

Carefully TYPE, double-or-triple-spaced, grammatical essays solving the three problems. This is due by **3PM, Monday, 25Apr2011.**

Please follow the CHECKLIST on our Teaching page.

G1: Short answer.

a Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are each uniformly-cts. Then: “Composition $f \circ g$ is uniformly-cts.” Circle **T** **F**

On $J := (4, 5)$ fncs $f, g: J \rightarrow J$ are unif-cts, and g is bnded. Then “Pointwise-product $f \cdot g$ is unif-cts.” **T** **F**

On $J := (4, 5)$ fnc $h: J \rightarrow J$ is unif-cts and bnded. Then “ h is Lipschitz.” **T** **F**

b Suppose $h: (-2, 2) \rightarrow \mathbb{R}$ is cts and bnded. Then: “ h is the uniform-limit of polynomials.” Circle **T** **F**

A fnc $\varphi: [0, 1] \rightarrow [0, 1]$ is “**good**” if diff’able, unif-cts and $\varphi(0) = \varphi(1)$. Suppose f_n, g are good, and \vec{f} converges-uniformly to g . Then “ $\text{ArcLen}(f_n) \xrightarrow{n \rightarrow \infty} \text{ArcLen}(g)$.” **T** **F**

c Suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ is a non-increasing function. Then: “The discontinuity set of h is only countable.” **T** **F**

d Let d be the usual metric on $X := [\epsilon, \pi] \setminus \mathbb{Q}$. Then $f(x) :=$
 \dots maps $X \rightarrow X$, is a (uniform) contraction such that $[\forall y, z \in X: d(f(y), f(z)) \leq \frac{1}{2} \cdot d(y, z)]$, yet f has no fixed-point. This does not contradict our Contraction-mapping thm because

G2: With $J := [0, 5]$, your goal is to prove:

Thm 1: Suppose $h: J \rightarrow \mathbb{R}$ is continuous [but not-nec differentiable]. For each $x \in J^\circ$, moreover, $h(x) \neq 0$. If $[h(t)]^2 = [2 \int_0^t h]$ for each $t \in J$, then $h = \text{Id}_J$.

Citing specific thms from class, rigorously prove that h is non-negative. Now prove h differentiable. Then....

G3: On $J := [3, 5)$, fnc $f: J \rightarrow \mathbb{R}$ is cts. Consider this statement: $\ddagger: B := \lim_{x \nearrow 5} f(x)$ exists in \mathbb{R} . Prove:

Thm 2a: If f is uniformly-continuous, then (\ddagger) .

Thm 2b: If (\ddagger) , then f is uniformly-continuous.

G4: On interval $J := [6, 7]$, prove:

Thm 4: Suppose cts fncs $f, \varphi_n, g: J \rightarrow \mathbb{R}$ have $\varphi_n \xrightarrow{n \rightarrow \infty} f$.

Then

$$\int_J g \cdot \varphi_n \xrightarrow{n \rightarrow \infty} \int_J g \cdot f.$$

Now use the Weierstrass Approx. Thm to carefully prove:

Thm 5: Fnc $H: J \rightarrow \mathbb{R}$ is continuous. Moreover, for each $N = 0, 1, 2, \dots$, we have that $\left[\int_J H(x) \cdot x^N dx \right] = 0$. Then H is the zero-function.

Explain carefully/rigorously how you are applying W.A.T.

The continuity of H is needed at several places in the proof. Explain exactly where, giving rigorous arguments. There is likely a lemma you’ll want to state and prove before proving Thm 5.

End of Project-G

G1:	_____	95pts
G2:	_____	85pts
G3:	_____	95pts
Poorly stapled, or missing name, ord or honor signature:	_____	140pts
Not double-spaced:	_____	-15pts
Poorly proofread:	_____	-One Million pts
Total:	_____	415pts

Please PRINT your name and ordinal. Ta:

Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

Folks, this full-year course has been quite a pleasure for me, and I hope for you too. We’ve covered a lot of material, and we have glimpses of a large Mathematical World beyond what we have covered.

Exercise your Mathematical Engines over the summer, and drop-by in the Autumn to let me know what various projects you are working on.

— “Prof. Jonathan”