

Staple!

ACT
MAA4212 3009

Home-G

Prof. JLF King
Touch: 6May2016

Carefully TYPE triple-spaced, grammatical, learned treatises solving the problems, using L^AT_EX. Due date/time:

Tuesday, 03Mar2009, by 4PM.

Essays violate the CHECKLIST at Grade Peril...

G1: A fnc $f \in \text{Diff}^2(\mathbb{R} \rightarrow \mathbb{R})$ with $f(7) = 0$ and $f'(7) = 0$, satisfies

†: $f'' + f = \mathbf{0}$. [I.e, the zero-fnc.]

Prove that $f = \mathbf{0}$, using Taylor's thm, as follows:

First, show that $f \in \mathbf{C}^\infty$. Then, for a fixed $x_0 \in \mathbb{R}$, argue that $|f(x_0)|$ is as small as desired, by upper-bounding with Taylor-remainder terms from **Our Taylor's pamphlet** on the Teaching Page.

G2: Dis/Prove: There exists a series $\vec{p} \subset \mathbb{Q}$ which is absolutely-Q-convergent, yet Q-divergent. (I.e, sum $\sum_{n=1}^{\infty} |p_n|$ is rational, yet seq $K \mapsto \left[\sum_{n=1}^K p_n \right]$ fails to Q-converge.)

Prove an Interesting Lemma that is more general than what you need.

G3: Letting $J := [0, 1]$, we study fncs $J \rightarrow \mathbb{R}$. A **step function** is a finite linear-combination of indicator-fncs of intervals.

i For a step fnc $h := \sum_{k=1}^K \alpha_k \mathbf{1}_{I_k}$ [where $\alpha_k \in \mathbb{R}$ and each I_k is an interval] and an $\varepsilon > 0$, construct a piecewise-linear (P.L) fncs are automatically cts) fnc $\varphi() \leq h()$ such that $\int_J h \leq \varepsilon + \int_J \varphi$. [Sugg: As a LEMMA, prove the $K=1$ case. Now use the lemma to prove the general THM, arguing carefully. For both, draw pictures to illustrate the ideas.]

ii Prove: [Use pics to illustrate your rigorous argument.]

1: **Continuous-are-nearby thm.** Fix $f \in \text{RI}(J \rightarrow \mathbb{R})$. Given $\varepsilon > 0$, there exists a continuous function $\theta()$, with $\theta \leq f$, such that $\int_J f \leq \varepsilon + \int_J \theta$. ◇

iii Use pictures to show how your construction works when $f := -\mathcal{R}_{\mathbb{D}}$, the negative of the Ruler-fnc of the dyadic rationals.

G4: Show no work.

a Interval $J := [-3, \pi]$ has ptn \mathbf{P} with cutpoints $\{-3, 1, \pi\}$. Define $\beta := [x \mapsto \sqrt[3]{x} \cdot \mathbf{1}_{\mathbb{Q}}(x)]$. Then

$$\text{Osc}^\beta(\mathbf{P}) = \dots + \dots$$

Equipping \mathbf{P} with sample points $\{-2, \pi/2\}$, now

$$\text{RS}^\beta(\mathbf{P}) = \dots$$

b Use IRI for “Improper RI”. Produce functions $\psi_n \in \text{IRI}(\mathbb{R} \rightarrow \mathbb{R})$ st. $\psi_n \xrightarrow[n \rightarrow \infty]{\text{unif}} \mathbf{0}$, yet $\left[\int_{\mathbb{R}} \psi_n \right] \not\rightarrow 0$, as $n \rightarrow \infty$. Indeed, $\forall n: \left[\int_{\mathbb{R}} \psi_n \right] = n^2$. For example, let

$$\psi_n := \dots$$

End of Home-G

G1: _____ 75pts

G2: _____ 75pts

G3: _____ 75pts

G4: _____ 40pts

Not in L^AT_EX: _____ -10pts

Poorly stapled, or missing ordinal : _____ -5pts

Missing name, or honor signature : _____ -5pts

Total: _____ 265pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____