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Our IP on a C-45 is conjugate-linear in the 1°*-argument. The

FRIEDBERG, INSEL,SPENCE text is conjugate-linearin ond -argument,

For a general field F and vectors q,D in an F-
vector-space, define the ‘“line through q in direc-
tion D”:

LinDir(q,D) = {q+tD |t e F}.
[When D = 0, the line degenerates to a point.]
Henceforth, V is an IP (inner-product) space over C.

Complez-IP azioms. A C-IP (-,-) is a map VxV—C
satisfying for all vectors u, aj, as, v, by, bo:

a: Map (-,-) is additively bilinear:

(ajtag, v) = (a1,v) + (az, v) and
<u, b1+b2> = <u, b1> —+ <u, b2> .

b: Conjugate-symmetry: (u,v) = (v, u).

c: Multiplicatively-linear in (for us) its second arg:
For each scalar a: (u,av)=a(u,v). [Thus
(au,v) = @(u,v); our IP is conjugate-linear in its first
argument. Some textbook say IP is sesquilinear, meaning
linear in one argument, and conjugate-linear in the other.

“Sesqui” means “one and a ha]f”.]

d: Value (u,u) is non-negative, and is zero IFF
u = 0. [The IP is positive-definite.| ]

Compler Fuclidean space. An IP induces a complex
Euclidean geometry on V.  The Euclidean-norm |/u/|
is the non-negative real ||ul| := /(u,u). It satisfies
the Triangle Inequality: For all vectors u,v:

with equality IFF one
lu+v| < |Ju||+||v], ofuvisanon-negative
multiple of the other.

We will only use the notion of angle in real IP
spaces. Wikipedia has the following more general def-
inition: Define the angle, 0, between non-zero vectors
u,v, by

Webpage http://people.clas.ufl.edu/squash/

Consequently: Vectors u,v are orthogonal, written
ul v, if (u,v) = 0. [We allow either vector or both to
be 0; hence the zero-vector is orthogonal to everybody.]
Note: The notion of orthogonal is used in C-VSes.
Although our defn of angle is well-formed in a C-VS,
it is used mostly in R-VSes. Ol

Orthogonal subspaces. Subspaces A, B C 'V are “per-
pendicular to each other”, written A | B, ifa L b
for every a € A and b € B.

The ortho-complement of subspace U is

U- = {veV‘VueU:uJ_v}.

Symbol U is pronounced “U perp”.

Easily, U" is itself a subspace, and it is transverse
to U,ie U NU = {0}.

Always, [U*]- 5 U. If V is finite dimensional,
then [Ut]+ = U. O

1: Fact.

Proj and Orth. For a direction-vector D # 0 and
arbitrary u € V, we define the orthogonal-projection
operator:

25 Projp(u) =

Our IP is linear in its 2"¢ argument, so formula (2)
indeed satisfies that Projp(fu) = - Projp(u).

This immediately gives that Projp is idempo-

tent: Write w := Projp(u) = aD, where o := <<DD,711;>>'

Then Projp(w) equals - Projp (D) = aD = w.

Let’s also check that the difference u — Projp(u) is
orthogonal to D: Well, (D, u — Projp(u)) equals

(D,u) — (D,w) = (D,u) —a:(D,D) =£ 0.
Thus the formula for the orthogonal vector is indeed

(D,D)u— (D,u)D

3: Orthp(u) = u— Projp(u) = -
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Let’s compute the square-norms:

2
92/, ||P1f0j13(11)||2 = <D’<D>7<D’>D> B ‘EI;,?));

3 ||Orth1;)(u)H2 = <u,u>—HP1rojD(u)||2

(u,u)(D,D) — (D,u)(u, D)
(D,D) ‘

NOTE: The closest pt on LinDir(q, D) to a point p is

4: q + Projp(p—q).

The vector from (4) to p is Orthp(p — q).

OBs: The above eqns show (2') + (3') equals (u, u),
which indeed is ||ul|?, the square of the hypotenuse.
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Distance between two lines. Consider lines
L; := LinDir(p;, D) and Ly := LinDir(ps, E); the di-
rection-vectors D and E are not 0. The direction-
vectors are parallel if the pair {D,E} is linearly de-
pendent; otherwise, the direction-vectors are skew.

Parallel Lines. WLOG, D=E. And Dist(L;,Ls)
equals ||Orthp (p1 — p2)|. Compute this via (3').

Skew Lines. Now D,E are not parallel. By
Cauchy-Schwarz, then,

51: (D,D)-(E,E) # (D,E)-(E,D).

(Indeed, difference (D,D)-(E,E) — (D, E)-(E,D) is positive.)
Let’s translate the lines by -p;. L.e, write them as

LinDir(0, D) and LinDir(b, E), where .

Take a “moving point” on each line. I.e, for “times”
s,t € C:

5 9. q(s) = sD and

r(t) = b—tE.

Since D, E are not parallel, there will be a unique
pair (s,t) of times such that difference-vector
q(s) — r(t) is orthogonal to each direction-vector.

Orthogonal to D means (D, sD) — (D,b —(E) is
zero. This is the first eqn below:

(D,D)s + (D,E)t =

b5 (E,D)s + (E,E)t =

Orthogonality to E yields the 2 eqn. Courtesy (5.1),
the coefficient-matrix

M= [ 2D BE

is non-singular. Let R := 1/Det(M) be the reciprocal.
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The unique solution (s,?) = (o, 7) to (5.3) is thus
5.4: {” _ R [ (E,E) —<D,E>} [, b)}

T (E,D) (D,D) (E, b)| °

Plugging this (o,7) pair into (5.2) gives us the
unique pair of closest points on the translated lines.
So the closest points”! on the original lines are

pl"’Q(U) = p1+0'D € L and
p1+r(r) = po—7E € L.

5.5:

“1The asymmetry in (5.5) comes from the asymmetry in b.
We had a choice between [p2 — p1] and [p1 — p2].
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Gram-Schmidt alg. In real-or-complex IPS H,

consider vectors vi,va,vs,.... We will construct % (setq G3 (mat-make-initseq 3 1 (-1 2 4)))
N = -1
pairwise-orthogonal non-0 vectors by, bs,... and E 5 %
natnums Ko=0 < K; < K3 < ... so that this holds: [ 4]
For eachn =0,1,2,...: ;5 Computing an orthogonal {B1, B2, B3} with the
Subspace U,, = Spn({b1,ba,...,b,}) ;; same span as {Gl, G2, G3}.
% (setq Bl G1)
equals Spn({g1,82.83,--,8K,})- [o1]
[ 01
For n = 0, our Uy equals {0}, which indeed is the Lol
span of taking none of the g-vectors. % (setq ratio (/ (ip Bl G2) (ip BL B1))) => 2
At stage N: Successively set index & to the indices
after K. For each x, compute % (setq ProjG2onBl (mat-scal-mult ratio B1))
[ 21
—~ note ol . L ol
g. = Orthu,(gx) = & — Y Projy, (&), [ 0]
j=1
% (setq B2 (mat-sub G2 ProjG2onB1)) ;;This is Orth_B1(G2).
. = _ [ 01
stopping at the first k where g, # 0. Set by = g, [ -3 ]
and Ky = k. Now increment . [ 01

% (ip B1 B2) -> 0 ; Checking the B-vectors are orthogonal.
Our Proj and Orth formulas. For vectors G

and B # 6, recall ;; Computing B3.
% (setq ProjG3onB1
. B, G (mat-scal-mult (/ (ip Bl G3) (ip B1 B1)) B1) )
PrOJB(G) = EB’ B; -B  and mat-scat-mu P 1P
)
[ -11]
. B,B)G — (B,G)B
Orthg(G) = G — Projg(G) = %. [ 01
[ 01
;3 Given a list G1, G2, G3, ... of vectors, we

% (setq ProjG3onB2

; compute an orthogonal system . .

5 Bi1, B2, B3, ... with the same span. (mat-scal-mult (/ (ip B2 G3) (ip B2 B2)) B2) )
’ . i i [ o]

5 In particular if G1, G2, G3, ... was a basis,

, . : [ 2]

; then the B-system is an orthogonal basis. [ 0]

5 We could normalize the B-vectors, to get

. an ortho-normal basis N1, N2, N3, % (setq B3 (mat-sub G3 (mat-add ProjG3onBl ProjG3onB2)))

; The dot-product w.r.t that ortho-normal basis will E g %

; equal the abstract inner-product that we started with. [ 2]

Y s Rati 1-ri

% (use-ring Rational-ring) Easily

% (setq G1 (mat-make-initseq 3 1 (1 0 0)))
4T 4 [-11] [0] [0]
[ 0] L ol, [21, T[o]

0 0 4

[ 0] [ ] (o] [4]

% (setq G2 (mat-make-initseq 3 1 *(2 -3 0))) is an orthogonal basis for |R"3.

L W W |
|

o W N

—_
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;3 Given a list G1, G2, G3, ... of vectors, we compute
; an orthogonal system
5 B1, B2, B3, ... with the same span. ;; We verify that the pairwise inner-products of the
;3 B-vectors are zero:
;3 A more interesting example, in 4-dim’al space. % (list (ip B1 B2) (ip Bl B3) (ip B2 B3)) -> (0 0 0)
;3 Let’s check that Span(B1, B2, B3) = Span(Gl, G2, G3).
% (setq G1 (mat-make-colvec 1 0 3 0)) % (setq bob (mat-Horiz-concat Bl B2 B3 G1 G2 G3))
[1] (1 3 6 1 4 -1]
[0] [0 2 10 0 2 01
[ 3] [3 -1 -2 3 2 -11]
[0] [0 -2 20 0 -2 2]
% (setq G2 (mat-make-colvec 4 2 2 -2)) % (rref-mtab-beforecol bob)
[ 4] JK: Found 3 pivots before the sixth column.
[ 21
[ 21 c0 cl c2 c3 cd cb
[ -2] R aaaee e e LR R TS e LB e e e |
r0 | 1 0 0 1 1 -2/5 |
% (setq G3 (mat-make-colvec -1 0 -1 2)) rl | 0 1 0 0 1 -1/3 |
[ -11] r2 | 0 0 1 0 0 1/15 |
[ 0] r3 | 0 0 0 0 0 0 | ; Yay, Gram-Schmidt.
[ -1] R anen T EEE LR P PR |
[ 21

;5 Technically, Bl is the orthogonal-vector of G1
;3 With respect to the trivial-subspace.

Ortho-Projecting on a subspace. The orthogo-

% (setq Bl G1) nal projection of g on a finite-dimensional subspace
[11] U C V can be computed from any orthogonal-basis,
Lol U, of U, via
[ 31
[0] , . (b, g)

Projy(g) = Z Proj,(g) = Z b, b) - b. Thus,

% (setq B2 (mat-sub G2 (proj G2 B1))) ;Is Orth_B1(G2) bel beU ‘7’

P Orthy(g) = g — Projy(g).
[ -11]
[ -21]

Proj in polynomial space. On V, the VS of poly-
nomials, put IP (f,¢g) = /01 f+g. Henceforth, let 4>7

1
mean [, 7 dx.

;5 This next is the orthogonal-vector of G3
;3 w.r.t Span(B1, B2).

% (setq B3 Let’s compute Orth,2(2?).  Firstly
(mat-sub G3 (mat-add (proj G3 B1) (proj G3 B2))) )

[ 2/56 ] 2 .3\ _ 5 _

[ 2/3 ] (2%,2%) = §2° =1/6

[ -2/15 ] (2%,2?) = §a*=1/5. Thus,

L] Proi o(23) = 46,2 _ 5,2

roj,2(x”) = L = Gr7. So,

;3 Let’s multiply to make all the entries integers. Orth,2 (333) = 23 _ Proj,» (xg) = 23— %$2
% (setq B3 (mat-scal-mult 15 B3))

E 13 % The Reader can check that (2%, 2% — 2’1’2> is zero.

[ -21]

[ 201
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Conjugate-transpose. Imagine a 5x7 C-matrix
M= laij;;-  The complex-conjugate of M is
M = [@ijlij. The transpose of M is M" = [a;l;;.
Complex-conjugatation and transpose are involutions,
and they commute with each other.

The conjugate-transpose of M is

M* = WF 22 gt

This M* is also called the adjoint of M. O

Application: Suppose V is a 5-dim’al C-IP
space, with (ordered) basis §. Use Gram-Schmidt to
produce an orthogonal-basis (i.e, pairwise orthogonal),
then divide each vector by its norm, to get an ortho-
normal basis B. W.r.t B, vectors in V are column-

vectors, u = [«j]i and v = [fj];. The improvement:
The given IP is now the complex dot-product
5
wv) = Wy = YA
1x5  5x1 i=1
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Cauchy-Schwarz Inequality. Two vectors u,v
in an F-VS are F-parallel if, there exist scalars
a, 3 € F, not both 0, with cu = fgv; i.e, IFF {u,v}
is lin-dependent.

For C-vectors u,v consider relation au = v, for
real «,3, not both 0. If we can pick «,3 > 0, then u
and v are same-direction parallel.

If we can pick o <0<, then u and v are
opposite-direction parallel. (Abbrev: “same-dir paral-
lel” and “opp-dir parallel”.)

Obs.  None of same/opp-dir/parallel is transitive.
However, for R either parallel or same-dir parallel,

If uRe and cRv, and ¢ # 0, then uRv. N

6: Cauchy-Schwarz Theorem. Consider vectors u, v in
a complex IPS V. Then

[, v)[* <
[(u,v)| <

6az:

with equality IFF wu and v are parallel. Indeed
(u,v) = +||ul| - ||v]| as the u,v pair is same/opp-dir
parallel. O

We get an immediate corollary.

6b: IP Triangle-Inequality. For all vectors u, v:

f: lu+v] < faf + v 0

Proof. For a€C, recall Re(a) < |a.
squares-of-norms:

Working with

(u+v,u+v) =(u,u)+ (v,v) + 2Re((u, v))

(1) + CS
< Same + Same + 2- ||ul| - [|v||

= [hull + fivil]”-

Since the end-terms are non-negative, square-rooting

yields (t). ¢

6c: Lem. Consider quadratic h(t) := At?> — 2Bt + C,
where t, A,B,C are real, with A > 0. Let T € R be
the min-point of h, i.e, [Vt € R: h(t) > h(7)]. Then

6d: 7 =2 and min-value h(T) equals C — %2. O
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Pf. Well, h'(t) = 2At — 2B, and h/(7) = 0. Etc. ¢

Pf of C-S, (6), for a real-VS. If v = 0, then the thm’s
conclusion holds, so WLOG v # 0.
Define f:R—R by f(t) := |[u — tv|*. I claim that
f) £ A?—2Bt+C,
A:=(v,v) and B:=(v,u) and C:= (u,u).

where

Why? Our f(t) equals (u — ¢tv,u — tv) which equals
” (tv, tv) = [(tv, ) + (u,tv)] + (u,u).

Since ¢ is real, f(t) equals
= 2(v,v) = [tv,u) + t(u,v)] + C
= t?A - t-2B + C.

As f is the square of a distance, the min-value of f
2
is non-neg. Thus 0 < C'— Z-, by (6¢). Finally, A > 0

S0 , which is (6a). ¢

Pf of C-S for a C-VS. Now allowing a complex t, we
again define f(t) := |u— ¢v|[*. Thus (x) equals

w1V, v) = [T(v,u) + t(u,v)| + (u, ).

In the real case, we plugged 7= & = X:;

and we do that here as well. Notice that

in for ¢,

A% t
T'(U,V) = Vi n%e

Plugging 7 into (#x) says that f(7) [which, recall, is non-
negative real] equals

vl fewf e )
o) 2wy P W R
Thus Lewl < (u,u), Now multiply by (v,v). 4
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When do we have equality in Cauchy-Schwarz? Note
that vector pair {u, v} is linearly dependent (i.e, u and
v are parallel) |FF Orthy (u) is 0.

Equality in (6a) IFF parallel. WLOG, both u and v
are non-zero. Set z := Orthy(u); so u = av + z, for
some (complex) a. WLOG a # 0. [If not, then (u,v) =0

but ||u*||v||” is positive, since neither u nor v is 0. And u is

not parallel to v, as u | v yet neither vector is 6]
As (in)equality in (6a) is unaffected by multiplying
u by a non-zero scalar, replace u by éu. Le, WLOG

u=v-+z with v L z.

Computing,

(u,v) = (v+z,v) = (v,v) + 0 = |jv[J.

(w, ) = [|v[* + [l + (v,2) + (2, v) = |[v]* + ||z]>

(v, v) =|lvll*.

Our C-S says \(u,v>|2 < (u,u)(v,v). Substituting in
the above formulas, C-S asserts

2 .

2 2 2 2
< [P+ ll21”] - w1l

Dividing by the positive ||v||* yields

2 2 2
VI < [lvI® + {1z

We have equality here IFF z = 0, i.e, u was parallel

to v all along.

¢
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Distance of flat to origin. In a C-IPS V list of
points P, ..., Ps; engenders this flat (affine subspace)

6 6
A = {ZanPn Zanzl}.
n=1 n=1

In order to locate the point () € A closest to the
orgin, we pick a vector in A, say, Py, and translate A
to parallel subspace S = A — F;.  CLAIM:

B S = Spn(dl7 R ,d;), where d,, = P, — Fs.

Why? An A-vector a = Z?L:l a, P, has difference-
vector a — Py equaling

6

[nilanpn] C[Yan - Zad

n=1

5
Conversely, given vector > «,,d, in Spn(dy,...,ds),
n=1
we can define ag tobe 1 — > | o, thus arranging
that 22:1 o, P, 1s indeed in A.
To compute the A-point () lying closest to the orgin,
we can pick any pt in A, say, Py, and compute

I: Q = Orthg(Fs) = Ps — Projg(Fs).
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