

Ord: _____

Advanced Calc
MAA4102 & MAA5104InClass- γ Prof. JLF King

4 August, 2016

γ3: a Please circle those of the following five sets which have the LUB property (each non-void bounded subset has a least upper bound).

Dyadic Rationals, \mathbb{Q} , \mathbb{R} , $\mathbb{Z} \setminus \{17\}$, $\mathbb{R} \setminus \{17\}$.

b Give an example of open subsets in \mathbb{R} ,

$U_n :=$, such that the intersection $\bigcap_{n=1}^{\infty} U_n =$ is not open.

c In metric space (\mathbb{Q}, d) , the set

$$S := \{r \in \mathbb{Q} \mid r^2 < 5\}$$

is closed. Circle one: True False

S is open in \mathbb{Q} . True False

Let f be the indicator function of S , viewed as a function $\mathbb{Q} \rightarrow \mathbb{R}$. Then f is continuous. True False

d On your own paper—but show no work—give examples of functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that f is continuous **only** at $17 \in \mathbb{R}$, and g is discontinuous only at $17 \in \mathbb{R}$. [Hint: Pictures will help.]

e $\lim_{n \rightarrow \infty} \left[\frac{2n+1}{2n} \right]^n =$ [Hint: L'Hôpital's rule.]

f Let R_θ be the 2×2 rotation matrix which rotates the plane counterclockwise by angle θ . So

$$R_\theta = \begin{bmatrix} & \\ & \end{bmatrix}.$$

By multiplying matrices $R_\beta R_\alpha$, for angles α and β , compute the sum-of-angle formulae:

$$\cos(\beta + \alpha) =$$
 ;

$$\sin(\beta + \alpha) =$$

Note. For the following problems please carefully write up your solutions on separate sheets of paper. □

γ4: Let X be the closed interval $[2, 3]$ and suppose that $h: X \rightarrow \mathbb{R}$ is continuous. Prove that h is necessarily *uniformly* continuous. You may use, without proof, that X is

sequentially compact. [Hint: “If h is not uniformly continuous, then there exists a positive number ε such that . . .”.]

i **γ5:** Give, with proof, an explicit bijection g from $\mathbb{N} \times \mathbb{N}$ onto \mathbb{N} .

ii **γ6:** Give, with proof, an explicit bijection h from $3^{\mathbb{N}}$ onto $2^{\mathbb{N}}$.

γ6: Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is N -times differentiable, and its N^{th} derivative, $f^{(N)}$, is continuous.

a The N^{th} Taylor polynomial (centered at zero) of f is $\mathbf{T}_N(x) :=$

b Recall that the corresponding remainder term $\mathbf{R}_N(x)$ is $f(x) - \mathbf{T}_N(x)$. The *integral form* of the remainder term is

$$\mathbf{R}_N(x) := \int_0^x$$
 dt.

Lagrange's form of the remainder term is “There exists a point c between 0 and x such that $\mathbf{R}_N(x)$ equals

$$\text{.....}$$

End of InClass- γ

γ3: _____ 240pts

γ4: _____ 170pts

γ5: _____ 170pts

γ6: _____ 110pts

Total: _____ 690pts

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor (or his colleague).”*
Name/Signature/Ord

Ord: _____