

Gaussian Integers: NumThy

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

30 September, 2022 (at 17:19)

(A natnum N is a **SOTS**, Sum Of Two Squares, if there are integers for which $\ell^2 + k^2 = N$. If there exists such a pair with $\ell \perp k$, then N is **coprime-SOTS**. (E.g. 25 has a non-coprime rep as $5^2 + 0^2$; nonetheless, 25 is coprime-SOTS, since $25 = 3^2 + 4^2$. OTOH and, both $4 = 0^2 + 2^2$ and $40 = 2^2 + 6^2$ have these unique SOTS reps, so neither is coprime-SOTS.) An odd integer L is **4Neg** if $L \equiv_4 -1$ and is **4Pos** if $L \equiv_4 +1$. Fermat's Prime-SOTS Thm says: Oddprime p is SOTS iff p is 4Pos.

Mod N , a **rono** is a (square-)Root Of Negative One; an integer I such that $I^2 \equiv_N -1$.

Use **CRT** for the Chinese Remainder Thm.)

The ring. Let $\mathbb{G} := \{b + ci \mid b, c \in \mathbb{Z}\}$ be the set of **Gaussian integers**, a subring of \mathbb{C} . The **norm** of a gaussint $B := b + ci$ is

$$\mathcal{N}(B) := B \cdot \overline{B} = b^2 + c^2.$$

To set notation, I will henceforth use

$$B := b + ci, \quad E := e + fi, \quad \text{and} \quad S := s + ti$$

for gaussints. I will use

$$\beta := \mathcal{N}(B), \quad \varepsilon := \mathcal{N}(E), \quad \text{and} \quad \sigma := \mathcal{N}(S)$$

for their norms.

A number in \mathbb{G} or \mathbb{Z} which is neither zero nor a unit will be called **non-trivial**. A gaussint $S = s + ti$ lying on the real or imaginary axis is said to be **axial**, i.e either $s = 0$ or $t = 0$. Lastly, use **0** for the complex number $0 + 0i$.

1: Lemma. *The \mathbb{G} -norm is totally multiplicative: $\forall B, E: \mathcal{N}(B \cdot E) = \mathcal{N}(B) \cdot \mathcal{N}(E)$. Furthermore,*

$$S = 0 \iff \mathcal{N}(S) = 0 \quad ;$$

$$S \text{ is a } \mathbb{G}\text{-unit} \iff \mathcal{N}(S) = 1 \quad .$$

Thus there are four \mathbb{G} -units, comprising the set $\{\pm 1, \pm i\}$. (Proof: Exercise.) \diamond

Evidently each axial non-zero S can be decomposed uniquely as (*), below.

The *raison d'être* of this note is (2.2).

2: Irreducibility Theorem.

Fix a non-trivial gaussint S .

When S is axial, written as

*: $S = n \cdot E$, with E a \mathbb{G} -unit and $n \in \mathbb{Z}_+$,

then

2.1: S is \mathbb{G} -irred \iff n is a 4NEG prime.

When S is non-axial then

2.2: S is \mathbb{G} -irred $\iff \sigma \stackrel{\text{def}}{=} \mathcal{N}(S)$ is \mathbb{Z} -irred. \diamond

Remark. A norm value, σ , is automatically a SOTS-number. So a \mathbb{Z} -irreducible norm is necessarily a SOTS-prime.

Consequently, parts (2.1) and (2.2) together say that a gaussint S is \mathbb{G} -irreducible iff: *The norm $\mathcal{N}(S)$ is either a SOTS-prime or is the square of a 4NEG prime.* \square

Proof of (2.1) (\Rightarrow). A non-trivial \mathbb{Z} -factorization $n = k \cdot \ell$ yields a non-trivial \mathbb{G} -factorization $S = k \cdot \ell E$. Nope; so n is prime.

Were n a SOTS-prime then take integers b and c with $b^2 + c^2 = n$. Automatically $b \neq 0$ and $c \neq 0$, so

$$S = [b + ci] \cdot [b - ci]E$$

is a non-trivial \mathbb{G} -factorization. In consequence, the Prime-SOTS Thm implies that n must be 4NEG. \diamond

Proof of (2.1) (\Leftarrow). A \mathbb{G} -factorization $S = B \cdot E$ yields a \mathbb{Z} -factorization $n^2 \stackrel{\text{note}}{=} \sigma = \beta \cdot \varepsilon$. Each of β and ε is a norm, so each is 4negprime-even. But n is a 4NEG prime. So WLOG $\beta = n^2$ and $\varepsilon = 1$. Thus the \mathbb{G} -factorization of S was trivial after all. \diamond

Reverse-melding and all that jazz

We now come to the most interesting part, implication (2.2). The (\Rightarrow) direction is immediate: Consider a non-trivial \mathbb{G} -factorization $S = B \cdot E$. Then Lemma 1 assures that $\sigma = \beta \varepsilon$ is a non-trivial \mathbb{Z} -factorization of σ .

As for the (\Leftarrow) direction, first let $g := \text{GCD}(s, t)$. Then

$$E := \frac{s}{g} + \frac{t}{g}\mathbf{i}$$

is not a \mathbb{G} -unit, since S is not axial. Were $g \neq 1$, then $g \cdot E$ would be a non-trivial \mathbb{G} -factorization of S . The upshot is that we may WLOG assume that $s \perp t$.

Proof of (2.2) (\Leftarrow). Together, $t \perp s$ and $s^2 + t^2 = \sigma$ yield that $t \perp \sigma$. Since $s^2 + t^2 \equiv_{\sigma} 0$, necessarily

3: $I := \left\langle \frac{s}{t} \right\rangle_{\sigma}$ is a σ -rono. Thus σ has no 4NEG-prime factors.

Strategy. Let's now assume that σ factors non-trivially over \mathbb{Z} , say $\sigma = \beta \cdot \varepsilon$, and then endeavor to show that S factors over \mathbb{G} .

We'd like to define a gaussint $B := b + c\mathbf{i}$ by somehow having chosen numbers b and c with

$$4: \quad b^2 + c^2 = \beta \quad \text{and} \quad b, c \in \mathbb{Z}.$$

Automatically this gives $S = B \cdot E$, a factorization over the *Gaussian rationals*, where

$$E := \frac{S}{B} = \frac{S\bar{B}}{B\bar{B}} = \frac{1}{\beta} \cdot S\bar{B}.$$

Now $\bar{B} = b - c\mathbf{i}$, so

$$S\bar{B} = [sb + tc] + [tb - sc]\mathbf{i}.$$

The upshot is that the real and imaginary coefficients of E will be *integers* iff

$$5: \quad \begin{aligned} sb &\equiv_{\beta} -tc, \quad \text{and} \\ tb &\equiv_{\beta} sc. \end{aligned}$$

Thus our goal is to pick b and c so as to fulfill (4) and (5) simultaneously.

Reverse-Melding. (This clever term is due to Stephen Hicks.) Observation (3) together with $\beta \bullet \sigma$ tell us that β is a SOTS-number and I is a β -rono.

Courtesy of our proof of Prime-SOTS Theorem we can use I to construct integers b and c with $b^2 + c^2 = \beta$ and

$$6: \quad b \equiv_{\beta} I \cdot c.$$

OTOHand, (3) gives $s \equiv_{\sigma} I \cdot t$. So we certainly have

$$7: \quad s \equiv_{\beta} I \cdot t,$$

since β divides σ .

We are now happy campers. Firstly

$$sb = \text{LhS}(7)\text{LhS}(6) \equiv_{\beta} I^2 tc = -tc$$

as (5 upper) wanted. Secondly

$$Itb = \text{RhS}(7)\text{LhS}(6) \equiv_{\beta} sc.$$

Dividing by I yields (5 lower), as desired. *Neat!* ♦

Happy conclusion. We have an algorithm for computing SOTS pairs, given an algorithm that factors over \mathbb{Z} . So the above now gives us an effective *algorithm* for factoring a Gaussian integer.

In particular, since there are fast algorithms for determining if an integer is irreducible (prime), we now have a fast algorithm for telling if a gaussint is \mathbb{G} -irreducible. □

G-primeness

It turns out that \mathbb{G} is a *Euclidean domain*, which implies it is a *unique factorization domain*. So the Gaussian-primes are simply the Gaussian-irreducibles.

Whoa! Put a proof in when convenient.

Filename: `Problems/NumberTheory/gaussints.latex`
As of: Monday 17Apr2006. Typeset: 30Sep2022 at 17:19.