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For a general field F and vectors u,w in an F-vector-
space, define the “ line through u in direction w” :

LinDir(u,w) := {u+ tw | t ∈ F} .

We now happily specialize to an IP (inner-product)
space V over field F ⊂ C which is sealed under com-
plex-conjugation;

∀α ∈ C: α ∈ F =⇒ α ∈ F .

Our IP is conjugate-linear in its 1st argument. I.e, for
every β ∈ F and u,w ∈ V:

〈βu,w〉 = β · 〈u,w〉 and 〈u, βw〉 = β · 〈u,w〉 .

Proj and Orth. For a direction-vector D 6= ~0 and
arbitrary u ∈ V, we define the orthogonal-projection
operator:

ProjD(u) :=
〈D,u〉
〈D,D〉

·D .1:

Our IP is linear in its 2nd argument, so formula (1)
indeed satisfies that ProjD(βu) = β · ProjD(u).

This immediately gives that ProjD is idempo-
tent: Write w := ProjD(u) = αD, where α := 〈D,u〉

〈D,D〉 .
Then ProjD(w) equals α · ProjD(D) = αD = w.

Let’s also check that the difference u− ProjD(u) is
orthogonal to D: Well,

〈
D, u− ProjD(u)

〉
equals

〈D,u〉 − 〈D,w〉 = 〈D,u〉 − α·〈D,D〉 note
=== ~0 .

Thus the formula for the orthogonal vector is indeed

OrthD(u) := u− ProjD(u) = 〈D,D〉u−〈D,u〉D
〈D,D〉 .2:

Let’s compute the square-norms:∥∥ProjD(u)
∥∥2 = 〈D,u〉〈u,D〉

〈D,D〉 = |〈u,D〉|2
〈D,D〉 .1′:

∥∥OrthD(u)
∥∥2 = 〈u,u〉 −

∥∥ProjD(u)
∥∥22′:

= 〈u,u〉〈D,D〉− 〈D,u〉〈u,D〉
〈D,D〉 .

Hence the closest point on line LinDir(q,D) to a
point p is

q + ProjD(p− q) .3:

The vector which goes from (3) to p is OrthD(p− q).

Distance between two lines. Consider lines
L1 := LinDir(p1,D) and L2 := LinDir(p2,E); the di-
rection vectors D and E are not ~0.

Parallel Lines. WLOG, D = E. And
Dist(L1,L2) equals

∥∥OrthD(p1 − p2)
∥∥. Compute this

via (2′).

Skew Lines. Now D,E are not parallel. By
Cauchy-Schwarz, then,

〈D,D〉 · 〈E,E〉 6= 〈D,E〉 · 〈E,D〉 .4:

(Indeed, difference 〈D,D〉·〈E,E〉 − 〈D,E〉·〈E,D〉 is positive.)
Let’s translate the lines by p1. I.e, write them as

LinDir(~0,D) and LinDir(b,E), where
�� ��b := p2 − p1 .

Take a “moving point” on each line. I.e, for “times”
s, t ∈ F :

q(s) := sD .

r(t) := b− tE .
5:

Since D,E are not parallel, there will be a unique pair
(((s, t))) of times such that q(s) − r(t) is orthogonal to
each direction-vector.

Orthogonal to D means
〈
D, sD

〉
−
〈
D,b− tE

〉
is

zero. This is the first eqn below:

〈D,D〉s + 〈D,E〉t = 〈D, b〉 .
〈E,D〉s + 〈E,E〉t = 〈E, b〉 .

6:

Orthogonality to E yields the 2nd eqn. Courtesy (4),
the coefficient-matrix

M :=
[
〈D,D〉 〈D,E〉
〈E,D〉 〈E,E〉

]
is non-singular. Let R := 1/Det(M) be the reciprocal.

The unique solution (((s, t))) := (((σ, τ))) to (6) is thus[
σ
τ

]
= R ·

[
〈E,E〉 〈D,E〉
〈E,D〉 〈D,D〉

]
·
[
〈D, b〉
〈E, b〉

]
.7:

Plugging this (((σ, τ))) pair into (5) gives us the unique
pair of closest points on the translated lines. So the
closest points♥1 on the original lines are

L1 3 p1 + q(σ) = p1 + σD and
L2 3 p1 + r(τ) = p2 − τE .

8:

♥1The asymmetry in (8) comes from the asymmetry in b. We
had a choice between [p2 − p1] and [p1 − p2].
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Gram-Schmidt alg. In real-or-complex IPS H,
consider vectors v1,v2,v3, . . .. We will construct pair-
wise-orthogonal non-~0 vectors b1,b2, . . . and natnums
K0=0 < K1 < K2 < . . . so that this holds:

For each n = 0, 1, 2, . . . :
Subspace Wn := Spn

(
{b1,b2, . . . ,bn}

)
equals Spn

(
{v1,v2,v3, . . . ,bKn}

)
.

For n = 0, our W0 equals {~0}, which indeed is the
span of taking none of the v-vectors.

At stage N : Successively set κ to the indices af-
ter KN . For each, compute

gκ := OrthWN
(vκ)

note
=== vκ −

N∑
j=1

Projbj
(vκ) ,

stopping at the first κ where gκ 6= ~0. Set bN+1 := gκ
and KN+1 := κ. Now increment N .

Cauchy-Schwarz Inequality. Two vectors v,w in
an F-VS are F-parallel if, there exists scalars α, β ∈
F , not both 0, with αv = βw; i.e, if {v,w} is lin-
dependent.

Now let F be a subfield of C and consider relation
αv = βw, for real α,β, not both 0. If we can pick
α,β ≥ 0, then v and w are same-direction paral-
lel. If we can pick α ≤ 0 ≤ β, then v and w are
opposite-direction parallel. (Abbrev: “same-dir paral-
lel” and “opp-dir parallel” .)

Remark. None of same/opp-dir parallel is transitive.
However, let R be any one of the three relations. Then

If vRc and cRw, and c 6= ~0, then vRw. �

9: Cauchy-Schwarz Theorem. Consider vectors v,w
in a complex IPS V. Then∣∣∣〈v,w〉∣∣∣2 ≤ ‖v‖2 · ‖w‖2 ,9a:

with equality IFF v and w are parallel. Indeed
〈v,w〉 = ±‖v‖ · ‖w‖ as the v,w pair is same/opp-
dir parallel. ♦

9b: Lem. Consider quadratic h(t) := At2 − 2Bt+ C,
where A,B,C are real, with A > 0. Let τ ∈ R be the
min-point of h, i.e, [∀t ∈ R: h(t) ≥ h(τ )]. Then

τ = B
A , and min-value h(τ ) equals C − B2

A .9c: ♦

Pf. Well, h′(t) = 2At− 2B, and h′(τ ) = 0. Etc. �

Pf of C-S, (9), for a R-VS. If w = ~0, then the thm’s
conclusion holds, so WLOG w 6= ~0.

Define f(t) := ‖v − tw‖2. Courtesy bilinearity,

f(t) = At2 − 2Bt+ C ,

where A := 〈w,w〉, C := 〈v,v〉 and B := 〈v,w〉.
Since f is the square of a distance, the min-value of f
is non-negative. Thus 0 ≤ C − B2

A . But A > 0, so�� ��B2 ≤ AC . And this is (9a). �
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