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EM-number

Recall that the harmonic numbers HN :=
∑N

k=1
1
k

upper/lower bound log(), in that

HN−1 > log(N) > HN − 1 .

The Euler-Mascheroni number♥1 is defined as the
asymptotic discrepancy,

γ := lim
N↗∞

[HN−1 − log(N)]

= lim
N↗∞

[HN − log(N)] =

∫ ∞
1

[ 1

btc
− 1

t

]
dt.

1:

Although estimate γ ≈ 0.578− does not help with
rationality, it is reassuring to know.

1a: Lemma. The N th harmonic number satisfies

HN =
∞∑
k=1

N

k[k +N ]
.∗1:

Also
N

k[k +N ]
=

∫ 1

0

tk/N

k
dt .∗2:

Consequently,

HN = −
∫ 1

0
log(1 − t1/N ) dt .∗3: ♦

Pf (∗1). Sum S` :=
∑`

k=1
N

k[k+N ] =
∑`

k=1

[
1
k −

1
k+N

]
telescopes. Once ` ≥ N , then,

S` =
[ N∑
k=1

1

k

]
−
[ N∑
k=1

1

`+ k

]
.

The righthand-sum goes to zero, as `↗∞. �

Pf of (∗2). Observe
∫
t

k
N dt = N

k+N t
k+N
N . Hence

RhS(∗2) equals
N

k[k+N ] · t
k+N
N

∣∣∣t=1

t=0
= LhS(∗2) . �

♥1As of Nov.2017, it is unknown if the EM-number γ is
rational or irrational.

Pf of (∗3). One Taylor-series expansion for log is

−log(1− x)
for |x| < 1
========

∑∞
k=1

xk

k
.

For 0 < t < 1, then,

−log(1 − t1/N ) =
∞∑
k=1

t
k
N

k
.

It is valid to commute
∫ 1
0 with the sum, as all the

summands have the same sign. Thus

−
∫ 1

0
log(1 − t1/N ) dt =

∑∞
k=1

∫ 1

0

t
k
N

k
dt

=
∑∞

k=1

N
k[k+N ] = HN . �

1b: Lemma. For all t with 0 < t < 1,

lim
N↗∞

N · [1 − t1/N ] = log(t) .†:

lim
N↗∞

log
(
N · [1 − t1/N ]

)
= log

(
log(t)

)
.‡: ♦

Proof. Setting h := 1
N , we can rewrite limit (†) as

− lim
h↘0

th − 1

h
note
=== −f ′(0) ,

where f(h) := th. By definition, f(h) = exp(log(t)·h).
So f ′(h) = log(t) · f(h). Thus f ′(0) = log(t).

Lastly, (‡) holds, since [the outer] log is continuous.�

1c: γ-Γ Thm. Using fnc Γ() from the next section,

γ =

∫ 1

0
log
(
log(t)

)
dt = Γ′(1) . ♦

Proof. Eqns (1) and (∗3) say γ is the limit of

HN − log(N) =
[ ∫ 1

0
log(1 − t1/N ) dt

]
−
∫ 1

0
log(N) dt

=

∫ 1

0

[
log(1 − t1/N ) + log(N)

]
dt

=

∫ 1

0
log
(
N · [1 − t1/N ]

)
dt .
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Skipping the justification needed to pass lim
N↗∞

through the integral sign,

γ =

∫ 1

0

[
lim

N↗∞
log
(
N · [1 − t1/N ]

)]
dt

by (‡)
====

∫ 1

0
log
(
log(t)

)
dt .

Exponential CoV. To compute this last integral,
we use CoV u = log(t). I.e, t = e u, so dt

du = e u

and thus dt = e u du.
As 0↗t↗1, remark that ∞↘u↘0. Hence,

−γ =

∫ 1

0
log
(
log(t)

)
dt

CoV
===

∫ 0

∞
log
(
u
) dt︷ ︸︸ ︷
[ e u] du =

∫ ∞
0

log
(
u
)
e u du .

1d:

And this last equals Γ′(1), courtesy (3) �

Gamma function

The Gamma fnc arises in volumes of N -dimensional
balls, and in Laplace transforms. Leaving motivation
for later, define the Gamma fnc by

Γ(z) :=

∫ ∞
0

tz−1 e t dt ,
for z ∈ C with
Re(z) > 0 .2:

When Re(w)>0, note lim
t↘0

[twe t] is zero. Thus

tw[ e t]
∣∣∣t=∞
t=0

= 0 .

For Re(z)>1, then, integration by parts produces

Γ(z) = tz−1· [ e t]
∣∣∣t=∞
t=0

−
∫ ∞
0

[z−1]tz−2 · [ e t] dt. So

Γ(z) = [z−1] · Γ(z−1) , for Re(z) > 1.2a:

Since Γ(1) = 1,

Γ(n) = [n−1]! , for n ∈ Z+.2b:

As a consequence, binomial/multinomial coeffi-
cients can be generalized using Γ, and many of the
identities extend.

Analytic continuation. Writing w := z−1,

Γ(w) = 1
w · Γ(w+1)2c:

from (2a). As (3) will show, on the righthand half-
plane our Γ() is ∞ly differentiable, hence is analytic
courtesy the Cauchy-Goursat theorem.

Use (2c) to iteratively extend Γ() to the complex
plane. This Γ() is analytic on Cr {0, 1, 2, 3, . . .}.
Further, Γ() is meromorphic on C, with simple poles
at 0, 1, 2, . . ..

Why simple? Equality Γ(1) =
∫∞
0 e t dt = 1, to-

gether with (2c) imply that

lim
w→0

w·Γ(w) = lim
w→0

Γ(w+1) = Γ(1) = 1 .

This is not zero, hence Γ() has a simple pole at 0.
Then (2c) iteratively shows that the other poles are
simple.

Residues. At N = 0, 1, 2, . . ., we compute the
Γ-residue at N . Iterating (2c),

Γ(z) = 1
z ·

1
z+1 ·

1
z+2 · · · ·

1
z+N−1 ·

1
z+N ·Γ(z +N+1) .∗:

So Res
z= N

(
Γ(z)

)
= lim

z→ N
[z +N ]·Γ(z). By (∗), then,

Res
z= N

(
Γ(z)

)
=

[ 1]N

N !
.2d:

Calculus. Differentiating under the integral sign is
valid in (2). For k = 0, 1, . . ., applying d

dz gives

Γ(k)(z) =

∫ ∞
0
tz−1e t [log(t)]k dt, when Re(z)>0.

In particular, Γ′(1) =

∫ ∞
0

e t log(t) dt
by (1d)
===== γ .

3:

Lap. Use f̂ for the Laplace transform of f , where

f̂(s) =
[
L
(
f
)]
(s) :=

∫ ∞
0

e st·f(t) · dt . �

4: Theorem. The Laplace transform of logarithm, for
s>0, is
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l̂og(s) =
1

s

[
Γ′(1) − log(s)

]
=

1

s

[
γ + log(s)

]
.

†:

Fix z with Re(z) > 1. For t>0, define P (t) := tz.
Then

P̂ (s) =
Γ(z+1)

sz+1
, for s > 0.‡: ♦

Pf of (†). Fix an s>0. With u := st, then, dt = 1
s du.

As 0↗t↗∞, our 0↗u↗∞, since s>0. Thus l̂og(s)
equals∫ ∞

0
e st log(t)·dt CoV

===

∫ ∞
0

e u

log(t)︷ ︸︸ ︷
log(us ) ·

dt︷ ︸︸ ︷
1
s du. So,

s · l̂og(s) =

∫ ∞
0

e u[log(u)− log(s)] du

= Γ′(1) − log(s)Γ(1) = Γ′(1) − log(s),

as claimed. �

Pf of (‡). With u := st as before, dt = 1
s du. So P̂ (s)

equals∫ ∞
0

e st P (t)· dt since s>0
=======

∫ ∞
0

e u [us ]
z ·

dt︷ ︸︸ ︷
1
s du

=
1

sz+1

∫ ∞
0

e u uz du . �

As our last fact in this introduction to Γ(), let’s
show that

Γ(12) =
√
π .5:

We employ substitution t = x2. Thus dt = 2x dx.
As 0↗t↗∞, note 0↗x↗∞. Recall Γ(12) equals∫ ∞

0
e t t

1
2
−1 dt =

∫ ∞
0

e t 1
t1/2
· dt

CoV
===

∫ ∞
0

e [x2] 1
x · 2x dx

= 2

∫ ∞
0

e x2
dx =

∫ ∞
∞
e x2

dx .

This last integral equals
√
π , as shown in the next

section by means of the famous Polar-Coordinate Trick.

Polar-coordinate Trick

Let J :=
∫ ∞
∞ e x2

dx. We use the PCT (“polar coor-
dinate trick”) to show that J =

√
π . We integrate the

cartesian-square of the integrand to conclude that

J2 =

[∫ ∞

∞
e [x2] dx

]
·
[∫ ∞

∞
e [y2] dy

]
=

∫ ∞

∞
e [x2+y2] · d(((x, y)))

=

∫ ∞

0
e r2 · 2πr · dr︸ ︷︷ ︸

Area of radius-r annulus
of thickness dr.

.

6.1:

Hence J2 = π · [ e r2 ]
∣∣r= ∞
r=0

= π. Since J is the inte-
gral of a non-negative fnc, nec. J ≥ 0. Thus∫ ∞

∞
e x2

dx =
√
π .6.2:
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Further Γ results
Commented-out . . .
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