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Common notation. Use PoT for “power of two”; the
PoTs are 1, 2, 4, . . . .

Use ≡N to mean “congruent mod N ”. Let n ⊥ k mean that
n and k are co-prime [no prime in common].

Use k •| n for “k divides n”. Its negation k �r| n means “k does
not divide n.” Use n |• k and nr|� k for “n is/is-not a multiple
of k.” Finally, for p a prime and E a natnum: Use double-
verticals, pE •|| n, to mean that E is the highest power of p
which divides n. Or write n ||• pE to emphasize that this is an
assertion about n. Use PoT for Power of Two and PoP for
Power of (a) Prime.

For N a posint, use Φ(N) or ΦN for the set
{r ∈ [1 .. N ] | r⊥N}. The cardinality ϕ(N) := |ΦN | is the
Euler phi function. [So ϕ(N) is the cardinality of the multi-
plicative group, ΦN , in the ZN ring.] Easily, ϕ(pL) = [p−1]·pL−1,
for prime p and posint L. Less easily, when K⊥N , then
ϕ(KN) = ϕ(K)·ϕ(N)

Use EFT for the Euler-Fermat Thm, which says: Suppose
that integers b ⊥ N , with N positive. Then bϕ(N) ≡N 1.

1: Bézout’s lemma. Each N -tuple (((K1, . . . ,KN))) of integers
admits a Bézout tuple: A tuple (((s1, . . . , sN))); of integers s.t∑N
j=1 [sjKj ] = GCD(K1, . . . ,KN ). ♦

Defn: The order of an element. Suppose (((S, ·, 1))) is a
semigroup [written multiplicatively, with unit] which is not
necessarily abelian, nor finite. Fix a y ∈ S. A posint
n is “a period of y ” if yn = 1 . Let

PerS(y) :=
{
n ∈ Z+

∣∣ yn = 1
}
.

Written OrdS(y) or just Ord(y), the order of y in
(semigroup S) is the infimum of the periods of y; so if
y has no periods [i.e yn is never 1 ] then Ord(y) =∞.

Of course, when y has finite order, n, then y is
invertible, since y ·yn−1 equals 1 . Thus a semigroup in
which every element has finite order is automatically
a group. Consequently, assertions which would gain
no generality if stated for a semigroup S, are stated
for a group G. �

Integers mod N

An integer y has a mod-N multiplicative-order IFF
y ⊥ N . Let OrdN (y) := OrdΦN (y) denote this order,
and PerN (y) the set of periods.

2: Prop’n. Suppose posints K •| N and y ⊥ N . Then
OrdK(y) •| OrdN (y). ♦

Proof. Let k := OrdK(y). Bézout’s thm implies
that PerK(y) equals kZ. For an n ∈ PerN (y), note,
[yn − 1] |• N |• K. So n ∈ kZ. �

Given a ring-hom h:Γ→Γ′, easily the foward image
of the units h(U) ⊂ U ′, where U,U ′ are the respective
units-groups. Some units in U ′ may be missed. E.g,
h:Z�Z5 by x 7→ 〈x〉5.

3: Prop’n. Fix posints N |• K. Let h:ZN→ZK be
the surjective ring-hom x 7→ 〈x〉K . Then the h-image
of mult-group Φ(N) is all of Φ(K). In particular

Φ(N) cyclic =⇒ Φ(K) cyclic.∗:

Hence, if g is an N -primroot, then 〈g〉K is a K-
primroot. ♦

Proof. Let Q := N
K . Take the special case that K ⊥ Q.

Then the CRThm gives a ring-iso f :ZN→ZK×ZQ by
x 7→

(((
〈x〉K , 〈x〉Q

)))
. Exercise: The set of units in

ZK×ZQ is Φ(K)×Φ(Q). Hence, for y ∈ Φ(K): The
set h 1(y) has precisely ϕ(Q)-many preimages which
are ZN -units, and Q−ϕ(Q) which are zero-divisors.

General case. Alas, K need not be co-prime
to N

K . So let K̃ be the product, over those primes
p •| K, of p`p , where p`p •|| N . Evidently K̃ ⊥ N/K̃.

A K-unit y evidently has y ⊥ K̃. By the above
special case, y has a “K̃-lift” y + tK̃ which is co-prime
to N . And it is also a K-lift, since K •| K̃. �

Fields

Let F be a field, and let G be its multiplicative sub-
group; that is, G := Fr {0}. Fix n and consider
all elements in F of period n. These are the roots of
polynomial xn−1. A standard result about fields (see
“Integral domain question”, below) is that a polynomial of
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degree n can have at most n roots. Thus the multi-
plicative group of the field is order-constrained : Say
that a semigroup S is order-constrained if,

For each positive integer n, there are at
most n elements x ∈ S satisfying xn = 1.4:

Our goal is to prove this theorem.

5: Field-Cyclic Theorem. Consider F, a finite field
with G := Fr {0} its multiplicative subgroup. Let
L := |G|. Then G is cyclic, that is, (((G, · , 1))) is group-
isomorphic to (((ZL,+, 0))). ♦

The above theorem is an immediate corollary of the
following, for which we will give two proofs.

6: Cyclic Theorem. Suppose G is a finite group (possi-
bly non-abelian) which is order-constrained. Then G is
cyclic. ♦

Left to the reader is the easy converse:
If G is a finite cyclic group then G is order-
constrained.

6′:

Our first proof of (6) will work in general. The
second proof only works for G abelian; however, it
proceeds via the LCM Lemma, which is interesting in
its own right, and which applies even to infinite semi-
groups.

Proof of (6). Let L := |G|. Our goal is to show that
there is an element of order L.

Counting elements in G. For each posint m di-
viding L, let ψ(m)=ψG(m) denote the number of ele-
ments of G whose order is precisely m. Thus∑

m•|L
m∈[1 .. L]

ψG(m) = |G| = L .6a:

Now consider an m for which ψ(m) is not zero;
so there is an element b ∈ G whose order is m.
This b generates a copy of (((Zm,+, 0))) inside of G,
and this subgroup exhausts all the elements which
are m-periodic , since G is order-constrained. Hence
the only elements of order m are those in this copy
of Zm; and there are ϕ(m) of them.

The upshot: Each ψ(m) is either 0 or is ϕ(m). In
particular

For each m: ψG(m) ≤ ϕ(m) .6b:

Counting elements in ZL. Let’s apply the same
analysis to (((ZL,+))), which is order-constrained. For
this group, we know that whenever m divides L there
indeed is an element of order m; namely, the ele-
ment L/m. So ψZL(m) always is ϕ(m). Consequently,
applying (6a) to ZL provides that∑

m•|L
m∈[1 .. L]

ϕ(m) =
∣∣ZL∣∣ = L .6a′:

The two sums in (6a),(6a′) are equal. Yet (6b)
provides a term-by-term inequality between the sum-
mands. Consequently, the summands must be equal
term-by-term. In particular, ψG(L) = ϕ(L), which is
positive. So there are elements of order L in G. �

The second proof of (6), when G is abelian

Our second proof proceeds via this lemma:

7: LCM Lemma. Suppose S is an abelian semigroup,
which may be infinite. For each two elements a,b ∈ S,
the LCM of their orders, α and β, is itself the order of
some element in sub-semigroup 〈a,b〉 ⊂ S.

In the α⊥β special-case, element ab has order αβ.♦

Proof. WLOG both elements have finite order.

When α ⊥ β. Write ω := Ord(ab). Since [ab]αβ

equals [aα]β · [bβ]α = 1 · 1 = 1, we have that ω •| αβ.
Thus ISTShow that

�� ��ω |• αβ .
We need this computation:

1 = 1β =
[
[ab]ω

]β
= aωβ[bβ]ω , since G is abelian,

= aωβ .

So ωβ |• α. Since β ⊥ α, necessarily ω |• α.
Similarly, ω |• β. So ω |• αβ, by co-prime-ness. ♦

The general case. Suppose g1 and g2 are ele-
ments whose orders, γ1 and γ2, are not necessarily
co-prime.

For each prime p, let ej = ej(p) be the largest ex-
ponent such that pej •| γj . Define the integers N1 and
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N2 as the following products over all primes p:

N1 is the product of all pe1(p) such that
e1(p) ≥ e2(p);

and

N2 is the product of all pe2(p) such that
e1(p) < e2(p).

Automatically, each Nj divides γj and so the element
[gj ]

γj/Nj has order Nj . By their definition, N1 ⊥ N2.
Therefore the foregoing special case tells us that there
is an element of order N1 ·N2. And the product N1N2

equals LCM(γ1, γ2). �

Proof: Abelian version of the Cyclic Theorem, (6). Let
g1, . . . ,gL be an enumeration of all the elements of G
and let γ1, . . . , γL denote their orders. By using the
LCM Lemma L−1 times we conclude that there is an
element b ∈ G whose order is

β := LCM(γ1, . . . , γL) , so

β = Ord(b) •| #G .

So every element of G has period β. Thus #G ≤ β,
since G is order-constrained. Consequently, the cyclic
subgroup generated by b is all of G. �

Questions/Exercises

Note that a commutative ring Γ without zero-divisors
(an integral domain) has this property: A polynomial
of degree n can have at most n roots. (First extend Γ to
its field of fractions, then use synthetic division. Since no zero-
divisors, all roots must appear in the factorization obtained.)

8a: Lemma. A finite ring Γ without [non-trivial] zero-
divisors is necessarily a division-ring. (Each non-zero
element has a reciprocal.) ♦

Proof. Fix a non-zero b ∈ Γ. The map x 7→ xb is
injective (xb = yb implies [x − y]b = 0, etc.) Since Γ is
finite, x 7→ xb is onto. So b has a left-inverse. �

8b: Question.This leaves open the question: Are there
non-commutative finite division rings? We can’t ap-
ply the Cyclic Theorem because we can’t use synthetic
division (at least, not directly) to show that the multi-
plicative group is order-constrained.

What do you think? (See wedderburn-thm.latex for
an answer.) �

Primitive Roots
Each posint N yields an abelian (multiplicative)
group Φ(N). If this group is cyclic then each of its
generators is called a “primitive root modN ” or an
N-primroot. There are ϕ

(
ϕ(N)

)
of these primroots.

The foregoing tells us that each prime p has prim-
itive roots, indeed, has ϕ

(
ϕ(p)

)
=ϕ(p−1) of them.

One goal of this section is the result below. For wont
of a better term, a posint N is cyclicish if N has a
primroot, that is, if

(((
Φ(N), · , 1

)))
is a cyclic group.

9: Primroot Theorem. A posint N is cyclicish IFF:
Either N = 1, 2, 4 or N = pα or N = 2pα for some
oddprime p and posint α. ♦

Remark. The set of cyclicish numbers is sealed under
factors, courtesy (3∗).

Evidently 1 is a primroot mod 1, 2, 4. On the other
hand, modulo 8 each member of

{±1,±3} note
=== Φ(8)

is an involution (under multiplication). So 8 is not cycli-
cish and thus neither are the higher powers of two.

Suppose we factor N = J ·K into co-prime posints.
Then the Chinese Remainder Thm gives a ring-iso
ZN ∼= ZJ × ZK and hence a group-isomorphism

Φ(N) ∼= Φ(J)× Φ(K) .†:

The only posints with odd Euler ϕ-value are 1 and 2.
So co-prime J,K ≥ 3 must have Φ(J) and Φ(K) both
even; in which case RhS(†) fails♥1 to be cyclic. So
the only N (6= 1, 2, 4) which does not permit such a
bad factorization is: J = 1, 2 and K is a power of an
oddprime.

To prove (9), consequently, we need but establish
that each pα has a primroot. [The case of 2 · pα is im-
mediate, courtesy the (†) group-iso Φ(2pα)→Φ(2)×Φ(pα), since
Φ(2) is the trivial gp.] �

♥1The product group has at least two elements of order-2,
but an even-cardinality cyclic group has a unique order-2 elt.
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Page 4 of 9 Primitive Roots Prof. JLF King

10: Prime-squared Theorem. Fixing a prime p, the
group Φ(p2) is cyclic. Equivalently, the number of p2-
primroots is

ϕ
(
ϕ(p2)

) note
=== ϕ(p−1) · [p−1] .

Indeed, this strengthening holds.

For each p-primroot g:
The sum g+pt is a p2-primroot for exactly
p−1 many values of t ∈ [0 .. p).

10′: ♦

Pf. Below, the symbol ≡ means congruencemod p2.
Let

ω = ωt := Ordp2(g+pt) .

Then ϕ(p) •| ω, since g+pt is a p-primroot. By EFT
(well. . . Lagrange’s thm), ω •| ϕ(p2). Thus

p−1 •| ω •| [p−1]p .

So g+pt is a p2-primroot IFF ω = [p−1]p IFF
ω 6= p−1. Establishing (10′) is equivalent to demon-
strating:

For at least p−1 values of t ∈ [0 .. p) we
have that ωt 6= p−1.

10′′:

(Exer: Why equivalent? Pigeon-hole Principle must have some-
thing to do with it, but what are the details?)
So we may freely assume that, say, ω0 = p−1,
i.e gp−1 ≡ 1, in order to prove that the other
ωt 6= p−1, i.e to prove: For each t ∈ [1 .. p),

[g+pt]p−1 − 1 6≡ 0 .10a:

By the Binomial Thm, LhS(10a) equals[
gp−1 − 1

]
+

gp−2·
(p−1

1

)
p1t1 +

gp−3·
(p−1

2

)
p2t2 + . . .+ g0·

(p−1
p−1

)
pp−1tp−1 .

The first and third lines are divisible by p2. (Why?)
Thus

LhS(10a) ≡
[
gp−2·[p−1]· t

]
·p ,

and we want to show this not divisible by p2.
Dividing the above by p, our objective becomes

gp−2·[p−1]· t ⊥ p. This latter is true since g ⊥ p
and t ⊥ p, since t 6= 0. �

Remark. [N.B: The preceding proof works for all primes,
including p = 2.] The Niven, Zuckerman, Montgomery
text (“NZM”) has a neat proof of (10), by means of
Hensel’s lemma. �
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Primitive roots for powers higher than two.
Fix integers g and D and N≥2. Each exponent
α ∈ [D ..∞) yields a proposition

gN
[α−D]

is

≡ 1 moduloNα

and is
6≡ 1 moduloNα+1

 ,Qg(α):

which may be true or false.

11: Lifting Lemma. Fix N,D,g, α from above.

i : If α ≥ 2 then Qg(α) =⇒ Qg(α+ 1).

ii : If N is oddprime then Qg(1) =⇒ Qg(2). ♦

Proof. Let β := α + 1 and γ := β + 1; so α, β, γ
are three consecutive integers. Assume Qg(α); this
implies that

gN
α−D

= 1 +Nαt , for some tr|� N .

From this, our goal is to derive Qg(β). Well

gN
β−D

= [1 +Nαt]N

= 1 +
(N

1

)
Nαt +

N∑
j=2

(N
j

)
N jα tj ,

by the Binomial Thm. Rewriting

gN
β−D

= 1 + Nβt +(N
2

)
N2αt2 + · · ·+

(N
N

)
NNαtN .

11a:

Factoring out N2α gives

gN
β−D

= 1 +Nβt + N2α · Integer .11b:

Both (i) and (ii) have α ≥ 1, so 2α ≥ β. Thus

RhS(11b) ≡ 1 (mod Nβ) .

That is, the upper line of proposition Qg(β) holds.

Non-congruence. Let ≡≡≡ mean
�� ��moduloNγ .

Since tr|� N , establishing that RhS(11a) 6≡ 1 will fol-
low from

gN
β−D ?≡≡≡ 1 + [Nβ· t] .∗:

The α≥2 case is immediate, since 2α ≥ γ and so
RhS(11b)≡≡≡ 1 +Nβt.

For the α=1 case, our goal becomes

gN
2−D ?≡≡≡ 1 + N2· t ,∗∗:

where here, our ≡≡≡ means moduloN3. We can
write RhS(11a) as 1 +N2t+A+B, where

A :=
(N

2

)
N2t2 +

(N
3

)
N3t3 + · · ·+

( N
N−1

)
NN−1tN−1 ;

B :=
(N
N

)
NN tN .

But NN ≡ 0, since exponent N ≥ 3. Thus B≡≡≡ 0.
Lastly, N is prime so

(N
`

)
|• N , for each ` ∈ [2 .. N).

Hence
(N
`

)
·N ` ≡ 0. Thus A ≡ 0. �

11c: Appl. Fixing an oddprime p, let’s use the Lifting
lemma to get our hands on primitive roots mod pα.
The map x 7→ 〈x〉pα−1 from Φ(pα) to Φ(pα−1) is a
surjective group homomorphism. So if h is a pα-
primroot then it is a primroot mod all lower powers,
pα−1, pα−2, . . . , p2, p1.

We’d like to go in the other direction and lift
primroots h. Let’s examine the Qg(α) property,
above (11), when N := p and D := 1 and g := hp−1.
Notice that gN

[α−D] equals h[p−1]p[α−1] , i.e hϕ(pα).
For α = 1, 2, . . . , assertion Qg(α) is equivalent to

hϕ(pα) is

≡ 1 modulo pα
and is
6≡ 1 modulo pα+1

 .Q̃h(α):

Of course, if h is known to be ⊥p, then Q̃h(α) is
equivalent to

hϕ(pα) 6≡pα+1 1 ,Rh(α):

since the top line of Q̃h(α) is EFT. �

11d: Corollary (of the Lifting lemma). Suppose p is prime
and h ⊥ p. Then

Rh(1)
∗

=⇒ Rh(2)⇒ Rh(3)⇒ Rh(4)⇒ . . . ,

where implication (∗) holds when p is odd. ♦
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Remark. Trivially ϕ(pα+1) does not divide ϕ(pα), so[
Integer h is a pα+1–primroot

]
=⇒ Rh(α)12:

for each α ≥ 0. �

Remark. The following thm, together with Prime-
squared Thm (10), will establish the Primroot Theo-
rem. �

13: Primroot Lifting Thm. Consider an oddprime p. If
integer h is a pi-primroot for some i ≥ 2, then h is a
primroot mod all powers p, p2, p3, p4, . . . . ♦

Proof. Let ηα := Ordpα(h), i.e in the (multiplicative)
group Φ(pα). So η1 •| η2 •| η3 •| . . . , since Φ(pα−1)
is a quotient-group of Φ(pα). Our goal is to proof
that ηα equals ϕ(pα), for each α ≥ 3, given that�� ��η2 = ϕ(p2) ; the boxed is the weakest form of the
hypothesis.

Proceeding by induction, suppose ηα = ϕ(pα) and
make ηβ

?
=ϕ(pβ) our objective, where β := α+ 1.

Thus ϕ(pα) = ηα •| ηβ •| ϕ(pβ), ie.

[p−1]pα−1 •| ηβ •| [p−1]pα .

Our goal of ηβ = [p−1]pα is thus equivalent to
ηβ 6= [p−1]pα−1, i.e, to ηβ �r| ϕ(pα), i.e, to Rh(α).

Finally,

Rh(α) ⇐ Rh(1) ⇐ [h is a p2-primroot] ,

courtesy (11d) and (12). �

Structure of Φ(2N )

For N = 1, 2, . . . , let GN be the (multiplicative) group
Φ(2N ); so |GN | = 2N−1. [Below, angle-brackets 〈·〉 mean
“the subgroup generated by”.]

14: PoT Lemma. For each N ∈ [2 ..∞): There exists
a posodd DN such that

52N−2
= 1 + 2N ·DN .†N :

Let FN := 〈5〉GN and oN := |FN | = OrdGN (5). Then

oN = 2N−2 .‡N :

Group GN is generated by { 1, 5}. Indeed,

GN is isomorphic to (((Z2,+))) × (((Z2N−2 ,+)))
via the map generated by 1 7→ (((1, 0))) and
5 7→ (((0, 1))).

14′: ♦

Proof of (†N+1). High-school algebra gives�� ��DN+1 = DN + [DN ]2 · 2N−1 , by squaring (†N ).
This DN+1 odd, since 2N−1 is even, since N−1 ≥ 1.�

Pf of (‡N+1). Equality (†N+1) implies 52N−1 ≡2N+1

1. I.e, oN+1 •| 2N−1. So statement
�� ��oN+1 = 2N−1

is equivalent to showing that 52N−2 is not congruent
to 1, modulo 2N+1.

Now DN is odd, so 2NDN ≡2N+1 2N . By (†N ),
then,

52N−2 ≡2N+1 1 + 2N .

And this RhS is not mod-2N+1 congruent to 1. �

Pf of (14′).The FN -subgroup, says (†N ), is half of GN .
Since 1∈GN is an involution, and GN is abelian, as-
sertion (14′) is equivalent to showing that 1 is not
in FN . But were there a k with [1 + 5k] |• 2N , then
[1 + 5k] |• 4, since N ≥ 2. But 1 + 5k ≡4 2 6≡4 0. �
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Carmichael’s lambda

The Carmichael function λ:Z+→Z+ is a variant
of Euler-phi: λ(N) is the smallest posint K so that:

∀x ⊥ N : xK ≡N 1 .

Equivalently, λ(N) is “the exponent of group(((
Φ(N), · , 1

)))
” . In the case of a prime,

λ(p) = ϕ(p) = p−1 ,

since (((Φ(p), · , 1))) is cyclic, by Field-Cyclic Thm, (5).
Factoring N = p1

e1 · . . . · pLeL into distinct prime-
powers gives, by CRThm, a group-isomorphism

Φ(N) ∼= Φ(p1
e1)× · · · × Φ(pL

eL) . Thus
λ(N) = LCM

(
λ(p1

e1), . . . ,λ(pL
eL)
)
.

15:

When N is square-free (each e` = 1) we can specify.
If N = p1 · p2 · . . . · pL with primes distinct, then
λ(N) = LCM

(
p1 − 1, p2 − 1, . . . , pL − 1

)
.15′:

λ() is not multiplicative. E.g, λ(3 · 5) equals
LCM

(
λ(3),λ(5)

)
= LCM(2, 4) = 4 6= 2 · 4.

Generalizing Fermat. Posint N is fermatish if

∀x ⊥ N : xN−1 ≡N 1 .16:

In other words, N is fermatish IFF

λ(N) •| N−1 .16′:

That primes are fermatish was shown by . . . Fermat.
A fermatish N is a Carmichael number if it is not
prime. Is N prime? If we test (16) for several
values of x, a Carmichael number always fools us.

The first few Carmichael numbers are
561 = 3 · 11 · 17 and

1105 = 5 · 13 · 17 and
1729 = 7 · 13 · 19 .

17: Korselt’s Thm (1899). A posint N is fermatish IFF
N is square-free and

p−1 •| N−1 , for each prime p •| N .U: ♦

Proof (⇐). By hypothesis, RhS(15′) divides N−1.
Hence LhS(15′) •| N−1. We have (16′). �

Proof (⇒). We have λ(N) •| N−1. Since N−1 ⊥ N ,
this forces λ(N) ⊥ N . So to show that N must be
square-free, ISTShow

�� ��If p2 •| N then p •| λ(N). So
by (15) it suffices to establish

If e ≥ 2 then p •| λ(pe).

This holds for p := 2, since the element 1 has order-
2 modulo 2e, once e ≥ 2.

For p odd, this holds since λ(pe) = ϕ(pe), by the
Primroot theorem, (9).

We now have (15′) —which implies, given a
prime p •| N , that p−1 •| λ(N). And λ(N) •| N−1,
since N is fermatish. �

18: Corollary. A posint N is a Carmichael number IFF
N is square-free with (17U), and has at least three
prime factors. ♦

Pf. To rule out the two-factor case, FTSOC suppose
N = pq with p 6=q primes. By hyp, p−1 divides

N−1
note
=== [p−1]q + [q−1] .

Hence p−1 •| q−1. By symmetry, p−1 |• q−1. Both
are posints, so p−1 = q−1. �

Slightly generalizing (15). The Primroot thm implies
that λ(pe) = ϕ(pe), when p is an odd prime. Write

N = τ · p2
e2 · . . . · pLeL ,

where τ is a PoT, and p2, . . . , pL are distinct odd-
primes. The PoT Lemma says λ(τ) equals τ/4, for
τ=8, 16, 32, . . . . So

λ(N) = LCM
(
λ(τ), ϕ(p2

e2), . . . , ϕ(pL
eL)
)
,

where λ(1)=λ(2)=1 and λ(4)=2.
When N has at least one odd prime then

λ(N) = LCM
(
2, λ(τ), H1, ..., HL, [pb22 ·...·p

bL
L ]
)
,

where b` := e` − 1, and H` := [p` − 1]/2. �
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Carmichael function, 7
Carmichael number, 7
cyclicish, 3

division-ring, 3

Euler phi, 1

fermatish, 7

integral domain, 3

NZM, 4

order, 1
order-constrained, 2

period
of an element, 1

PoT, 1
primitive root, 3
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