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(A natnum N is a SOTS , Sum Of Two Squares, if there
are integers for which `2 + k2 = N . If there exists such a
pair with ` ⊥ k, then N is coprime-SOTS. (E.g, 25 has a
non-coprime rep as 52 + 02; nonetheless, 25 is coprime-SOTS, since
25 = 32 + 42. OTOHand, both 4 = 02 + 22 and 40 = 22 + 62 have
these unique SOTS reps, so neither is coprime-SOTS.) An odd
integer L is 4Neg if L ≡4 1 and is 4Pos if L ≡4 1.
Fermat’s Prime-SOTS Thm says: Oddprime p is SOTS iff
p is 4Pos.

Mod N , a rono is a (square–)Root Of Negative One; an
integer I such that I2 ≡N 1.

Use CRT for the Chinese Remainder Thm.)

The ring. Let G := {b+ ci | b, c ∈ Z} be the
set of Gaussian integers, a subring of C. The
norm of a gaussint B := b+ ci is

N(B) := B ·B = b2 + c2 .

To set notation, I will henceforth use

B := b+ ci, E := e+ f i, and S := s+ ti

for gaussints. I will use

β := N(B), ε := N(E), and σ := N(S)

for their norms.
A number in G or Z which is neither zero nor

a unit will be called non-trivial. A gaussint S =
s+ti lying on the real or imaginary axis is said to
be axial, i.e either s = 0 or t = 0. Lastly, use 0
for the complex number 0 + 0i.

1: Lemma. The G-norm is totally multiplicative:
∀B,E: N(B · E) = N(B) ·N(E). Furthermore,

S = 0 ⇐⇒ N(S) = 0 ;

S is a G-unit ⇐⇒ N(S) = 1 .

Thus there are four G-units, comprising the set
{±1,±i}. (Proof: Exercise.) ♦

Evidently each axial non-zero S can be decom-
posed uniquely as (∗), below.

The raison d’être of this note is (2.2).

2: Irreducibility Theorem. Fix a non-trivial
gaussint S.

When S is axial, written as

S = n · E, with E a G-unit and n ∈ Z+ ,∗:

then

S is G-irred ⇐⇒ n is a 4Neg prime.2.1:

When S is non-axial then

S is G-irred ⇐⇒ σ
def
==N(S) is Z-irred .2.2: ♦

Remark. A norm value, σ, is automatically a
SOTS-number. So a Z-irreducible norm is neces-
sarily a SOTS-prime.

Consequently, parts (2.1) and (2.2) together say
that a gaussint S is G-irreducible iff: The norm
N(S) is either a SOTS-prime or is the square of a
4Neg prime. �

Proof of (2.1) (⇒). A non-trivial Z-factorization
n = k · ` yields a non-trivial G-factorization S =
k · `E. Nope; so n is prime.

Were n a SOTS-prime then take integers b and c
with b2 + c2 = n. Automatically b 6= 0 and c 6= 0,
so

S = [b+ ci] · [b− ci]E

is a non-trivial G-factorization. In conse-
quence, the Prime-SOTS Thm implies that n must
be 4Neg. �

Proof of (2.1) (⇐). A G-factorization S = B · E
yields a Z-factorization n2 note

=== σ = β · ε. Each
of β and ε is a norm, so each is 4negprime-even.
But n is a 4Neg prime. So WLOG β = n2 and
ε = 1. Thus the G-factorization of S was trivial
after all. �
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Reverse-melding and all that jazz

We now come to the most interesting part, im-
plication (2.2). The (⇒) direction is immediate:
Consider a non-trivial G-factorization S = B ·E.
Then Lemma 1 assures that σ = βε is a non-trivial
Z-factorization of σ.

As for the (⇐) direction, first let g := GCD(s, t).
Then

E := s
g
+ t

g
i

is not a G-unit, since S is not axial. Were g 6= 1,
then g · E would be a non-trivial G-factorization
of S. The upshot is that we may WLOG assume
that s ⊥ t.

Proof of (2.2) (⇐).Together, t ⊥ s and s2+t2 = σ
yield that t ⊥ σ. Since s2 + t2 ≡σ 0, necessarily

I :=
〈
s
t

〉
σ

is a σ-rono. Thus σ has no
4Neg-prime factors.

3:

Strategy. Let’s now assume that σ factors non-
trivially over Z, say σ = β · ε, and then endeavor
to show that S factors over G.

We’d like to define a gaussint B := b+ ci by
somehow having chosen numbers b and c with

b2 + c2 = β and b, c ∈ Z .4:

Automatically this gives S = B ·E, a factorization
over the Gaussian rationals, where

E :=
S

B
=

SB

BB
= 1

β
· SB .

Now B = b− ci, so

SB = [sb+ tc] + [tb− sc]i .

The upshot is that the real and imaginary coeffi-
cients of E will be integers iff

sb ≡β tc , and
tb ≡β sc .

5:

Thus our goal is to pick b and c so as to fulfill (4)
and (5) simultaneously.

Reverse-Melding. (This clever term is due to
Stephen Hicks.) Observation (3) together with
β •| σ tell us that β is a SOTS-number and I is a
β-rono.

Courtesy of our proof of Prime-SOTS Theorem
we can use I to construct integers b and c with
b2 + c2 = β and

b ≡β I · c .6:

OTOHand, (3) gives s ≡σ I · t. So we certainly
have

s ≡β I · t ,7:

since β divides σ.
We are now happy campers. Firstly

sb = LhS(7)LhS(6) ≡β I2tc = tc

as (5 upper) wanted. Secondly

Itb = RhS(7)LhS(6) ≡β sIc .

Dividing by I yields (5 lower), as desired. Neat!�

Happy conclusion. We have an algorithm for com-
puting SOTS pairs, given an algorithm that fac-
tors over Z. So the above now gives us an effective
algorithm for factoring a Gaussian integer.

In particular, since there are fast algorithms for
determining if an integer is irreducible (prime), we
now have a fast algorithm for telling if a gaussint
is G-irreducible. �

G-primeness

It turns out that G is a Euclidean domain, which
implies it is a unique factorization domain. So
the Gaussian-primes are simply the Gaussian-
irreducibles.
Whoa! Put a proof in when convenient.
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