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Our IP on a C-VS is conjugate-linear in the 1st-argument. The
Friedberg, Insel,Spence text is conjugate-linear in 2nd-argument.

For a general field F and vectors q,D in an F-
vector-space, define the “ line through q in direc-
tion D” :

LinDir(q,D) := {q+ tD | t ∈ F} .

[When D = ~0, the line degenerates to a point.]

Henceforth, V is an IP (inner-product) space over C.

Complex-IP axioms. A C-IP 〈·, ·〉 is a map V×V→C
satisfying for all vectors u,a1,a2,v,b1,b2:

a: Map 〈·, ·〉 is additively bilinear :

〈a1+a2, v〉 = 〈a1,v〉+ 〈a2, v〉 and

〈u, b1+b2〉 = 〈u,b1〉+ 〈u,b2〉 .

b: Conjugate-symmetry: 〈u,v〉 = 〈v,u〉.

c: Multiplicatively-linear in (for us) its second arg:
For each scalar α: 〈u, αv〉 = α〈u,v〉. [Thus
〈αu,v〉 = α〈u,v〉; our IP is conjugate-linear in its first
argument. Some textbook say IP is sesquilinear, meaning
linear in one argument, and conjugate-linear in the other.
“Sesqui” means “one and a half ”.]

d: Value 〈u,u〉 is non-negative, and is zero IFF
u = ~0. [The IP is positive-definite.] �

Complex Euclidean space. An IP induces a complex
Euclidean geometry on V. The Euclidean-norm ‖u‖
is the non-negative real ‖u‖ :=

√
〈u,u〉 . It satisfies

the Triangle Inequality: For all vectors u,v:

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ,
with equality IFF one
of u,v is a non-negative
multiple of the other.

We will only use the notion of angle in real IP
spaces. Wikipedia has the following more general def-
inition: Define the angle , θ, between non-zero vectors
u,v, by

cos(θ) :=
Re
(
〈u,v〉

)
‖u‖ · ‖v‖

.

Consequently: Vectors u,v are orthogonal, written
u ⊥ v, if 〈u,v〉 = 0. [We allow either vector or both to
be ~0; hence the zero-vector is orthogonal to everybody.]

Note: The notion of orthogonal is used in C-VSes.
Although our defn of angle is well-formed in a C-VS,
it is used mostly in R-VSes. �

Orthogonal subspaces. Subspaces A,B ⊂ V are “per-
pendicular to each other” , written A ⊥ B, if a ⊥ b
for every a ∈ A and b ∈ B.

The ortho-complement of subspace U is

U⊥ :=
{
v ∈ V

∣∣∣ ∀u ∈ U : u ⊥ v
}
.

Symbol U⊥ is pronounced “U perp” .
Easily, U⊥ is itself a subspace, and it is transverse

to U, i.e U⊥ ∩U = {~0}.
Always, [U⊥]⊥ ⊃ U. If V is finite dimensional,

then [U⊥]⊥ = U. �

1: Fact.

Proj and Orth. For a direction-vector D 6= ~0 and
arbitrary u ∈ V, we define the orthogonal-projection
operator:

ProjD(u) :=
〈D,u〉
〈D,D〉

·D .2:

Our IP is linear in its 2nd argument, so formula (2)
indeed satisfies that ProjD(βu) = β · ProjD(u).

This immediately gives that ProjD is idempo-
tent: Write w := ProjD(u) = αD, where α := 〈D,u〉

〈D,D〉 .
Then ProjD(w) equals α · ProjD(D) = αD = w.

Let’s also check that the difference u− ProjD(u) is
orthogonal to D: Well,

〈
D , u− ProjD(u)

〉
equals

〈D,u〉 − 〈D,w〉 = 〈D,u〉 − α·〈D,D〉 note
=== 0 .

Thus the formula for the orthogonal vector is indeed

OrthD(u) := u− ProjD(u) = 〈D,D〉u−〈D,u〉D
〈D,D〉 .3:
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Let’s compute the square-norms:

∥∥ProjD(u)
∥∥2 =

〈D,u〉〈u,D〉
〈D,D〉

=
|〈u,D〉|2

〈D,D〉
.2′:

∥∥OrthD(u)
∥∥2 = 〈u,u〉 −

∥∥ProjD(u)
∥∥23′:

=
〈u,u〉〈D,D〉 − 〈D,u〉〈u,D〉

〈D,D〉
.

Note: The closest pt on LinDir(q,D) to a point p is

q + ProjD(p− q) .4:

The vector from (4) to p is OrthD(p− q).

Obs: The above eqns show (2′)+ (3′) equals 〈u,u〉,
which indeed is ‖u‖2, the square of the hypotenuse.
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Distance between two lines. Consider lines
L1 := LinDir(p1,D) and L2 := LinDir(p2,E); the di-
rection-vectors D and E are not ~0. The direction-
vectors are parallel if the pair {D,E} is linearly de-
pendent; otherwise, the direction-vectors are skew.

Parallel Lines. WLOG,D=E. AndDist(L1,L2)
equals

∥∥OrthD(p1 − p2)
∥∥. Compute this via (3′).

Skew Lines. Now D,E are not parallel. By
Cauchy-Schwarz, then,

〈D,D〉 · 〈E,E〉 6= 〈D,E〉 · 〈E,D〉 .5.1:

(Indeed, difference 〈D,D〉·〈E,E〉 − 〈D,E〉·〈E,D〉 is positive.)
Let’s translate the lines by p1. I.e, write them as

LinDir(~0,D) and LinDir(b,E), where
�� ��b := p2 − p1 .

Take a “moving point” on each line. I.e, for “times”
s, t ∈ C:

q(s) := sD and

r(t) := b− tE .
5.2:

Since D,E are not parallel, there will be a unique
pair (((s, t))) of times such that difference-vector
q(s)− r(t) is orthogonal to each direction-vector.

Orthogonal to D means
〈
D, sD

〉
−
〈
D,b− tE

〉
is

zero. This is the first eqn below:

〈D,D〉s + 〈D,E〉t = 〈D, b〉 .
〈E,D〉s + 〈E,E〉t = 〈E, b〉 .

5.3:

Orthogonality to E yields the 2nd eqn. Courtesy (5.1),
the coefficient-matrix

M :=
[
〈D,D〉 〈D,E〉
〈E,D〉 〈E,E〉

]
is non-singular. Let R := 1/Det(M) be the reciprocal.

The unique solution (((s, t))) := (((σ, τ))) to (5.3) is thus[
σ
τ

]
= R ·

[
〈E,E〉 〈D,E〉
〈E,D〉 〈D,D〉

]
·
[
〈D, b〉
〈E, b〉

]
.5.4:

Plugging this (((σ, τ))) pair into (5.2) gives us the
unique pair of closest points on the translated lines.
So the closest points♥1 on the original lines are

p1 + q(σ) = p1 + σD ∈ L1 and

p1 + r(τ) = p2 − τE ∈ L2 .
5.5:

♥1The asymmetry in (5.5) comes from the asymmetry in b.
We had a choice between [p2 − p1] and [p1 − p2].
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Gram-Schmidt alg. In real-or-complex IPS H,
consider vectors v1,v2,v3, . . .. We will construct
pairwise-orthogonal non-~0 vectors b1,b2, . . . and
natnums K0=0 < K1 < K2 < . . . so that this holds:

For each n = 0, 1, 2, . . . :
Subspace Un := Spn

(
{b1,b2, . . . ,bn}

)
equals Spn

(
{g1,g2,g3, . . . ,gKn}

)
.

For n = 0, our U0 equals {~0}, which indeed is the
span of taking none of the g-vectors.

At stage N : Successively set index κ to the indices
after KN . For each κ, compute

ĝκ := OrthUN
(gκ)

note
=== gκ −

N∑
j=1

Projbj
(gκ) ,

stopping at the first κ where ĝκ 6= ~0. Set bN+1 := ĝκ
and KN+1 := κ. Now increment N .

Our Proj and Orth formulas. For vectors G
and B 6= ~0, recall

ProjB(G) =
〈B,G〉
〈B,B〉

·B and

OrthB(G) = G− ProjB(G) = 〈B,B〉G−〈B,G〉B
〈B,B〉 .

;; Given a list G1, G2, G3, ... of vectors, we
; compute an orthogonal system
; B1, B2, B3, ... with the same span.
;
; In particular if G1, G2, G3, ... was a basis,
; then the B-system is an orthogonal basis.
;
; We could normalize the B-vectors, to get
; an ortho-normal basis N1, N2, N3, ...
; The dot-product w.r.t that ortho-normal basis will
; equal the abstract inner-product that we started with.

% (use-ring Rational-ring)

% (setq G1 (mat-make-initseq 3 1 ’(1 0 0)))
[ 1 ]
[ 0 ]
[ 0 ]

% (setq G2 (mat-make-initseq 3 1 ’(2 -3 0)))
[ 2 ]
[ -3 ]
[ 0 ]

% (setq G3 (mat-make-initseq 3 1 ’(-1 2 4)))
[ -1 ]
[ 2 ]
[ 4 ]

;; Computing an orthogonal {B1, B2, B3} with the
;; same span as {G1, G2, G3}.
% (setq B1 G1)

[ 1 ]
[ 0 ]
[ 0 ]

% (setq ratio (/ (ip B1 G2) (ip B1 B1))) => 2

% (setq ProjG2onB1 (mat-scal-mult ratio B1))
[ 2 ]
[ 0 ]
[ 0 ]

% (setq B2 (mat-sub G2 ProjG2onB1)) ;;This is Orth_B1(G2).
[ 0 ]
[ -3 ]
[ 0 ]

% (ip B1 B2) -> 0 ; Checking the B-vectors are orthogonal.

;; Computing B3.
% (setq ProjG3onB1

(mat-scal-mult (/ (ip B1 G3) (ip B1 B1)) B1) )

[ -1 ]
[ 0 ]
[ 0 ]

% (setq ProjG3onB2
(mat-scal-mult (/ (ip B2 G3) (ip B2 B2)) B2) )

[ 0 ]
[ 2 ]
[ 0 ]

% (setq B3 (mat-sub G3 (mat-add ProjG3onB1 ProjG3onB2)))
[ 0 ]
[ 0 ]
[ 4 ]

Easily

[ -1 ] [ 0 ] [ 0 ]
[ 0 ] , [ 2 ] , [ 0 ]
[ 0 ] [ 0 ] [ 4 ]

is an orthogonal basis for |R^3.

================
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;; Given a list G1, G2, G3, ... of vectors, we compute
; an orthogonal system
; B1, B2, B3, ... with the same span.

;; A more interesting example, in 4-dim’al space.

% (setq G1 (mat-make-colvec 1 0 3 0))
[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

% (setq G2 (mat-make-colvec 4 2 2 -2))
[ 4 ]
[ 2 ]
[ 2 ]
[ -2 ]

% (setq G3 (mat-make-colvec -1 0 -1 2))
[ -1 ]
[ 0 ]
[ -1 ]
[ 2 ]

;; Technically, B1 is the orthogonal-vector of G1
;; with respect to the trivial-subspace.
% (setq B1 G1)

[ 1 ]
[ 0 ]
[ 3 ]
[ 0 ]

% (setq B2 (mat-sub G2 (proj G2 B1))) ;Is Orth_B1(G2)
[ 3 ]
[ 2 ]
[ -1 ]
[ -2 ]

;; This next is the orthogonal-vector of G3
;; w.r.t Span(B1, B2).

% (setq B3
(mat-sub G3 (mat-add (proj G3 B1) (proj G3 B2))) )

[ 2/5 ]
[ 2/3 ]
[ -2/15 ]
[ 4/3 ]

;; Let’s multiply to make all the entries integers.
% (setq B3 (mat-scal-mult 15 B3))

[ 6 ]
[ 10 ]
[ -2 ]
[ 20 ]

;; We verify that the pairwise inner-products of the
;; B-vectors are zero:

% (list (ip B1 B2) (ip B1 B3) (ip B2 B3)) -> (0 0 0)

;; Let’s check that Span(B1, B2, B3) = Span(G1, G2, G3).
% (setq bob (mat-Horiz-concat B1 B2 B3 G1 G2 G3))

[ 1 3 6 1 4 -1 ]
[ 0 2 10 0 2 0 ]
[ 3 -1 -2 3 2 -1 ]
[ 0 -2 20 0 -2 2 ]

% (rref-mtab-beforecol bob)
JK: Found 3 pivots before the sixth column.

c0 c1 c2 c3 c4 c5
|---------------------------------|

r0 | 1 0 0 1 1 -2/5 |
r1 | 0 1 0 0 1 -1/3 |
r2 | 0 0 1 0 0 1/15 |
r3 | 0 0 0 0 0 0 | ; Yay, Gram-Schmidt.

|---------------------------------|

Ortho-Projecting on a subspace. The orthogo-
nal projection of g on a finite-dimensional subspace
U⊂ V can be computed from any orthogonal -basis,
U, of U, via

ProjU(g) =
∑
b∈U

Projb(g) =
∑
b∈U

〈b,g〉
〈b,b〉

· b. Thus,

OrthU(g) = g − ProjU(g) .

Proj in polynomial space. On V, the VS of poly-
nomials, put IP 〈f, g〉 :=

∫ 1
0 f ·g. Henceforth, let

∮
?

mean
∫ 1
0 ? dx.

Let’s compute Orthx2(x
3). Firstly

〈x2, x3〉 =
∮
x5 = 1/6

〈x2, x2〉 =
∮
x4 = 1/5 . Thus,

Projx2(x
3) = 1/6

1/5x
2 = 5

6x
2. So,

Orthx2(x
3) = x3 − Projx2(x

3) = x3 − 5
6x

2 .

The Reader can check that
〈
x2, x3 − 5

6x
2
〉
is zero.
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Conjugate-transpose. Imagine a 5×7 C-matrix
M = [αi,j]i,j. The complex-conjugate of M is
M = [αi,j]i,j. The transpose of M is Mt = [αj,i]i,j.
Complex-conjugatation and transpose are involutions,
and they commute with each other.

The conjugate-transpose of M is

M>
:= Mt note

=== M
t
.

This M> is also called the adjoint of M. �

Application: Suppose V is a 5-dim’al C-IP
space, with (ordered) basis G. Use Gram-Schmidt to
produce an orthogonal-basis (i.e, pairwise orthogonal),
then divide each vector by its norm, to get an ortho-
normal basis B. W.r.t B, vectors in V are column-
vectors, u = [αi]i and v = [βi]i. The improvement:
The given IP is now the complex dot-product

〈u,v〉 = u∗︸︷︷︸
1×5

· v︸︷︷︸
5×1

=
5∑

i=1

αi · βi .
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Cauchy-Schwarz Inequality. Two vectors u,v
in an F-VS are F-parallel if, there exist scalars
α, β ∈ F , not both 0, with αu = βv; i.e, IFF {u,v}
is lin-dependent.

For C-vectors u,v consider relation αu = βv, for
real α,β, not both 0. If we can pick α,β ≥ 0, then u
and v are same-direction parallel.

If we can pick α ≤ 0 ≤ β, then u and v are
opposite-direction parallel. (Abbrev: “same-dir paral-
lel” and “opp-dir parallel” .)

Obs. None of same/opp-dir/parallel is transitive.
However, for R either parallel or same-dir parallel,

If uRc and cRv, and c 6= ~0, then uRv. �

6: Cauchy-Schwarz Theorem. Consider vectors u,v in
a complex IPS V. Then∣∣〈u,v〉∣∣2 ≤ ‖u‖2 · ‖v‖2 , i.e,6a: ∣∣〈u,v〉∣∣ ≤ ‖u‖ · ‖v‖ ,
with equality IFF u and v are parallel. Indeed
〈u,v〉 = ±‖u‖ · ‖v‖ as the u,v pair is same/opp-dir
parallel. ♦

We get an immediate corollary.

6b: IP Triangle-Inequality. For all vectors u,v:

‖u+ v‖ ≤ ‖u‖+ ‖v‖ .†: ♦

Proof. For α∈C, recall Re(α)
‡
≤ |α|. Working with

squares-of-norms:

〈u+ v,u+ v〉 = 〈u,u〉+ 〈v,v〉+ 2Re
(
〈u,v〉

)
(‡) + C-S
≤ Same+ Same + 2 · ‖u‖ · ‖v‖

=
[
‖u‖ + ‖v‖

]2
.

Since the end-terms are non-negative, square-rooting
yields (†). �

6c: Lem. Consider quadratic h(t) := At2 − 2Bt+ C,
where t, A,B,C are real, with A > 0. Let τ ∈ R be
the min-point of h, i.e, [∀t ∈ R: h(t) ≥ h(τ )]. Then

τ = B
A , and min-value h(τ ) equals C − B2

A .6d: ♦

Pf. Well, h′(t) = 2At− 2B, and h′(τ ) = 0. Etc. �

Pf of C-S, (6), for a real-VS. If v = ~0, then the thm’s
conclusion holds, so WLOG v 6= ~0.

Define f :R→R by f(t) := ‖u− tv‖2. I claim that

f(t)
?
= At2 − 2Bt+ C , where

A := 〈v,v〉 and B := 〈v,u〉 and C := 〈u,u〉 .

Why? Our f(t) equals
〈
u− tv,u− tv

〉
which equals

〈tv, tv〉 −
[
〈tv,u〉+ 〈u, tv〉

]
+ 〈u,u〉 .∗:

Since t is real, f(t) equals

= t2〈v,v〉 −
[
t〈v,u〉+ t〈u,v〉

]
+ C

= t2A − t · 2B + C .

As f is the square of a distance, the min-value of f
is non-neg. Thus 0 ≤ C − B2

A , by (6c). Finally, A > 0

so
�� ��B2 ≤ AC , which is (6a). �

Pf of C-S for a C-VS. Now allowing a complex t, we
again define f(t) := ‖u− tv‖2. Thus (∗) equals

|t|2〈v,v〉 −
[
t 〈v,u〉+ t〈u,v〉

]
+ 〈u,u〉 .∗∗:

In the real case, we plugged τ := B
A = 〈v,u〉

〈v,v〉 in for t,
and we do that here as well. Notice that

τ · 〈u,v〉 =

∣∣〈v,u〉∣∣2
〈v,v〉

note
∈ R .

Plugging τ into (∗∗) says that f(τ) [which, recall, is non-
negative real] equals∣∣〈v,u〉∣∣2
〈v,v〉

− 2 ·
∣∣〈v,u〉∣∣2
〈v,v〉

+ 〈u,u〉 note
=== 〈u,u〉 −

∣∣〈v,u〉∣∣2
〈v,v〉

.

Thus |〈v,u〉|
2

〈v,v〉 ≤ 〈u,u〉, Now multiply by 〈v,v〉. �
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When do we have equality in Cauchy-Schwarz? Note
that vector pair {u,v} is linearly dependent (i.e, u and
v are parallel) IFF Orthv(u) is ~0.

Equality in (6a) IFF parallel. WLOG, both u and v
are non-zero. Set z := Orthv(u); so u = αv + z, for
some (complex) α. WLOG α 6= 0. [If not, then 〈u,v〉 = 0

but ‖u‖2‖v‖2 is positive, since neither u nor v is ~0. And u is
not parallel to v, as u ⊥ v yet neither vector is ~0.]

As (in)equality in (6a) is unaffected by multiplying
u by a non-zero scalar, replace u by 1

αu. I.e, WLOG
u = v + z with v ⊥ z. Computing,

〈u,v〉 = 〈v+z,v〉 = 〈v,v〉+ 0
note
=== ‖v‖2 .

〈u,u〉 = ‖v‖2 + ‖z‖2 + 〈v, z〉+ 〈z,v〉 = ‖v‖2 + ‖z‖2.
〈v,v〉 = ‖v‖2 .

Our C-S says
∣∣〈u,v〉∣∣2 ≤ 〈u,u〉〈v,v〉. Substituting in

the above formulas, C-S asserts

‖v‖2 · ‖v‖2 ≤
[
‖v‖2 + ‖z‖2

]
· ‖v‖2 .

Dividing by the positive ‖v‖2 yields

‖v‖2 ≤ ‖v‖2 + ‖z‖2 .

We have equality here IFF z = ~0, i.e, u was parallel
to v all along. �
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Distance of flat to origin. In a C-IPS V list of
points P1, . . . , P6 engenders this flat (affine subspace)

A :=

{ 6∑
n=1

αnPn

∣∣∣∣ 6∑
n=1

αn = 1

}
.

In order to locate the point Q ∈ A closest to the
orgin, we pick a vector in A, say, P6, and translate A
to parallel subspace S := A− P6. Claim:

S = Spn(d1, . . . ,d5), where dn := Pn − P6.†:

Why? An A-vector a =
∑6
n=1 αnPn has difference-

vector a− P6 equaling

[ 6∑
n=1

αnPn
]
−
[ 6∑
n=1

αn
]
P6 =

5∑
n=1

αndn .

Conversely, given vector
5∑

n=1
αndn in Spn(d1, . . . ,d5),

we can define α6 to be 1 −
∑5
n=1 αn, thus arranging

that
∑6
n=1 αnPn is indeed in A.

To compute the A-pointQ lying closest to the orgin,
we can pick any pt in A, say, P6, and compute

Q = OrthS(P6) = P6 − ProjS(P6) .‡:

Filename: Problems/Algebra/LinearAlg/flat-dist.complexes.latex


