Recall from class [or pages 98–101 of Bona] the Ferrers
diagram of a ptn, and the conjugate (I also call it the
transpose) of a partition.

Interpret picking the kth-term from sum

1 + x3 + [x3]2 + [x3]3 + . . .+ [x3]k + . . .
note
===

1

1− x3
,

as having k copies of the part 3. Consequently,

P (x) :=
∞∏
j=1

1

1− xj
11a:

is the Ogf of [n 7→ ℘(n)]. More generally, fix a subset
S ⊂ Z+ and let ℘S(n) be the number of ptns of n using
only parts from S. Then

PS(x) :=
∏
j∈S

1

1− xj
Ogf←→ [n 7→ ℘S(n)] .11b:

12.1: #10P.174 (LargestPart=4). Let bn be the number
of n-partitions whose largest part is 4. Compute the
Ogf, B(x), of ~b. ♦

Soln. Picking only size-4 parts, and at least one such,
has Ogf [x4 + x8 + x12 + . . .], which is x4

1−x4 . Hence

B(x) = x4 ·
∏4

k=1

1

1− xk
. �

13.1: #11P.105 (Equal-largest). Let en be the number of
n-ptns whose two largest parts are equal. [So e1 = 0,
e2 = 1, e3 = 1, e4 = 2.] Prove that

∀n ∈ Z+ : en = ℘(n)− ℘(n−1) .∗: ♦

Soln. [Rather than the injection argument of Thm5.20P.101, let’s
use GFs.] Since ℘( 1) = 0, the Ogf of [n 7→ ℘(n−1)]
is

C(x) :=
∞∑
n=1

℘(n−1)·xn note
=== x · P (x) .

Courtesy (11a), then,

P (x)− C(x) = [1− x] · P (x) =
∞∏
j=2

1

1− xj
.

By (11b), this is PS(x) where S := [2 ..∞). And the
transpose of an S-ptn is a ptn that either has no parts
[i.e, n = 0] or its largest two parts are equal. Defining
e0 := 1, then, we’ve shown that P (x) − C(x) equals
the Ogf of ~e. Hence (∗). �
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14.1: #40P.176 (Derangements). Let dn be the number
of derangements of [1 .. n]. Compute D(x), the Egf
of ~d. ♦

Defn. A derangement of a set, is a fixed-point–free
permutation of the set. So the above ~d has d0 = 1,
d1 = 0, d2 = 1 and d3 = 2. �

Soln. A permutation is a derangement IFF each cycle
has length≥2. Set c0 = c1 = 0 and, for k≥2, let ck
be the number of cyclic-permutations of a k-set; so
ck = [k−1]!. The Egf of ~c is thus

C(x) :=
∞∑
k=2

[k−1]!

k!
xk =

[ ∞∑
k=1

1

k
·xk
]
− x .

By (1.4), then, C(x) = log
(

1
1−x

)
−x. Our Exponential

Thm [Thm8.24P.171] now implies that

D(x) = eC(x) = 1
1−x · e

x .14.2: �

14.3: #41P.176 (More derangements). For n ∈ Z+, prove
that

dn −
[
n · dn−1

]
= [ 1]n .14.4: ♦

Soln.Set bk := k · dk−1; so b0 := 0. Set an := [ 1]n. Let
B(x) and A(x) be the Egfs of ~b and ~a. Thus (14.4)
will follow from

D(x)−B(x)
?
= A(x) .14.5:

Computing. So A(x) =
∑∞

n=0
[ 1]n

n! x
n = e x. And

B(x) =
∞∑
k=1

k · dk−1
k!

xk
note
=== x ·

∞∑
n=0

dn
n!
xn

= x ·D(x) .

Thus D(x) − B(x) equals [1− x]D(x) which, cour-
tesy (14.2), equals e x. �

15.1: Ex8.26P.172. Let tn be the number of partitions
of an n-set into atoms, each of cardinality 3. Get a
closed formula for tn. ♦

Rem. When nr|� 3, then tn = 0. With T (x)
Egf←→ ~t,

then,
T (x) =

∞∑
k=0

ck
[3k]!

· x3k ,∗:

where ck := t3k. �

1st Soln. The neat soln in Bona’s text: Let bn be
the number of ptns of an n-set, using a single atom of
cardinality 3. So b3 = 1, and every other bn is zero.
Thus ~b Egf←→ x3/3! =: B(x). So our Thm8.24P.171 says
T (x) equals

eB(x) note
===

∞∑
k=0

1

k!
·B(x)k =

∞∑
k=0

1

k!
· x

3k

[3!]k
.

Equating terms with (∗) yields

ck =
[3k]!

k! · [3!]k
.15.2: �

Amusingly, it is not even evident that the RhS is an
integer. . .

“Bare hands” Soln. For a k>0, consider a valid ptn
of [1 .. n], where n := 3k. For the other two mem-
bers of the atom owning n, there are

(n−1
2

)
choices.

Consequently,
ck =

(n−1
2

)
· ck−1 .

Since c0 = 1, iterating gives a product of k terms,

ck =
(n−1

2

)
·
(n−4

2

)
·
(n−7

2

)
· · ·
(5
2

)
·
(2
2

)
.

So [2!]k · ck equals

1 ·[n−1]·[n−2] · 1 ·[n−4]·[n−5] · 1 ·[n−7]·[n−8]

· · · 1 ·5·4 · 1 ·2·1 ,

where I have put an italic-1 in front of each group. Re-
placing these 1 s successively by n, n−3, n−6, . . . , 6, 3
multiplies this product by 3k · k!, and thus:

3k · k! · [2!]k · ck = n!
note
=== [3k]! .
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Since 3k times [2!]k is [3!]k, we can rewrite this as

k! · [3!]k · ck = [3k]! .

Solving for ck now gives (15.2). But, Oy! , this was so
much more work. . . . �
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