

Ending the semester in Style

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

Webpage <http://squash.1gainesville.com/>

28 March, 2017 (at 17:20)

Entrance. 11 Dec., 1995

B1: Suppose (Ω, \mathcal{T}) is a topological space and \mathcal{C} is a prebase for \mathcal{T} . Say that an open cover (of Ω) is “good” if it

has a finite subcover. i Suppose \mathcal{T} is not compact. Use AC or Zorn’s lemma to prove that there exists a *maximal* bad \mathcal{T} -cover \mathcal{M} . That is, every open cover $\mathcal{M}' \supsetneq \mathcal{M}$ is necessarily good.

ii Prove that if \mathcal{M} is a maximal bad \mathcal{T} -cover, then $\mathcal{M} \cap \mathcal{C}$ is a cover of Ω .

iii Use (i) and (ii) to prove the **Alexander Prebase Lemma**: *If every \mathcal{C} -cover is good then every \mathcal{T} -cover is good, i.e, \mathcal{T} is compact.*

B2: a Property “Stavros”: *For every point p and neighborhood N of p there exists a nbhd V of p whose closure $\bar{V} \subset N$.* Is “Stavros” equivalent to one of the separation (T_0 - T_4 , regular, normal) properties? Prove your result.

b On \mathbb{R} , give an example of two distinct topologies, $\mathcal{T} \neq \mathcal{B}$, which are sequentially-equivalent, $\mathcal{T} \asymp \mathcal{B}$.

B3: Let $\mathbf{J} := [0, 1]$. You may use, without proof, the Schröder-Bernstein thm and the following.

a₁: $\mathbb{R} \asymp \{0, 1\}^{\mathbb{N}}$.

a₂: $\mathbb{N} \times \mathbb{R} \asymp \mathbb{R}$.

a₃: For each three sets Ω, B, D : $\Omega^{B \times D} \asymp [\Omega^B]^D$.

a₄: The set $S := \mathbb{Q} \cap \mathbf{J}$ is countable.

Prove that $\mathbf{C}(\mathbf{J})$, the set of continuous functions $\mathbf{J} \rightarrow \mathbb{R}$, is bijective with \mathbb{R} . Cite each **(a_i)** where you use it. Specify what Ω, B, D are, when you apply **(a₃)**. [Note: Does your proof split into easily-understood lemmas?]

B4: Let Ω be the half-plane $[0, \infty) \times \mathbb{R}$, let \mathcal{T} be the tangent-disk topology on Ω and let \mathcal{U} be the usual (metric) topology on the half-plane.

Prove or provide (with proof) a CEX: *If $K \subset \Omega$ is \mathcal{T} -closed then K is \mathcal{U} -closed.*

B5: Let $X := \bigotimes_{j=1}^{\infty} Y_j$, where $Y_j := [0, 1]$. Equip X with the *box topology* \mathcal{B} . a Prove or disprove: (X, \mathcal{B}) is metrizable.

b

Show that (X, \mathcal{B}) is *not* sequentially compact by giving an explicit sequence $\vec{x} := (x_n)_{n=1}^{\infty} \subset X$ and proving that \vec{x} has no convergent subsequence.

c

Prove or disprove: *The box space (X, \mathcal{B}) is compact.*