

Definitions. Given a set X , a function f defined on X , and a sequence $\mathbf{z} := (z_n)_{n=1}^{\infty} \subset X$, let “ $f(\mathbf{z})$ ” mean the sequence whose n^{th} term is $f(z_n)$.

For an algebraic number α , recall that its **degree**, written $\text{Deg}(\alpha)$, is the degree of the smallest-degree non-zip intpoly f for which $f(\alpha) = 0$. (So the degree of a rational number is 1.) If α is transcendental, then let $\text{Deg}(\alpha) := \infty$.

γ1: Let \mathbf{d} be the usual Euclidean metric on the plane, $X := \mathbb{R} \times \mathbb{R}$. Let U and C be the open and closed unit-balls, in X , centered at the origin. Suppose that $f: U \rightarrow \mathbb{R}$ is a *uniformly* continuous function.

a Prove: For each point $p \in \partial U$, there is a sequence $\mathbf{x} \subset U$ with $\lim(\mathbf{x}) = p$. [Hint: This is trivial. Give an explicit sequence in terms of p .]

b Prove: If $\mathbf{x} \subset U$ and $\lim(\mathbf{x}) = p$, then $\lim(f(\mathbf{x}))$ exists in \mathbb{R} . [Hint: What does a uniformly continuous function do to a Cauchy sequence? Prove it!]

c For each point $p \in \partial U$ and each two seqs $\mathbf{x}, \mathbf{y} \subset U$ which converge to p , show that sequences $f(\mathbf{x})$ and $f(\mathbf{y})$ necessarily have the same limit; call it \hat{p} .

Now define a new function $g: C \rightarrow \mathbb{R}$ by: For $y \in U$, let $g(y) := f(y)$. For $p \in C \setminus U$, let $g(p)$ be the value \hat{p} .

d Prove that g is cts at each point p in $\partial U \stackrel{\text{note}}{=} C \setminus U$ [Hint: If you choose to consider sequences $\mathbf{x} \subset C$ converging to p , note that such a sequence \mathbf{x} might not lie entirely within U .]

Extra Credit: Prove something stronger about g .

γ2: Say that a real number α is **rapidly approximable** (by rationals) if there exist pairs of integers p and q , with q as large as desired, so that

$$1: \quad 0 < |\alpha - \frac{p}{q}| < 17/q^3.$$

i Use the Mean Value Theorem to prove that if α is rapidly approximable, then $\text{Deg}(\alpha) > 2$.

[Hint: FTSOC suppose that f is a non-zip intpoly, with $\text{Deg}(f) \leq 2$, for which $f(\alpha) = 0$. Apply the MVT to f to write

$$2: \quad f\left(\frac{p}{q}\right) - f(\alpha) = \left[\frac{p}{q} - \alpha\right] \cdot f'(c)$$

for some point c between $\frac{p}{q}$ and α . (Of course, c depends on the rational number $\frac{p}{q}$.) Now take absolute-values on each side of 2:, and then multiply each side by q^2 . What kind of number is the new LHS?

What can you dominate the RHS by? [Random thought: Since f is non-zip, this f has only finitely many roots.]

[Hint: When q is large then $\frac{p}{q}$ is close to α ; so c is close to α . Thus $f'(c)$ is near $f'(\alpha)$. (Why?) In particular, as $\frac{p}{q} \rightarrow \alpha$, the numbers $f'(c)$ do *not* blow up to ∞ .]

ii

Generalize part (i) by replacing “3” by something.

[A bit of Extra Credit: Use your generalization to construct, provably, a particular transcendental number τ . If you wish, you may prove that

$$\tau := \sum_{n=1}^{\infty} \frac{1}{b_n}, \quad \text{where } b_n := 2^{n!},$$

is transcendental. Note: The above exponent is *n factorial*.]

End of Home- γ

γ1: _____ 350pts

γ2: _____ 350pts

Total: _____ 700pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____