

Due **2PM, Thursday, 26Apr2018**, slid completely under my office door, LIT 402. **This sheet** is “Page 1/ N ”; you’ve labeled the rest as “2/ N ”, . . . , “ N/N ”.

And: For a vertex w of a graph, use $\text{Nbr}(w)$ for the neighborhood of w .

You may use without proof: If $0 \leq b < c \leq \frac{N}{2}$, then $\binom{N}{b} < \binom{N}{c}$. Also $\binom{N}{N-k} = \binom{N}{k}$.

G1: Show no work.

The vertex set of H_N is $\mathbb{V} := [1..3N]$. For $\mathbf{u} \in \mathbb{V}$, when possible: $\mathbf{u} \rightarrow [\mathbf{u}+3]$. If $\mathbf{u} \equiv_3 1$, then $\mathbf{u} \rightarrow [\mathbf{u}+1]$ and $\mathbf{u} \rightarrow [\mathbf{u}+2]$. If $\mathbf{u} \equiv_3 2$, then $\mathbf{u} \rightarrow [\mathbf{u}+1]$. Then

$$\mathcal{P}_{H_N}(x) = \dots$$

In grammatical English sentences, TYPE each essay on every 2nd line (usually), so that I can write between the lines. (Do not restate the Q.) Start each essay on a new page.

G2: A graph’s automorphism group is *transitive* if for all vertices u, w , there exists automorphism α with $\alpha(u) = w$.

Exhibit a (finite, simple) connected vertex-regular graph, G , whose $\text{Aut}(G)$ is *not* transitive, with proof.

Construct such a G which is *planar*.

Produce such a 3-regular *rigid* [only the *Id* aut] graph.

[Warning! A “face” is not a property of a graph; it is a property of a graph-embedding.]

G3: Fix posints \mathbf{K}, \mathbf{N} with $\mathbf{K} < \frac{\mathbf{N}}{2}$, and $\Omega := [1..N]$, the *token set*. Let \mathcal{P}_m be the collection of m -token subsets of Ω . Define a bipartite graph $R = R_{\mathbf{K}, \mathbf{N}}$ on sets $\mathcal{B} := \mathcal{P}_{\mathbf{K}}$ and $\mathcal{G} := \mathcal{P}_{\mathbf{K}+1}$, with a boy-girl edge $b \rightarrow g$ IFF $b \subset g$.

i Prove that \mathcal{B} satisfies Hall’s condition. Thus, \exists a *good* injection $\varphi: \mathcal{B} \rightarrow \mathcal{G}$ with $b \rightarrow \varphi(b)$, for every $b \in \mathcal{B}$.

Call such an injection, a “**(\mathbf{K}, \mathbf{N})-good-map**”.

ii Exhibit a specific **(2, 5)-good-map**.

iii Construct a specific **(\mathbf{K} , $1+2\mathbf{K}$)-good-map**.

iv Construct a specific **(\mathbf{K}, \mathbf{N})-good-map**. **Bóna 26P 293**.

G4: G is a [finite, connected] planar multigraph *embedding*, where each face is a 2-gon, 3-gon or 4-gon. Let p_2, p_3, p_4 , be the numbers of such faces. Just as in an octahedron, suppose each vertex has degree=4, and that $p_2 + p_3 = 8$.

Prove that $p_2 = 0$. **Bóna 22P 316**.

Exhibit/describe such an embedding with ≥ 99 vertices.

G5: From chapter 9, 11, 12 or 13 of Bóna’s text, pick one interesting supplementary problem and solve it nicely.

End of Project-G

G1:	_____	20pts
G2:	_____	35pts
G3:	_____	85pts
G4:	_____	35pts
G5:	_____	35pts

Total: _____ 210pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor (or his colleague).”
Name/Signature/Ord

Ord: