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EM-number
Recall that the harmonic numbers Hy = >0, kl

upper /lower bound log(), in that

Hy_1 > log(N) > Hy —1.

The Euler-Mascheroni number”! is defined as the
asymptotic discrepancy,

~ = lim [Hy_; — log(N)]

1. N /oo
S Jim [Hy — log(V)] = /loo {Ltlj - ﬂ dt.

Although estimate ~ ~ 0.578 does not help with
rationality, it is reassuring to know.

The N*® harmonic number satisfies

o
*x1: HN = Z
k

la: Lemma.

— k[k + N]
Also
N 1 4k/N
*22 — = / tidt
k[k + N] 0o k

Consequently,
1

%31 Hy = —/ log(1 — tY/N)dt O
0

Pf(x1). Sum Sy == 3¢, ﬁ =Yt [t - ﬁ]

telescopes. Once ¢ > N, then,

k=1 k=1
The righthand-sum goes to zero, as £ oo ¢
Pf of (x2).  Observe ¢tV dt = HLNt% Hence
RhS(%2) equals
N BN i=l
W -t N . = th(*2) 0 ’

“1As of Nov.2017, it is unknown if the EM-number ~ is
rational or irrational.
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Pf of (x3). One Taylor-series expansion for log is

k
for |z| < 1 co T
—log(l — ) —— Zk:l =
For 0 <t < 1, then,

—log(1 — /M) Z

W‘ e

It is valid to commute [j with the sum, as all the
summands have the same sign. Thus

1
_ AT
/Olog( —t dt = Zk 1/

:Z 1k[k+N] = Hy. ¢

1tN

1b: Lemma. For allt with 0 <t < 1,
= -log(t).

— t'/N]) = log(-log(t)). 0

. ' 1 — tUN
T A}g‘nooN [1 — ¢t/

1 ]\}1}1100 log(N - [1

Proof. Setting h := %, we can rewrite limit (1) as

th

.t =1 note

where f(h) := t". By definition, f(h) = exp(log(t)-h).
So f'(h) =log(t) - f(h). Thus f'(0) = log(t).

Lastly, (1) holds, since [the outer| log is continuous. 4

lc: 4-I' Thm. Using fne T'() from the next section,

1
v = / log(-log(t))dt = -T(1). O
0

Proof. Eqns (1) and (x3) say -y is the limit of
1 1
[f/log(l — #/) di] —/log(N dt
0 0
1
= f/ [log(l — /Ny 4 log(N)} dt
0

_ /01 log(N -1 — /M) dt.

HN — log(N) =
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lim
/oo

Skipping the justification needed to pass
through the integral sign,

[ [Jim tog(N - 11— 7)) a

7= N /oo

by (1)

/01 log(-log(t)) dt.

Exponential CoV. To compute this last integral,
we use CoV u =-log(t). Le, t=¢€e™, so (% =-e"
and thus dt =-e™“du.

As 0,7t 71, remark that co\u\0. Hence,

1
-y = / log(-log(t)) dt
0
1d: dt

CoV 0 ——— oo B
= / log(u) [-e™]du :/ log(u) e™du.
oo 0

And this last equals TV(1), courtesy (3) ¢

Gamma function

The Gamma fnc arises in volumes of N-dimensional
balls, and in Laplace transforms. Leaving motivation
for later, define the Gamma fnc by

for z € C with

o ioczfl =
2: T(z) = /t e’ dt, Re(z) > 0.

J0

When Re(w)>0, note }{% [t“e™] is zero. Thus

_,|t=00
tw[*et]’tzo = 0.

For Re(z)>1, then, integration by parts produces

D(:) = ¢ [~ [Temue? et s

2a:  T'(z) = [z—1]-T(2—1), for Re(2) > 1.

Since I'(1) = 1,

2b: I'(n) = [n—1])!, for nez,.
As a consequence, binomial/multinomial coeffi-
cients can be generalized using I', and many of the

identities extend.

Gamma function
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Analytic continuation. Writing w := z—1,

2c: M(w) = % -T(wtl)
from (2a). As (3) will show, on the righthand half-
plane our I'() is ooly differentiable, hence is analytic
courtesy the Cauchy-Goursat theorem.

Use (2¢) to iteratively extend I'() to the complex
plane. This I'() is analytic on C~ {0,-1,-2,-3,...}.
Further, T'() is meromorphic on C, with simple poles
at 0,-1,-2, . ...

Why simple? Equality T'(1) = [;Te™dt =1, to-
gether with (2c) imply that

1}]1% wI(w) =

lim T'(w+1) =
w—0

This is not zero, hence I'() has a simple pole at 0.
Then (2¢) iteratively shows that the other poles are
simple.

Residues. At N = 0,1,2,...
I'-residue at -N. Iterating (2c),

we compute the

. _ 1 1 1 1 1
w D(2) = S og s mv an TEHNHD.
So Res (I'(z)) = lim [z+ N|-I'(z). By (x), then,
z=-N z—-N
2d: Res (I'(2)) = ﬂ
’ z=-N N!
Calculus. Differentiating under the integral sign is

valid in (2). For £k =0,1,..., applying % gives

T®)(2) = / t7~1e" [log(t)]* dt, when Re(2)>0.
J0

3:
by (1d)

In particular, T'(1) = / ‘eﬂE log(t) dt .

J0O

Lap. Use ffor the Laplace transform of f, where

[£(f)](s) = /Oooest-f(t) dt. O

4: Theorem. The Laplace transform of logarithm, for
5§>0, is
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Ly

S

log(s) = — log(s)]

= ;['}’ + IOg(S)] .
Fix z with Re(z) > -1. For t>0, define P(t) = t*.
Then

t: P(s) — LD

Sz+1 ’

Pf of (1). Fix an s>0. With u := st, then, dt = 1 du.
As 0 't /oo, our 0 u "oo, since s>0. Thus IGg(s)

equals
log(t) dt

oo e’} ——
/0 e log(t)- dt C—OY/O e“log(%) - Ldu. So,

oo Told) = /O e lso)) — Tl d

= I'(1) — log(s)T(1) = T'(1) — log(s),

as claimed. ¢

Pf of (1). With u := st as before, dt =

equals o
00 . [e's) ~ =
/ &5t P(t). dt SRees0 / e 2 Tay
0 0
1 Oo*u Zd ’
= 82+1/0 e ‘u*du.

As our last fact in this introduction to I'(), let’s

show that
5: I(3) = Vm.

We employ substitution ¢ = 2?. Thus dt = 2z dz.
As 0t /o0, note 0,x “oo. Recall I‘(i) equals

C oty i ot 1
/ e "t2 dt = / e sz’ de
0 0

COV/ 7[‘”]1 2z dx

2/ dx—/e“zdx.

This last integral equals /7, as shown in the next
section by means of the famous Polar-Coordinate Trick.

Polar-coordinate Trick

for s > 0. O

L du. So P(s)
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Polar-coordinate Trick

Let J := [ e “dz. We use the PCT (“polar coor-
dinate trick”) to show that J = /7. We integrate the
cartesian-square of the integrand to conclude that

-0 -0

_ [ ez +y7
6.1: o / d(z.y)

c .21 1 T=+t00 . . .
Hence .J* =7 - [-e 7" || = = 7. Since J is the inte-

gral of a non-negative fnc, nec. J > 0. Thus

6.2: / e dr = NZ

o0

27r7" dr

Area of radius-r annulus
of thickness dr.
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Further T results

Commented-out . . .

Filename: Problems/Analysis/Calculus/gamma-Gamma.latex



