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Common notation. Use PoT for “power of two”; the
PoTs are 1,2,4,....

Use =y to mean “congruent mod N”. Let n L k& mean that
n and k are co-prime [no prime in common].

Use k o n for “k divides n”. Its negation k 7 means “k does
not divide n.” Use n o k and n | k for “n is/is-not a multiple
of k.” Finally, for p a prime and E a natnum: Use double-
verticals, p” ¢| n, to mean that E is the highest power of p
which divides n. Or write n o p” to emphasize that this is an
assertion about n. Use PoT for Power of Two and PoP for
Power of (a) Prime.

For N a posint, use ®(N) or @y for the set
{r€[L.N]|7LN}. The cardinality @(/N) = |®y| is the
Euler phi function. [So ¢(N) is the cardinality of the multi-
plicative group, ®, in the Zx ring.] Easily, Lp(p]“) = [pfl}-pj“ b
for prime p and posint L. Less easily, when K LN, then
P(KN) = @(K)p(N)

Use EFT for the Euler-Fermat Thm, which says: Suppose
that integers b L N, with N positive. Then b®"Y) =y 1.

1: Bézout's lemma. Fach N-tuple (Ki,...,KnN) of integers
admits a Bézout tuple: A tuple (s1,...,sn); of integers s.t
S [siKj) = GCD(K, ..., Kn). O

Defn: The order of an element. Suppose (5, -, 1) is a
semigroup [Written multiplicatively, with unit] which is not
necessarily abelian, nor finite. Fix a y € S. A posint
n is “a period of y” if y™ = 1. Let

Pers(y) = {neZy|y"=1}.

Written Ordg(y) or just Ord(y), the order of y in
(semigroup S) is the infimum of the periods of y; so if
y has no periods [i.e y™ is never 1| then Ord(y) = occ.

Of course, when y has finite order, n, then y is
invertible, since y-y™ ! equals 1. Thus a semigroup in
which every element has finite order is automatically
a group. Consequently, assertions which would gain
no generality if stated for a semigroup S, are stated
for a group G. O

Webpage http://people.clas.ufl.edu/squash/

Integers mod N

An integer y has a mod-N multiplicative-order IFF
y L N. Let Ordy(y) := Ordg, (v) denote this order,
and Pery(y) the set of periods.

2: Prop'n. Suppose posints K & N andy L N. Then
Ordg (y) o Ordn(y). O

Proof.  Let k := Ordg(y). Bézout's thm implies

that Perg(y) equals kZ. For an n € Pery(y), note,
[y*—1] » N o K. Son € KZ. ¢

Given a ring-hom h:T'—T", easily the foward image
of the units h(U) C U’, where U, U’ are the respective
units-groups. Some units in U’ may be missed. E.g,
h:Z—7s5 by © — (x)s.

3: Prop'n.  Fix posints N |¢ K. Let h:Zny—Zk be
the surjective ring-hom x — (x) . Then the h-image
of mult-group ®(N) is all of ®(K). In particular

¥ ®(N) cyclic = ®(K) cyclic.

Hence, if g is an N-primroot, then (g), is a K-
primroot. O

Proof. Let Q := % Take the special case that K 1 ().
Then the CRThm gives a ring-iso f:Zy — ZgXxZg by
z = ((2)g, (x>Q) Ezercise: The set of units in
LZixZLg is P(K)x®(Q). Hence, for y € ®(K): The
set h™!(y) has precisely ¢(Q)-many preimages which
are Zy-units, and @ — ¢(Q) which are zero-divisors.

General case. Alas, K need not be co-prime
to % So let K be the product, over those primes
p o K, of p’», where p’» o N. Evidently K | N/K.

A K-unit y evidently has y L K. By the above
special case, y has a “ K-lift” Y+ tK which is co-prime
to N. And it is also a K-lift, since K o K. ¢

Fields

Let F be a field, and let G be its multiplicative sub-
group; that is, G = F~ {0}. Fix n and consider
all elements in F of period n. These are the roots of
polynomial 2™ — 1. A standard result about fields (see
“Integral domain question”, below) is that a polynomial of
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degree n can have at most n roots. Thus the multi-
plicative group of the field is order-constrained: Say
that a semigroup S is order-constrained if,

For each positive integer n, there are at
most n elements x € S satisfying ™ = 1.

Our goal is to prove this theorem.

5: Field-Cyclic Theorem. Consider F, a finite field
with G = F ~. {0} its multiplicative subgroup. Let
L :=|G|. Then G is cyclic, that is, (G, -, 1) is group-
isomorphic to (Zp,+,0). O

The above theorem is an immediate corollary of the
following, for which we will give two proofs.

6: Cyclic Theorem. Suppose G is a finite group (possi-
bly non-abelian) which is order-constrained. Then G is
cyclic. O

Left to the reader is the easy converse:

6 If G is a finite cyclic group then G is order-
constrained.

Our first proof of (6) will work in general. The
second proof only works for G abelian; however, it
proceeds via the LCM Lemma, which is interesting in
its own right, and which applies even to infinite semi-
groups.

Proof of (6). Let L := |G|. Our goal is to show that
there is an element of order L.

Counting elements in (. For each posint m di-
viding L, let ¢)(m)=1¢(m) denote the number of ele-
ments of G whose order is precisely m. Thus

6a: Z Yg(m) = |G| = L.
me|L
me[l.. L]

Now consider an m for which ¥ (m) is not zero;
so there is an element b € G whose order is m.
This b generates a copy of (Z,,,+,0) inside of G,
and this subgroup exhausts all the elements which
are m-periodic, since GG is order-constrained. Hence
the only elements of order m are those in this copy
of Zy,; and there are ¢(m) of them.

The upshot: Each v(m) is either 0 or is ¢(m). In
particular

6b: For each m: g(m) < ¢(m).

The second proof of (6), when G is abelian

Prof. JLF King

Counting elements in Z;. Let’s apply the same
analysis to (Zr,+), which is order-constrained. For
this group, we know that whenever m divides L there
indeed is an element of order m; namely, the ele-
ment L/m. So 1z, (m) always is ¢o(m). Consequently,
applying (6a) to Zg, provides that

6a’: Y @(m) = |z = L.
me|L
me[l.. L]

The two sums in (6a),(6a’) are equal. Yet (6b)
provides a term-by-term inequality between the sum-
mands. Consequently, the summands must be equal
term-by-term. In particular, ¢)g(L) = (L), which is
positive. So there are elements of order L in G. ¢

The second proof of (6), when G is abelian

Our second proof proceeds via this lemma:

7: LCM Lemma. Suppose S is an abelian semigroup,
which may be infinite. For each two elements a,b € S,
the LCM of their orders, o and 3, is itself the order of
some element in sub-semigroup (a,b) C S.

In the oL § special-case, element ab has order a3.Q

Proof. WLOG both elements have finite order.

When o | 3. Write w := Ord(ab). Since [ab]*’
equals [a®]? - [bP]* = 1.1 = 1, we have that w ¢ af.

Thus ISTShow that .

We need this computation:

since G is abelian,

1 =17 = [[ab]]” =a“’ b7,
=a“hf

So w3 e . Since S L «, necessarily w o .
Similarly, w o 5. So w o af, by co-prime-ness. ¢

The general case. Suppose g1 and go are ele-
ments whose orders, 7; and 2, are not necessarily
co-prime.

For each prime p, let e; = e;(p) be the largest ex-
ponent such that p® ¢ ;. Define the integers N; and
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Ny as the following products over all primes p:

N; is the product of all pe(P) such that
e1(p) = e2(p);
and

Ny is the product of all p®2(P) such that
e1(p) < e2(p).
Automatically, each N; divides 7; and so the element
[g,]77/Yi has order N;. By their definition, N; L No.
Therefore the foregoing special case tells us that there
is an element of order N7 - No. And the product NNy
equals LCM (71, 72). ¢

Proof: Abelian version of the Cyclic Theorem, (6). Let
g1, ...,8r be an enumeration of all the elements of G
and let ~1,...,vr denote their orders. By using the
LCM Lemma L—1 times we conclude that there is an
element b € G whose order is

B = LCM(v1,...,7L), SO
B = Ord(b) o #G.
So every element of G has period 8. Thus #G < 8,

since G is order-constrained. Consequently, the cyclic
subgroup generated by b is all of G. ¢

Questions /Exercises

Note that a commutative ring I" without zero-divisors
(an integral domain) has this property: A polynomial
of degree n can have at most n roots. (First extend T to
its field of fractions, then use synthetic division. Since no zero-

divisors, all roots must appear in the factorization obtained.)

8a: Lemma. A finite ring I" without |non-trivial| zero-
divisors is necessarily a division-ring. (Each non-zero

element has a reciprocal.) O

Proof. Fix a non-zero b € I". The map z + xb is
injective (zb = yb implies [z — y]b = 0, etc.) Since I' is
finite,  — xb is onto. So b has a left-inverse. ¢

8b: Question. This leaves open the question: Are there
non-commutative finite division rings? We can’t ap-
ply the Cyclic Theorem because we can’t use synthetic
division (at least, not directly) to show that the multi-
plicative group is order-constrained.

What do you think? (See wedderburn-thm.latex for

an answer. ) D

Primitive Roots
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Primitive Roots

Each posint N yields an abelian (multiplicative)
group ®(N). If this group is cyclic then each of its
generators is called a “primitive root mod N” or an
N-primroot. There are ¢(¢p(N)) of these primroots.
The foregoing tells us that each prime p has prim-
itive roots, indeed, has ¢(¢(p))=¢(p—1) of them.
One goal of this section is the result below. For wont
of a better term, a posint N is cyclicish if N has a
primroot, that is, if (®(N),-, 1) is a cyclic group.

9: Primroot Theorem. A posint N is cyclicish IFF:
Either N = 1,2,4 or N = p* or N = 2p® for some
oddprime p and posint o. O

Remark. The set of cyclicish numbers is sealed under
factors, courtesy (3x).

Evidently -1 is a primroot mod 1, 2,4. On the other
hand, modulo 8 each member of

{41, 43} 2 §(8)

is an involution (under multiplication). So 8 is not cycli-
cish and thus neither are the higher powers of two.

Suppose we factor N = J - K into co-prime posints.

Then the Chinese Remainder Thm gives a ring-iso
Zn = Zj x Zg and hence a group-isomorphism
B O(N) = OJ)xP(K).
The only posints with odd Euler p-value are 1 and 2.
So co-prime J,K > 3 must have ®(J) and ®(K) both
even; in which case RhS(1) fails™'! to be cyclic. So
the only N (# 1,2,4) which does not permit such a
bad factorization is: J = 1,2 and K is a power of an
oddprime.

To prove (9), consequently, we need but establish
that each p* has a primroot. [The case of 2-p® is im-
mediate, courtesy the (1) group-iso ®(2p*)—®(2)xP(p®), since
®(2) is the trivial gp.| (]

“IThe product group has at least two elements of order-2,
but an even-cardinality cyclic group has a unique order-2 elt.
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10: Prime-squared Theorem.  Fixing a prime p, the
group ®(p?) is cyclic. Equivalently, the number of p*-
primroots is

note

e(p(p?) == @(p-1) - [p-1].
Indeed, this strengthening holds.

For each p-primroot g:

10':  The sum g+pt is a p>-primroot for exactly ¢
p—1 many values of t € [0 .. p).

Pf. Below, the symbol = means congruence mod p?.
Let
w = w = Ordy(g+pt).

Then ¢(p) ¢ w, since g+pt is a p-primroot. By EFT
(Well. .. Lagrange’s thm), w O| go(p2). Thus

o w oo

So g+pt is a p?-primroot IFF w = [p—1]p IFF

p—1 [p—1]p.

w # p—1. Establishing (10’) is equivalent to demon-
strating:
107 For at least p—1values of t € [0..p) we

have that wy # p—1.

(EX(‘,r: Why equivalent? Pigeon-hole Principle must have some-

thing to do with it, but what are the deLails‘?)

So we may freely assume that, say, wg = p—1,
ie gP~! = 1, in order to prove that the other
w; # p—1, i.e to prove: For each t € [1..p),

10a: g+pt)Pt =1 £ 0.
By the Binomial Thm, LhS(10a) equals

(&P — 1]+
gp_2~(pzl)p1t1 +
g” % (PP 4+ g ()P

The first and third lines are divisible by p%. (Why?)

Thus
LhS(10a) = [gP*[p—1]-t]-p,

and we want to show this not divisible by p?.
Dividing the above by p, our objective becomes

gP~2.[p—1]-t L p. This latter is true since g L p

and t L p, since t # 0. ¢

Primitive Roots
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Remark. [N.B: The preceding proof works for all primes,
including p = 2.| The Niven, Zuckerman, Montgomery
text (“NzZM?») has a neat proof of (10), by means of

Hensel's lemma. O
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Primitive roots for powers higher than two.
Fix integers g and D and N>2. Each exponent
a € [D ..o0) yields a proposition

Nla—D] = 1 moduloN¢
Qg(0): g is and Is ,
# 1 modulo N“+!

which may be true or false.
11: Lifting Lemma. Fix N, D, g, « from above.

it If @« > 2 then Qg(ar) = Qg+ 1).

ii: If N is oddprime then Qg(1) = Qg(2). ¢

Proof. Let 8 :=a+1and v =+ 1; so a, 3,7
are three consecutive integers. Assume Qg(c); this
implies that

gNaiD = 1+ N°, forsomet} N.

From this, our goal is to derive Qg (). Well

gV = 1+ NN

N
= 1+ (DNt + 3 (F) e,
j=2

by the Binomial Thm. Rewriting

gV =14 NP+

Has (NN o (YN

Factoring out N2¢ gives

11b: gV’ = 14+ NPt + N2° . Integer.

Both (i) and (ii) have v > 1, so 2 > . Thus
RhS(116) = 1 (mod N?).

That is, the upper line of proposition Qg(3) holds.

Non-congruence. Let == mean .
Since t } N, establishing that RhS(11a) # 1 will fol-

low from

Primitive Roots
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NB*D ?

1 4 [NP-4].

*: g
The a>2 case is immediate, since 2a > «v and so
RhS(11b) =1+ N*t.
For the a=1 case, our goal becomes

N27D ?

1+ N2t,

Kk g

We can

where here, our == means modulo N3.
write RhS(11a) as 1+ N?t + A + B, where

A= N2+ (NN 4o (NN
B = YNV,

But NV =0, since exponent N > 3. Thus B==0.
Lastly, N is prime so () N, for each £ € [2.. N).
Hence (]X) -N¢=0. Thus A =0. ¢

11c: Appl. Fixing an oddprime p, let’s use the Lifting
lemma to get our hands on primitive roots mod p®.
The map x +— (z),0-1 from ®(p®) to P(p* 1) is a
surjective group homomorphism. So if h is a p®-
primroot then it is a primroot mod all lower powers,

po=l pe=2 . p? pl.

We’d like to go in the other direction and Ilift
primroots h. Let’s examine the Qg(a) property,
above (11), when N := p and D := 1 and g := hP~ 1,
Notice that gN[a_D] equals hlP=1P* ™ o pe(p®),

For o =1,2,..., assertion Qg(«) is equivalent to

Qn(a): h*(P*) {51 modulo p® }

and is
#1 modulo p®t!

Of course, if h is known to be Lp, then @h(a) is
equivalent to

Rh(a): h‘p(pa) ¢pa+l 1 5

since the top line of Qy(«) is EFT. O

11d: Corollary (of the Lifting lemma). Suppose p is prime
and h L p. Then
Rn(1) == Run(2) = Rn(3) = Rn(4) = ...,

where implication (x) holds when p is odd. O
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Remark. Trivially ¢(p®*1) does not divide ¢(p®), so
12:  [Integer h is a p**'-primroot] = Ry(a)

for each o« > 0. O

Remark.  The following thm, together with Prime-
squared Thm (10), will establish the Primroot Theo-
rem. ([l

13: Primroot Lifting Thm. Consider an oddprime p. If
integer h is a p’-primroot for some i > 2, then h is a
primroot mod all powers p, p2, p3, p*,. ... O

Proof. Let 1y = Ordpe(h), i.e in the (multiplicative)

group B(p%). So 71 4 7 4 s 4 ..., since H(p*))
is a quotient-group of ®(p*). Our goal is to proof
that 7, equals ¢(p%), for each o > 3, given that
no = (p?) |; the boxed is the weakest form of the

hypothesis.
Proceeding by induction, suppose 7, = ¢(p®) and

make nﬁ;go(pﬁ) our objective, where 8 = a+ 1.
Thus (p*) = 710 o 15 o p(p7), ic.

[p=11p*"" o 71 o [p—1]p".

Our goal of ng = [p—1]p® is thus equivalent to

ng # [p—1]p* 1L, ie, to ng $(p®), ie, to Ru(a).
Finally,

Ru(a) < Ru(1) < [his a p?-primroot],

courtesy (11d) and (12). ¢

Structure of ®(2V)

Prof. JLF King

Structure of ®(2")

For N =1,2,..., let Gn be the (multiplicative) group
(I)(QN); SO ’GN’ = oN-1, [Below7 angle-brackets (-) mean
“the subgroup generated by”.]

14: PoT Lemma. For each N € [2..00): There exists
a posodd Dy such that

T 5

oN—-2

1+ 2V.-Dy.
Let Fr := (5)g, and oy = |Fn| = Ordg, (5). Then

Ine oN =
Group Gy is generated by {-1,5}. Indeed,

Gy Is isomorphic to (Zg,+) x (Zon-2,+)
14":  via the map generated by -1+ (1,0) and ¢
5+ (0,1).

Proof of (fy41)- High-school algebra gives
{DN+1 = Dy + [Dy]?-2V71) by squaring (fy).

This Dy 1 odd, since 2V~ is even, since N—1 > 1.4

Pfof ({x,1). Equality (1) implies 52" =ni

1. Le, oxy1 o 2V~1. So statement

is equivalent to showing that 52" is not congruent
to 1, modulo 2VH1.

Now Dy is odd, so 2VDy =yv+1 2V, By (fy),
then,

52N72 =9N+1 1+ 2N.

And this RhS is not mod-2V*! congruent to 1. ¢

Pf of (14”). The Fy-subgroup, says ({y), is half of G .
Since -1€G is an involution, and G is abelian, as-
sertion (14') is equivalent to showing that -1 is not
in Fiy. But were there a k with [1 + 5*] jo 2V then
[1+5% @4, since N>2 But 1+5° =, 2 #,0. ¢
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Carmichael’s lambda

The Carmichael function \:Z,—7Z, is a variant
of Euler-phi: A(V) is the smallest posint K so that:

Vel N: 2K =y 1.

Equivalently, A(N) is “the exponent of group
(®(N),-,1)”. In the case of a prime,

Alp) = o(p) = p—1,
since (®(p), -,1) is cyclic, by Field-Cyclic Thm, (5).
Factoring N = p;“' - ... p;° into distinct prime-
powers gives, by CRThm, a group-isomorphism
O(N) = O(py) x -+ x D(p,°F). Thus

= )\(N) = LCNI(A(IJIQ% ctt )‘(pLeL)) .

When N is square-free (each e, = 1) we can specify.

If N = py-py-...-py with primes distinct, then
15 A(N) = LOM(p, =1, pp — 1,..., pp — 1).

A() is not multiplicative. E.g, A(3-5) equals
LCM(A(3),A(5)) = LCM(2,4) =4 #2 - 4.

Generalizing Fermat. Posint N is fermatish if

16: Ve L N: V1 =y 1.
In other words, N is fermatish IFF
16: A(N) o N—1.

That primes are fermatish was shown by ...Fermat.
A fermatish N is a Carmichael number if it is not
prime. Is N prime? If we test (16) for several
values of x, a Carmichael number always fools us.
The first few Carmichael numbers are

561 = 3-11-17 and

1105 = 5-13-17 and

1729 = 7-13-19.

17: Korselt's Thm (1899). A posint N is fermatish IFF
N is square-free and

¥: p—1 & N—1, for each prime p o N. O

Proof (<). By hypothesis, RhS(15") divides N—1.
Hence LhS(15') of N—1. We have (16"). ¢

Carmichael’s lambda
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Proof (=). We have A(N) ¢ N—1. Since N—1 L N,
this forces A(N) L N. So to show that N must be

square-free, ISTShow [If p? ¢ N then p 4 )\(N).] So
by (15) it suffices to establish

If e>2 then p o A(p®).

This holds for p := 2, since the element -1 has order-
2 modulo 2¢, once e > 2.

For p odd, this holds since A(p®) = ¢(p°), by the
Primroot theorem, (9).

We now have (15) —which implies, given a
prime p o N, that p—1 ¢ A(N). And A(N) o N—1,
since N is fermatish. ¢

18: Corollary. A posint N is a Carmichael number IFF
N is square-free with (17%¥), and has at least three
prime factors. O

Pf. To rule out the two-factor case, FTSOC suppose
N = pg with p#£q primes. By hyp, p—1 divides

N-1 22 [p-1]g + [g-1].

Hence p—1 ¢ g—1. By symmetry, p—1 | g—1. Both
are posints, so p—1 = g—1. ¢

Slightly generalizing (15). The Primroot thm implies
that A(p®) = ¢(p©), when p is an odd prime. Write

N = 7:-p,...op*,

where 7 is a PoT, and p,,...,py are distinct odd-
primes. The PoT Lemma says A(7) equals 7/4, for
7=8,16,32,.... So

}‘(N) - I-CNI(A(T)u Qo(p262)7 R (lo(pLEL)) )

where A(1)=A(2)=1 and A\(4)=2.
When N has at least one odd prime then

ACN) = LOM(2, A7), Hy, oo Ho, [Bplf])

where by :=e; — 1, and Hy = [p, — 1]/2. O
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