

Note. Write chromatic polys in *chromatic form*.

G4: _____ 145pts

G4: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a The vertex set of H_N is $\mathbb{V} := [1..2N]$. For $\mathbf{u} \in \mathbb{V}$, when possible: $\mathbf{u} \rightarrow [\mathbf{u}+2]$. If \mathbf{u} is odd, then $\mathbf{u} \rightarrow [\mathbf{u}+1]$. Thus

$\mathcal{P}_{H_N}(x) =$
.....
And H_N has _____ acyclic orientations.

b Glue a vertex of C_5 to an endpoint of P_3 , to form a 7-vertex graph D . The number of two-component spanning subgraphs of D is _____.

c Graph G has chromatic polynomial

$$x^9 - 10x^8 + 44x^7 - 112x^6 + 182x^5 - 196x^4 + 139x^3 - 60x^2 + 12x.$$

Our G has _____ spanning subgraphs. Of those that are connected, ten of them have oddly-many edges, and thus _____ of them have evenly-many edges. [Hint: Chromatic-Polynomial Spanning Subgraph Thm]

d Graph $S := W_5 \odot C_6$, the full-product of the 5-vertex wheel with the 6-cycle, has _____ edges.

And $\chi(S) =$
.....

e Full-product, \odot , is associative. $T \odot F$
Graph $[K_2 \odot K_3] \odot K_4$ has chromatic polynomial
.....

f There are _____ trees on vertex-set $[1..7]$.
.....