

Distance between flats

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 20 June, 2022 (at 18:58)

For a general field \mathcal{F} and vectors \mathbf{u}, \mathbf{w} in an \mathcal{F} -vector-space, define the “line through \mathbf{u} in direction \mathbf{w} ”:

$$\text{LinDir}(\mathbf{u}, \mathbf{w}) := \{\mathbf{u} + t\mathbf{w} \mid t \in \mathcal{F}\}.$$

We now happily specialize to an IP (inner-product) space \mathbf{V} over field $\mathcal{F} \subset \mathbb{C}$ which is sealed under complex-conjugation:

$$\forall \alpha \in \mathbb{C}: \alpha \in \mathcal{F} \implies \bar{\alpha} \in \mathcal{F}.$$

Our IP is conjugate-linear in its 1st argument. I.e, for every $\beta \in \mathcal{F}$ and $\mathbf{u}, \mathbf{w} \in \mathbf{V}$:

$$\langle \beta\mathbf{u}, \mathbf{w} \rangle = \bar{\beta} \cdot \langle \mathbf{u}, \mathbf{w} \rangle \quad \text{and} \quad \langle \mathbf{u}, \beta\mathbf{w} \rangle = \beta \cdot \langle \mathbf{u}, \mathbf{w} \rangle.$$

Proj and Orth. For a direction-vector $\mathbf{D} \neq \vec{0}$ and arbitrary $\mathbf{u} \in \mathbf{V}$, we define the orthogonal-projection operator:

$$1: \quad \text{Proj}_{\mathbf{D}}(\mathbf{u}) := \frac{\langle \mathbf{D}, \mathbf{u} \rangle}{\langle \mathbf{D}, \mathbf{D} \rangle} \cdot \mathbf{D}.$$

Our IP is linear in its 2nd argument, so formula (1) indeed satisfies that $\text{Proj}_{\mathbf{D}}(\beta\mathbf{u}) = \beta \cdot \text{Proj}_{\mathbf{D}}(\mathbf{u})$.

This immediately gives that $\text{Proj}_{\mathbf{D}}$ is idempotent: Write $\mathbf{w} := \text{Proj}_{\mathbf{D}}(\mathbf{u}) = \alpha\mathbf{D}$, where $\alpha := \frac{\langle \mathbf{D}, \mathbf{u} \rangle}{\langle \mathbf{D}, \mathbf{D} \rangle}$. Then $\text{Proj}_{\mathbf{D}}(\mathbf{w})$ equals $\alpha \cdot \text{Proj}_{\mathbf{D}}(\mathbf{D}) = \alpha\mathbf{D} = \mathbf{w}$.

Let's also *check* that the difference $\mathbf{u} - \text{Proj}_{\mathbf{D}}(\mathbf{u})$ is orthogonal to \mathbf{D} : Well, $\langle \mathbf{D}, \mathbf{u} - \text{Proj}_{\mathbf{D}}(\mathbf{u}) \rangle$ equals

$$\langle \mathbf{D}, \mathbf{u} \rangle - \langle \mathbf{D}, \mathbf{w} \rangle = \langle \mathbf{D}, \mathbf{u} \rangle - \alpha \cdot \langle \mathbf{D}, \mathbf{D} \rangle \stackrel{\text{note}}{=} \vec{0}.$$

Thus the formula for the orthogonal vector is indeed

$$2: \quad \text{Orth}_{\mathbf{D}}(\mathbf{u}) := \mathbf{u} - \text{Proj}_{\mathbf{D}}(\mathbf{u}) = \frac{\langle \mathbf{D}, \mathbf{D} \rangle \mathbf{u} - \langle \mathbf{D}, \mathbf{u} \rangle \mathbf{D}}{\langle \mathbf{D}, \mathbf{D} \rangle}.$$

Let's compute the square-norms:

$$1': \quad \|\text{Proj}_{\mathbf{D}}(\mathbf{u})\|^2 = \frac{\langle \mathbf{D}, \mathbf{u} \rangle \langle \mathbf{u}, \mathbf{D} \rangle}{\langle \mathbf{D}, \mathbf{D} \rangle} = \frac{|\langle \mathbf{u}, \mathbf{D} \rangle|^2}{\langle \mathbf{D}, \mathbf{D} \rangle}.$$

$$2': \quad \|\text{Orth}_{\mathbf{D}}(\mathbf{u})\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle - \|\text{Proj}_{\mathbf{D}}(\mathbf{u})\|^2 \\ = \frac{\langle \mathbf{u}, \mathbf{u} \rangle \langle \mathbf{D}, \mathbf{D} \rangle - \langle \mathbf{D}, \mathbf{u} \rangle \langle \mathbf{u}, \mathbf{D} \rangle}{\langle \mathbf{D}, \mathbf{D} \rangle}.$$

Hence the closest point on line $\text{LinDir}(\mathbf{q}, \mathbf{D})$ to a point \mathbf{p} is

$$3: \quad \mathbf{q} + \text{Proj}_{\mathbf{D}}(\mathbf{p} - \mathbf{q}).$$

The vector which goes from (3) to \mathbf{p} is $\text{Orth}_{\mathbf{D}}(\mathbf{p} - \mathbf{q})$.

Distance between two lines. Consider lines $\mathbb{L}_1 := \text{LinDir}(\mathbf{p}_1, \mathbf{D})$ and $\mathbb{L}_2 := \text{LinDir}(\mathbf{p}_2, \mathbf{E})$; the direction vectors \mathbf{D} and \mathbf{E} are not $\vec{0}$.

Parallel Lines. WLOG, $\mathbf{D} = \mathbf{E}$. And $\text{Dist}(\mathbb{L}_1, \mathbb{L}_2)$ equals $\|\text{Orth}_{\mathbf{D}}(\mathbf{p}_1 - \mathbf{p}_2)\|$. Compute this via (2').

Skew Lines. Now \mathbf{D}, \mathbf{E} are *not* parallel. By Cauchy-Schwarz, then,

$$4: \quad \langle \mathbf{D}, \mathbf{D} \rangle \cdot \langle \mathbf{E}, \mathbf{E} \rangle \neq \langle \mathbf{D}, \mathbf{E} \rangle \cdot \langle \mathbf{E}, \mathbf{D} \rangle.$$

(Indeed, difference $\langle \mathbf{D}, \mathbf{D} \rangle \cdot \langle \mathbf{E}, \mathbf{E} \rangle - \langle \mathbf{D}, \mathbf{E} \rangle \cdot \langle \mathbf{E}, \mathbf{D} \rangle$ is positive.)

Let's translate the lines by $-\mathbf{p}_1$. I.e, write them as $\text{LinDir}(\vec{0}, \mathbf{D})$ and $\text{LinDir}(\mathbf{b}, \mathbf{E})$, where $\boxed{\mathbf{b} := \mathbf{p}_2 - \mathbf{p}_1}$.

Take a “moving point” on each line. I.e, for “times” $s, t \in \mathcal{F}$:

$$5: \quad \begin{aligned} \mathbf{q}(s) &:= s\mathbf{D}, \\ \mathbf{r}(t) &:= \mathbf{b} - t\mathbf{E}. \end{aligned}$$

Since \mathbf{D}, \mathbf{E} are not parallel, there will be a unique pair (s, t) of times such that $\mathbf{q}(s) - \mathbf{r}(t)$ is orthogonal to each direction-vector.

Orthogonal to \mathbf{D} means $\langle \mathbf{D}, s\mathbf{D} \rangle - \langle \mathbf{D}, \mathbf{b} - t\mathbf{E} \rangle$ is zero. This is the first eqn below:

$$6: \quad \begin{aligned} \langle \mathbf{D}, \mathbf{D} \rangle s + \langle \mathbf{D}, \mathbf{E} \rangle t &= \langle \mathbf{D}, \mathbf{b} \rangle, \\ \langle \mathbf{E}, \mathbf{D} \rangle s + \langle \mathbf{E}, \mathbf{E} \rangle t &= \langle \mathbf{E}, \mathbf{b} \rangle. \end{aligned}$$

Orthogonality to \mathbf{E} yields the 2nd eqn. Courtesy (4), the coefficient-matrix

$$\mathbf{M} := \begin{bmatrix} \langle \mathbf{D}, \mathbf{D} \rangle & \langle \mathbf{D}, \mathbf{E} \rangle \\ \langle \mathbf{E}, \mathbf{D} \rangle & \langle \mathbf{E}, \mathbf{E} \rangle \end{bmatrix}$$

is non-singular. Let $R := 1/\text{Det}(\mathbf{M})$ be the reciprocal.

The unique solution $(s, t) := (\sigma, \tau)$ to (6) is thus

$$7: \quad \begin{bmatrix} \sigma \\ \tau \end{bmatrix} = R \cdot \begin{bmatrix} \langle \mathbf{E}, \mathbf{E} \rangle & -\langle \mathbf{D}, \mathbf{E} \rangle \\ -\langle \mathbf{E}, \mathbf{D} \rangle & \langle \mathbf{D}, \mathbf{D} \rangle \end{bmatrix} \cdot \begin{bmatrix} \langle \mathbf{D}, \mathbf{b} \rangle \\ \langle \mathbf{E}, \mathbf{b} \rangle \end{bmatrix}.$$

Plugging this (σ, τ) pair into (5) gives us the unique pair of closest points on the translated lines. So the closest points¹ on the original lines are

$$8: \quad \begin{aligned} \mathbb{L}_1 \ni \mathbf{p}_1 + \mathbf{q}(\sigma) &= \mathbf{p}_1 + \sigma\mathbf{D} & \text{and} \\ \mathbb{L}_2 \ni \mathbf{p}_1 + \mathbf{r}(\tau) &= \mathbf{p}_2 - \tau\mathbf{E}. \end{aligned}$$

¹The asymmetry in (8) comes from the asymmetry in \mathbf{b} . We had a choice between $[\mathbf{p}_2 - \mathbf{p}_1]$ and $[\mathbf{p}_1 - \mathbf{p}_2]$.

Gram-Schmidt alg. In real-or-complex IPS \mathbf{H} , consider vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots$. We will construct pairwise-orthogonal non- $\vec{0}$ vectors $\mathbf{b}_1, \mathbf{b}_2, \dots$ and natnums $K_0=0 < K_1 < K_2 < \dots$ so that this holds:

For each $n = 0, 1, 2, \dots$:

$$\begin{aligned} \text{Subspace } \mathbf{W}_n &:= \text{Span}(\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}) \\ \text{equals } \text{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{b}_{K_n}\}). \end{aligned}$$

For $n = 0$, our \mathbf{W}_0 equals $\{\vec{0}\}$, which indeed is the span of taking none of the \mathbf{v} -vectors.

At stage N : Successively set κ to the indices *after* K_N . For each, compute

$$\mathbf{g}_\kappa := \text{Orth}_{\mathbf{W}_N}(\mathbf{v}_\kappa) \stackrel{\text{note}}{=} \mathbf{v}_\kappa - \sum_{j=1}^N \text{Proj}_{\mathbf{b}_j}(\mathbf{v}_\kappa),$$

stopping at the *first* κ where $\mathbf{g}_\kappa \neq \vec{0}$. Set $\mathbf{b}_{N+1} := \mathbf{g}_\kappa$ and $K_{N+1} := \kappa$. Now increment N .

Cauchy-Schwarz Inequality. Two vectors \mathbf{v}, \mathbf{w} in an \mathcal{F} -VS are **\mathcal{F} -parallel** if, there exists scalars $\alpha, \beta \in \mathcal{F}$, not both 0, with $\alpha\mathbf{v} = \beta\mathbf{w}$; i.e, if $\{\mathbf{v}, \mathbf{w}\}$ is lin-independent.

Now let \mathcal{F} be a subfield of \mathbb{C} and consider relation $\alpha\mathbf{v} = \beta\mathbf{w}$, for real α, β , not both 0. If we can pick $\alpha, \beta \geq 0$, then \mathbf{v} and \mathbf{w} are **same-direction parallel**. If we can pick $\alpha \leq 0 \leq \beta$, then \mathbf{v} and \mathbf{w} are **opposite-direction parallel**. (Abbrev: “same-dir parallel” and “opp-dir parallel”.)

Remark. None of *same/opp-dir parallel* is transitive. However, let \mathcal{R} be any one of the three relations. Then

If $\mathbf{v} \mathcal{R} \mathbf{c}$ and $\mathbf{c} \mathcal{R} \mathbf{w}$, and $\mathbf{c} \neq \vec{0}$, then $\mathbf{v} \mathcal{R} \mathbf{w}$. \square

9: Cauchy-Schwarz Theorem. Consider vectors \mathbf{v}, \mathbf{w} in a complex IPS \mathbf{V} . Then

$$9a: \quad |\langle \mathbf{v}, \mathbf{w} \rangle|^2 \leq \|\mathbf{v}\|^2 \cdot \|\mathbf{w}\|^2,$$

with equality IFF \mathbf{v} and \mathbf{w} are parallel. Indeed $\langle \mathbf{v}, \mathbf{w} \rangle = \pm \|\mathbf{v}\| \cdot \|\mathbf{w}\|$ as the \mathbf{v}, \mathbf{w} pair is same/opp-dir parallel. \diamond

9b: Lem. Consider quadratic $h(t) := At^2 - 2Bt + C$, where A, B, C are real, with $A > 0$. Let $\tau \in \mathbb{R}$ be the min-point of h , i.e, $[\forall t \in \mathbb{R}: h(t) \geq h(\tau)]$. Then

$$9c: \quad \tau = \frac{B}{A}, \text{ and min-value } h(\tau) \text{ equals } C - \frac{B^2}{A}. \quad \diamond$$

Pf. Well, $h'(t) = 2At - 2B$, and $h'(\tau) = 0$. Etc. \spadesuit

Pf of C-S, (9), for a \mathbb{R} -VS. If $\mathbf{w} = \vec{0}$, then the thm's conclusion holds, so WLOG $\mathbf{w} \neq \vec{0}$.

Define $f(t) := \|\mathbf{v} - t\mathbf{w}\|^2$. Courtesy bilinearity,

$$f(t) = At^2 - 2Bt + C,$$

where $A := \langle \mathbf{w}, \mathbf{w} \rangle$, $C := \langle \mathbf{v}, \mathbf{v} \rangle$ and $B := \langle \mathbf{v}, \mathbf{w} \rangle$. Since f is the square of a distance, the min-value of f is non-negative. Thus $0 \leq C - \frac{B^2}{A}$. But $A > 0$, so $B^2 \leq AC$. And this is (9a). \clubsuit

Filename: Problems/Algebra/LinearAlg/flat-dist.latex
As of: Friday 16Dec2005. Typeset: 20Jun2022 at 18:58.