

γ and $\Gamma()$

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 14 April, 2024 (at 19:04)

EM-number

Recall that the *harmonic numbers* $H_N := \sum_{k=1}^N \frac{1}{k}$ upper/lower bound $\log()$, in that

$$H_{N-1} > \log(N) > H_N - 1.$$

The *Euler-Mascheroni* number^{♡1} is defined as the asymptotic discrepancy,

$$\begin{aligned} \gamma &:= \lim_{N \nearrow \infty} [H_{N-1} - \log(N)] \\ 1: \quad &= \lim_{N \nearrow \infty} [H_N - \log(N)] = \int_1^\infty \left[\frac{1}{[t]} - \frac{1}{t} \right] dt. \end{aligned}$$

Although estimate $\gamma \approx 0.578^-$ does not help with rationality, it is reassuring to know.

1a: **Lemma.** *The N^{th} harmonic number satisfies*

$$*1: \quad H_N = \sum_{k=1}^N \frac{N}{k[k+N]}.$$

Also

$$*2: \quad \frac{N}{k[k+N]} = \int_0^1 \frac{t^{k/N}}{k} dt.$$

Consequently,

$$*3: \quad H_N = -\int_0^1 \log(1 - t^{1/N}) dt. \quad \diamond$$

Pf (*1). Sum $S_\ell := \sum_{k=1}^\ell \frac{N}{k[k+N]} = \sum_{k=1}^\ell \left[\frac{1}{k} - \frac{1}{k+N} \right]$ telescopes. Once $\ell \geq N$, then,

$$S_\ell = \left[\sum_{k=1}^N \frac{1}{k} \right] - \left[\sum_{k=1}^N \frac{1}{\ell+k} \right].$$

The righthand-sum goes to zero, as $\ell \nearrow \infty$. \diamond

Pf of (*2). Observe $\int t^{\frac{k}{N}} dt = \frac{N}{k+N} t^{\frac{k+N}{N}}$. Hence RhS(*2) equals

$$\frac{N}{k[k+N]} \cdot t^{\frac{k+N}{N}} \Big|_{t=0}^{t=1} = \text{LhS}(*2). \quad \diamond$$

^{♡1} As of Nov.2017, it is unknown if the *EM-number* γ is rational or irrational.

Pf of (*3). One Taylor-series expansion for \log is

$$-\log(1 - x) \xrightarrow{\text{for } |x| < 1} \sum_{k=1}^\infty \frac{x^k}{k}.$$

For $0 < t < 1$, then,

$$-\log(1 - t^{1/N}) = \sum_{k=1}^\infty \frac{t^{\frac{k}{N}}}{k}.$$

It is valid to commute \int_0^1 with the sum, as all the summands have the same sign. Thus

$$\begin{aligned} -\int_0^1 \log(1 - t^{1/N}) dt &= \sum_{k=1}^\infty \int_0^1 \frac{t^{\frac{k}{N}}}{k} dt \\ &= \sum_{k=1}^\infty \frac{N}{k[k+N]} = H_N. \quad \diamond \end{aligned}$$

1b: **Lemma.** *For all t with $0 < t < 1$,*

$$\dagger: \quad \lim_{N \nearrow \infty} N \cdot [1 - t^{1/N}] = -\log(t).$$

$$\ddagger: \quad \lim_{N \nearrow \infty} \log(N \cdot [1 - t^{1/N}]) = \log(-\log(t)). \quad \diamond$$

Proof. Setting $h := \frac{1}{N}$, we can rewrite limit (\dagger) as

$$-\lim_{h \searrow 0} \frac{t^h - 1}{h} \xrightarrow{\text{note}} -f'(0),$$

where $f(h) := t^h$. By definition, $f(h) = \exp(\log(t) \cdot h)$. So $f'(h) = \log(t) \cdot f(h)$. Thus $f'(0) = \log(t)$.

Lastly, (\ddagger) holds, since [the outer] \log is continuous. \diamond

1c: **γ - Γ Thm.** *Using fnc $\Gamma()$ from the next section,*

$$\gamma = \int_0^1 \log(-\log(t)) dt = -\Gamma'(1). \quad \diamond$$

Proof. Eqns (1) and (*3) say γ is the limit of

$$\begin{aligned} H_N - \log(N) &= \left[-\int_0^1 \log(1 - t^{1/N}) dt \right] - \int_0^1 \log(N) dt \\ &= -\int_0^1 \left[\log(1 - t^{1/N}) + \log(N) \right] dt \\ &= -\int_0^1 \log \left(N \cdot [1 - t^{1/N}] \right) dt. \end{aligned}$$

Skipping the justification needed to pass $\lim_{N \nearrow \infty}$ through the integral sign,

$$\gamma = - \int_0^1 \left[\lim_{N \nearrow \infty} \log(N \cdot [1 - t^{1/N}]) \right] dt$$

$$\stackrel{\text{by (‡)}}{=} - \int_0^1 \log(-\log(t)) dt.$$

Exponential CoV. To compute this last integral, we use CoV $u = -\log(t)$. I.e., $t = e^{-u}$, so $\frac{dt}{du} = -e^{-u}$ and thus $dt = -e^{-u} du$.

As $0 \nearrow t \nearrow 1$, remark that $\infty \searrow u \searrow 0$. Hence,

$$1d: \quad -\gamma = \int_0^1 \log(-\log(t)) dt$$

$$\stackrel{\text{CoV}}{=} \int_{\infty}^0 \log(u) \underbrace{[-e^{-u}]}_{dt} du = \int_0^{\infty} \log(u) e^{-u} du.$$

And this last equals $\Gamma'(1)$, courtesy (3) ◆

Gamma function

The **Gamma fnc** arises in volumes of N -dimensional balls, and in Laplace transforms. Leaving motivation for later, define the Gamma fnc by

$$2: \quad \Gamma(z) := \int_0^{\infty} t^{z-1} e^{-t} dt, \quad \text{for } z \in \mathbb{C} \text{ with } \operatorname{Re}(z) > 0.$$

When $\operatorname{Re}(w) > 0$, note $\lim_{t \searrow 0} [t^w e^{-t}]$ is zero. Thus

$$t^w [-e^{-t}] \Big|_{t=0}^{t=\infty} = 0.$$

For $\operatorname{Re}(z) > 1$, then, integration by parts produces

$$\Gamma(z) = t^{z-1} \cdot [-e^{-t}] \Big|_{t=0}^{t=\infty} - \int_0^{\infty} [z-1] t^{z-2} \cdot [-e^{-t}] dt. \quad \text{So}$$

$$2a: \quad \Gamma(z) = [z-1] \cdot \Gamma(z-1), \quad \text{for } \operatorname{Re}(z) > 1.$$

Since $\Gamma(1) = 1$,

$$2b: \quad \Gamma(n) = [n-1]!, \quad \text{for } n \in \mathbb{Z}_+.$$

As a consequence, binomial/multinomial coefficients can be generalized using Γ , and many of the identities extend.

Analytic continuation. Writing $w := z-1$,

$$2c: \quad \Gamma(w) = \frac{1}{w} \cdot \Gamma(w+1)$$

from (2a). As (3) will show, on the righthand half-plane our $\Gamma()$ is ∞ ly differentiable, hence is *analytic* courtesy the **Cauchy-Goursat theorem**.

Use (2c) to iteratively extend $\Gamma()$ to the complex plane. This $\Gamma()$ is *analytic* on $\mathbb{C} \setminus \{0, -1, -2, -3, \dots\}$. Further, $\Gamma()$ is *meromorphic* on \mathbb{C} , with *simple poles* at $0, -1, -2, \dots$

Why simple? Equality $\Gamma(1) = \int_0^{\infty} e^{-t} dt = 1$, together with (2c) imply that

$$\lim_{w \rightarrow 0} w \cdot \Gamma(w) = \lim_{w \rightarrow 0} \Gamma(w+1) = \Gamma(1) = 1.$$

This is not zero, hence $\Gamma()$ has a simple pole at 0. Then (2c) iteratively shows that the other poles are simple.

Residues. At $N = 0, 1, 2, \dots$, we compute the Γ -residue at $-N$. Iterating (2c),

$$*: \quad \Gamma(z) = \frac{1}{z} \cdot \frac{1}{z+1} \cdot \frac{1}{z+2} \cdots \frac{1}{z+N-1} \cdot \frac{1}{z+N} \cdot \Gamma(z+N+1).$$

So $\operatorname{Res}_{z=-N}(\Gamma(z)) = \lim_{z \rightarrow -N} [z+N] \cdot \Gamma(z)$. By (*), then,

$$2d: \quad \operatorname{Res}_{z=-N}(\Gamma(z)) = \frac{[-1]^N}{N!}.$$

Calculus. Differentiating under the integral sign is valid in (2). For $k = 0, 1, \dots$, applying $\frac{d}{dz}$ gives

$$3: \quad \Gamma^{(k)}(z) = \int_0^{\infty} t^{z-1} e^{-t} [\log(t)]^k dt, \quad \text{when } \operatorname{Re}(z) > 0.$$

In particular, $\Gamma'(1) = \int_0^{\infty} e^{-t} \log(t) dt \stackrel{\text{by (1d)}}{=} -\gamma$.

Lap. Use \hat{f} for the **Laplace transform** of f , where

$$\hat{f}(s) = [\mathcal{L}(f)](s) := \int_0^{\infty} e^{-st} \cdot f(t) \cdot dt. \quad \square$$

4: Theorem. The Laplace transform of logarithm, for $s > 0$, is

$$\begin{aligned}\widehat{\log}(s) &= \frac{1}{s} [\Gamma'(1) - \log(s)] \\ \dagger: \quad &= \frac{-1}{s} [\gamma + \log(s)].\end{aligned}$$

Fix z with $\operatorname{Re}(z) > -1$. For $t > 0$, define $P(t) := t^z$. Then

$$\dagger: \quad \widehat{P}(s) = \frac{\Gamma(z+1)}{s^{z+1}}, \quad \text{for } s > 0. \quad \diamond$$

Pf of (†). Fix an $s > 0$. With $u := st$, then, $dt = \frac{1}{s} du$.

As $0 \nearrow t \nearrow \infty$, our $0 \nearrow u \nearrow \infty$, since $s > 0$. Thus $\widehat{\log}(s)$ equals

$$\int_0^\infty e^{-st} \log(t) \cdot dt \stackrel{\text{CoV}}{=} \int_0^\infty e^{-u} \underbrace{\log\left(\frac{u}{s}\right)}_{\log(t)} \cdot \underbrace{\frac{1}{s} du}_{dt}. \quad \text{So,}$$

$$\begin{aligned}s \cdot \widehat{\log}(s) &= \int_0^\infty e^{-u} [\log(u) - \log(s)] du \\ &= \Gamma'(1) - \log(s)\Gamma(1) = \Gamma'(1) - \log(s),\end{aligned}$$

as claimed. \diamond

Pf of (‡). With $u := st$ as before, $dt = \frac{1}{s} du$. So $\widehat{P}(s)$ equals

$$\begin{aligned}\int_0^\infty e^{-st} P(t) \cdot dt &\stackrel{\text{since } s > 0}{=} \int_0^\infty e^{-u} \left[\frac{u}{s}\right]^z \cdot \underbrace{\frac{1}{s} du}_{dt} \\ &= \frac{1}{s^{z+1}} \int_0^\infty e^{-u} u^z du. \quad \diamond\end{aligned}$$

As our last fact in this introduction to $\Gamma()$, let's show that

$$5: \quad \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

We employ substitution $t = x^2$. Thus $dt = 2x dx$. As $0 \nearrow t \nearrow \infty$, note $0 \nearrow x \nearrow \infty$. Recall $\Gamma\left(\frac{1}{2}\right)$ equals

$$\begin{aligned}\int_0^\infty e^{-t} t^{\frac{1}{2}-1} dt &= \int_0^\infty e^{-t} \frac{1}{t^{1/2}} \cdot dt \\ &\stackrel{\text{CoV}}{=} \int_0^\infty e^{-[x^2]} \frac{1}{x} \cdot 2x dx \\ &= 2 \int_0^\infty e^{-x^2} dx = \int_{-\infty}^\infty e^{-x^2} dx.\end{aligned}$$

This last integral equals $\sqrt{\pi}$, as shown in the next section by means of the famous Polar-Coordinate Trick.

Polar-coordinate Trick

Let $J := \int_{-\infty}^{+\infty} e^{-x^2} dx$. We use the **PCT** ("polar coordinate trick") to show that $J = \sqrt{\pi}$. We integrate the cartesian-square of the integrand to conclude that

$$\begin{aligned}6.1: \quad J^2 &= \left[\int_{-\infty}^{+\infty} e^{-[x^2]} dx \right] \cdot \left[\int_{-\infty}^{+\infty} e^{-[y^2]} dy \right] \\ &= \int_{-\infty}^{+\infty} e^{-[x^2+y^2]} \cdot d(x, y) \\ &= \int_0^{+\infty} e^{-r^2} \cdot \underbrace{2\pi r \cdot dr}_{\substack{\text{Area of radius-}r \text{ annulus} \\ \text{of thickness } dr}}.\end{aligned}$$

Hence $J^2 = \pi \cdot [-e^{-r^2}] \Big|_{r=0}^{r=+\infty} = \pi$. Since J is the integral of a non-negative fnc, nec. $J \geq 0$. Thus

$$6.2: \quad \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

Further Γ results

Commented-out ...