

fACTogenarians. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

G5: *Show no work.*

Z In \mathbb{R} : $[1 + i]^{86} = \boxed{\dots} + i \cdot \boxed{\dots}$.

[Hint: Multiplying complexes multiplies their modulii, and adds their angles. You may use sin and cos if you wish.]

a Let $h := [y \mapsto \cos(2y)]$. Then the 5-topped poly

$$\mathbf{T}_{5,0}^h(x) = \boxed{\dots}$$

b Poly $\beta(x) := x^{11} + x^{87}$ has 9th derivative,

$$\beta^{(9)}(x) = \boxed{\dots} \quad (\text{Coeffs ITOf prods and quotients of factorials.})$$

Our integral-formula of the 9th Remainder-term, centered at 3, evaluated at 5, is

$$\mathbf{R}_{9,3}^\beta(5) = \int_{\boxed{\dots}}^{\boxed{\dots}} \cdot dt.$$

c Let $J := [0, 2]$. Define a fnc $g \in \text{RI}(J \rightarrow J)$ for which $g \circ g \notin \text{RI}$. E.g,

$$g := \boxed{\dots},$$

$$\text{with } \text{DisCty}(g) = \boxed{\dots}.$$

Composing,

$$g \circ g = \boxed{\dots}.$$

$$\text{So } \text{DisCty}(g \circ g) = \boxed{\dots}.$$

d $K := (4, 7]$ is a \mathcal{G}_δ -set because K can be written

$$\boxed{\dots} \text{. And } K \text{ is } \mathcal{F}_\sigma \text{ since } K = \boxed{\dots}$$

Mini-essay. Please double-space on your own paper.

G6: Set $J := [4, 7]$. *Recall:* Thm A. Fnc $f: J \rightarrow \mathbb{R}$ is RI IFF $\forall \varepsilon, \exists$ a partition P such that $\text{Osc}^f(P) \leq \varepsilon$.

Use Thm A to prove: Thm B. Suppose $f: J \rightarrow \mathbb{R}$ is strictly-increasing. Then f is RI.