

Notes. Pamphlet *Chromatic polynomial of a graph* on our TEACHING PAGE has definitions. If possible, please use the notation from that pamphlet.

Here, use $\mathbf{u} - \mathbf{v}$ to mean that vertices \mathbf{u} and \mathbf{v} have an edge between them.

G1: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The vertex set of H_N is $\mathbb{V} := [1..3N]$. For $\mathbf{u} \in \mathbb{V}$, when possible: $\mathbf{u} - [\mathbf{u}+3]$. If $\mathbf{u} \equiv_3 1$, then $\mathbf{u} - [\mathbf{u}+1]$ and $\mathbf{u} - [\mathbf{u}+2]$. If $\mathbf{u} \equiv_3 2$, then $\mathbf{u} - [\mathbf{u}+1]$. Then

$$\mathcal{P}_{H_N}(x) = \dots$$

b For $N \geq 4$, let D_N be K_N but with an edge (but no vertices) deleted. Then $\mathcal{P}_{D_N}(x)$ equals

$$\dots$$

c The number of spanning-paths in wheel W_8 is

$$\dots$$

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the *Print/Revise* cycle to produce good, well thought out, essays. Start each essay on a *new* sheet of paper.

Do not restate the problem; just solve it.

G2: Graph G has N vertices, L edges and chrom-poly

$$x^N + B_{N-1}x^{N-1} + B_{N-2}x^{N-2} + \dots + B_1x.$$

Prove that $B_{N-1} = -L$.

G3: **i** Produce [with proof, naturally] an infinite family of connected graphs which are gluing-good.

ii Produce an infinite family of connected graphs which are gluing-bad.

iii Can you characterize the family of gluing-good graphs? Conjectures? Numerical evidence? Proofs?

End of Home-G

G1: _____ 85pts

G2: _____ 95pts

G3: _____ 115pts

Total: _____ 295pts