

Welcome. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

G1: Short answer. Show no work.

a Prof. K will be teaching the undergrad NUMBER THEORY course this Summer-B, 2018. Also, in Spring 2019 he'll run the NUMBER THY AND MATHEMATICAL CRYPTOGRAPHY course, [MAT4930, section# TBD]. Circle

Verily Factual 1 Not-fake-news

b Having 10 triangular faces, G is an embedding of an N -vertex graph on a sphere, where $N =$ _____.

c The girls' prefs are:

$$G1 \begin{bmatrix} B1 \\ B2 \\ B3 \\ B4 \end{bmatrix}, \quad G2 \begin{bmatrix} B2 \\ B3 \\ B4 \\ B1 \end{bmatrix}, \quad G3 \begin{bmatrix} B1 \\ B2 \\ B3 \\ B4 \end{bmatrix}, \quad G4 \begin{bmatrix} B3 \\ B4 \\ B1 \\ B2 \end{bmatrix}.$$

The boys' prefs are:

$$B1 \begin{bmatrix} G4 \\ G2 \\ G3 \\ G1 \end{bmatrix}, \quad B2 \begin{bmatrix} G3 \\ G4 \\ G2 \\ G1 \end{bmatrix}, \quad B3 \begin{bmatrix} G2 \\ G3 \\ G4 \\ G1 \end{bmatrix}, \quad B4 \begin{bmatrix} G4 \\ G2 \\ G3 \\ G1 \end{bmatrix}.$$

A particular stable-matching is

$$B1 \leftrightarrow \text{_____}, \quad B2 \leftrightarrow \text{_____}, \quad B3 \leftrightarrow \text{_____}, \quad B4 \leftrightarrow \text{_____}.$$

d There are _____ digraphs on vertex-set $[1..N]$.

The number of **tournaments**

(complete digraphs) on $[1..N]$ is _____.

e Below, N is the # of vertices. For each $N \geq 5$:

\exists N -graph with exactly N spanning-trees. T F

\exists N -graph with exactly $N-1$ spanning-trees. T F

\exists N -graph with exactly $N-2$ spanning-trees. T F

OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines.

G2: H is a bipartite graph on Boy/Girl sets $\mathcal{B} \cap \mathcal{G} = \emptyset$, with $|\mathcal{B}| \leq |\mathcal{G}| < \infty$, and each boy knows at least one girl. Moreover, for all vertices $y \in \mathcal{B}$ and $x \in \mathcal{G}$, if $y \rightarrow x$ (they are connected by an edge), then $\text{Deg}(y) \geq \text{Deg}(x)$.

Prove \exists a perfect matching for the boys. I.e, prove \exists an injection $f: \mathcal{B} \rightarrow \mathcal{G}$ such that $[\forall b \in \mathcal{B}: b \rightarrow f(b)]$.

G1: _____ 85pts

G2: _____ 65pts

Total: _____ 150pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____