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(A natnum N is a SOTS, Sum Of Two Squares, if there
are integers for which £ + k% = N. If there exists such a
pair with ¢ 1 k, then N is coprime-SOTS. (E.g, 25 has a
non-coprime rep as 52 + 02; nonetheless, 25 is coprime-SOTS, since
25 = 32 +42. OTOHand, both 4 = 02 + 22 and 40 = 22 + 62 have
these unique SOTS reps, so neither is coprime—SOTS.) An odd
integer L is 4Neg if L =4, -1 and is 4Pos if L =4 +1.
Fermat’s Prime-SOTS Thm says: Oddprime p is SOTS iff
p is 4Pos.

Mod N, a rono is a (square-)Root Of Negative One; an
integer I such that I? =y -1.

Use CRT for the Chinese Remainder Thm.)

The ring. Let G = {b+ci|b,c € Z} be the
set of Gaussian integers, a subring of C. The
norm of a gaussint B == b+ ci is

N(B) == B-B = b*+¢.
To set notation, I will henceforth use

B:=b+c, E:=e+ fi, and S :=s+ti

for gaussints. I will use

for their norms.

A number in G or Z which is neither zero nor
a unit will be called non-trivial. A gaussint S =
s+ti lying on the real or imaginary axis is said to
be axial, i.e either s = 0 or t = 0. Lastly, use O
for the complex number 0 + 0i.

e:=N(F), and o :=N(S)

1: Lemma. The G-norm is totally multiplicative:
VB,E: N(B - E) = N(B) - N(FE). Furthermore,

S=0 < N(S)=0 ;
S is a G-unit <= N(S) =1

Thus there are four G-units, comprising the set
{£1, £i}. (Proof: Exercise.) O
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Evidently each axial non-zero S can be decom-
posed uniquely as (x), below.
The raison d’étre of this note is (2.2).

2: Irreducibility Theorem. Fix a non-trivial
gaussint S.

When S is azxial, written as
x: S =mn-FE, with ¥ aG-unit andn € Z, ,
then

2.1: S is G-irred <= n is a 4ANEG prime.
When S is non-axial then

2.2: S is G-irred < o%N(S) is Z-irred.

Remark. A norm value, o, is automatically a
SOTS-number. So a Z-irreducible norm is neces-
sarily a SOTS-prime.

Consequently, parts (2.1) and (2.2) together say
that a gaussint S is G-irreducible iff: The norm
N(S) is either a SOTS-prime or is the square of a
ANEG prime. U

Proof of (2.1) (=). A non-trivial Z-factorization
n = k- { yields a non-trivial G-factorization S =
k- ¢E. Nope; so n is prime.

Were n a SOTS-prime then take integers b and ¢
with b + ¢ = n. Automatically b # 0 and ¢ # 0,
SO

S = [b+cil-[b—cilE

is a non-trivial G-factorization. In conse-
quence, the Prime-SOTS Thm implies that n must
be ANEG. ¢

Proof of (2.1) («). A G-factorization S = B - E
vields a Z-factorization n? "¢ ¢ = 3 .. Each
of B and ¢ is a norm, so each is 4negprime-even.
But n is a 4NEG prime. So WLOG 8 = n? and

¢ = 1. Thus the G-factorization of S was trivial
after all. ¢
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Reverse-melding and all that jazz

We now come to the most interesting part, im-
plication (2.2). The (=) direction is immediate:
Consider a non-trivial G-factorization S = B E.
Then Lemma 1 assures that o = ¢ is a non-trivial
Z-factorization of o.

As for the (<) direction, first let g :== GCD(s, t).
Then

— 5 4 13
E = g+gl

is not a G-unit, since S is not axial. Were g # 1,
then g - F would be a non-trivial G-factorization
of S. The upshot is that we may WLOG assume
that s L t.

Proof of (2.2) («).Together, t 1 sand s’+t> = o
yield that ¢ 1 . Since s*> + 1> =, 0, necessarily

3. I = <§> is a o-rono. Thus o has no
: g
ANEG-prime factors.

Strategy. Let’s now assume that o factors non-
trivially over Z, say 0 = 3 - €, and then endeavor
to show that S factors over G.

We’d like to define a gaussint B := b+ ci by
somehow having chosen numbers b and ¢ with

4: V+c=p and b,ceZ.

Automatically this gives S = B- FE, a factorization
over the Gaussian rationals, where

Now B = b — i, so
SB = [sb+tc] + [tb— scli.

The upshot is that the real and imaginary coeffi-
cients of E will be integers iff

sb =g -tc, and
th =5 sc.

Thus our goal is to pick b and ¢ so as to fulfill (4)
and (5) simultaneously.

G-primeness
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Reverse-Melding. (This clever term is due to
Stephen Hicks.) Observation (3) together with
[ ¢ o tell us that § is a SOTS-number and [ is a
[-rono.

Courtesy of our proof of Prime-SOTS Theorem
we can use I to construct integers b and ¢ with
b2 4 c® = B and

6: b =3 I-c.
OTOHand, (3) gives s =, [ -t. So we certainly
have
T s =3 1-t,
since S divides o.
We are now happy campers. Firstly

sb = LhS(7)LhS(6) =5 [*tc = —tc
as (5 upper) wanted. Secondly
Itb = RhS(7)LhS(6) =5 slc.

Dividing by I yields (5lower), as desired. Neat!$

Happy conclusion. We have an algorithm for com-
puting SOTS pairs, given an algorithm that fac-
tors over Z. So the above now gives us an effective
algorithm for factoring a Gaussian integer.

In particular, since there are fast algorithms for
determining if an integer is irreducible (prime), we
now have a fast algorithm for telling if a gaussint
is G-irreducible. O

G-primeness

It turns out that G is a FEuclidean domain, which
implies it is a unique factorization domain. So
the Gaussian-primes are simply the Gaussian-
irreducibles.

Whoa! Put a proof in when convenient.
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