

List of some topology problems

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage <http://squash.1gainesville.com/>
28 March, 2017 (at 17:20)

8 Dec., 1995: Almost all of the problems on the final will come from this list; of course, this list is much much ... much longer than the final will be!

Take a look at the first page of “World’s Longest Proof of Tychonoff’s Theorem” for an example of a compact space which is not sequentially-compact.

Use AC for the Axiom of Choice. Use CMS for complete metric space.

Cardinalities

B1: State and prove the Schröder-Bernstein theorem.

B2: [bij-CantorDiag.prove.tex](#) Cantor Diagonalization Thm: For each set B , there does not exist a surjection $B \rightarrow \mathcal{P}(B)$.

B3: [a](#) Give an example where the two sets $A^{B \times C}$ and $A^{[B^C]}$ are *not* bijective. On the other hand, for every three sets A, B, C prove that $A^{B \times C} \asymp [A^B]^C$.

[b](#) Prove that $\mathbb{R} \asymp \{0, 1\}^{\mathbb{N}}$.

[c](#) Prove that $\mathbb{R}^2 \asymp \mathbb{R}$. Prove that $\mathbb{R}^{\mathbb{N}} \asymp \mathbb{R}$.

B4: [bij-Cts>reals.E.tex](#) Let $\mathbf{J} := [0, 1]$.

Prove that $\mathbf{C}(\mathbf{J})$, the set of *continuous* functions $\mathbf{J} \rightarrow \mathbb{R}$, is bijective with \mathbb{R} . Cite each **(a_i)** where you use it. Specify what Ω, B, D are, when you apply **(a₃)**. [Note: Does your proof split into easily-understood lemmas?]

Metric spaces

B5: Prove or give a counter-example: If (Y, m) is a metric space then Y is normal.

B6: Prove or give a counter-example: If (X, d) is a CMS of finite diameter then X is sequentially-compact.

B7: Prove or give a counter-example: Every subset of $[0, 1]$ (usual topology) is either residual or meager.

B8: [closed-is-gdelta.tex](#) In metric space (X, d) prove that: [a](#) Every closed $K \subset X$ is a \mathcal{G}_δ -set.

[b](#)

Let \mathcal{T} be the co-finite topology on $X := \mathbb{R}$. Prove that assertion (a) is false here.

B9: Let (X, d) be a metric space. Then there exists a bounded metric ρ on X which is Cauchy-equivalent to d .

B10: A *completion* of a metric space (X, d) is a diagram $f: (X, d) \rightarrow (\Omega, \rho)$ where (Ω, ρ) is a CMS, and $f: \hookrightarrow X, \Omega$ is an into-isometry with dense range.

[a](#)

Show that every metric space (X, d) has a completion.

[b](#)

If (Ω_0, ρ_0) and (Ω_1, ρ_1) are completions of X , show that Ω_1 is isometric with Ω_0 .

[a](#)

B11: Suppose (Y, m) is a CMS and $\mathcal{D} \subset Y$ is a finite set. Construct a metric m' on $Y' := Y \setminus \mathcal{D}$ with m' topologically-equivalent to $m|_{Y'}$, so that (Y', m') is complete.

[b](#)

Do the same but where \mathcal{D} is a denumerable subset of Y .

B12: [sup-metr-is-complete.tex](#) From a metric space (X, m) , construct the metric space $\Omega := \mathbf{C}_{\text{Bnd}}(X, \mathbb{R})$ with the supremum metric

$$d(f, g) := \|f - g\|_{\sup}.$$

(Notes, P. 19; the set of *continuous* and *bounded* fns.)

Prove that Ω is complete by first showing, for each d -Cauchy sequence $(f_n)_{n=1}^\infty$, that for all x the limit

$$h(x) := \lim_{n \rightarrow \infty} f_n(x)$$

exists in \mathbb{R} , by using the completeness of \mathbb{R} . Next show that h is continuous; don’t just cite uniform-convergence –give a *proof*. Finally, show that h is bnded and that $d(f_n, h) \rightarrow 0$.

B13: Prove Baire’s theorem: In a CMS (X, μ) , every residual subset $R \subset X$ is dense.

B14: Let Ω be the metric space $\mathbf{C}_{\text{Bnd}}((0, 1))$ with the supremum metric $d(f, g) := \|f - g\|_{\sup}$. Let $R \subset \Omega$ be the collection of nowhere differentiable functions. Show that R is a residual subset of Ω .

B15: Let G be the set of real numbers α such that for all positive ε and positive integers D : There exists a rational p/q in lowest terms with

$$\left| \alpha - \frac{p}{q} \right| < \frac{1}{q^D} < \varepsilon.$$

Determine, with proof, whether G is residual, meager, or neither.

General topology

B16: `bufferable1.tex` Property “Sam”: For every point p and neighborhood N of p there exists a nbhd V of p whose closure $\bar{V} \subset N$. Is “Sam” equivalent to one of the separation (T_0 – T_4 , regular, normal) properties? Prove your result.

 On \mathbb{R} , give an example of two distinct topologies, $\mathcal{T} \neq \mathcal{B}$, which are sequentially-equivalent, $\mathcal{T} \asymp \mathcal{B}$.

B17: Give an example of a space (X, \mathcal{T}) which is *not* Locally Countably Generated.

 On \mathbb{R} , give an example of two topologies $\mathcal{T} \neq \mathcal{B}$ which are sequentially-equivalent, $\mathcal{T} \asymp \mathcal{B}$.

B18: Suppose $C_1 \supset C_2 \supset C_3 \dots$ are non-empty, closed, compact subsets of a space X . Prove that $\bigcap_{n=1}^{\infty} C_n$ is non-empty.

B19: `alexander-prebase.tych.tex` Suppose (Ω, \mathcal{T}) is a topological space and \mathcal{C} is a prebase for \mathcal{T} . Say that an open cover (of Ω) is “good” if it has a finite subcover.

 Suppose \mathcal{T} is not compact. Use AC or Zorn’s lemma to prove that there exists a *maximal* bad \mathcal{T} -cover \mathcal{M} . That is, every open cover $\mathcal{M}' \supsetneqq \mathcal{M}$ is necessarily good.

 Prove that if \mathcal{M} is a maximal bad \mathcal{T} -cover, then $\mathcal{M} \cap \mathcal{C}$ is a cover of Ω .

 Use (i) and (ii) to prove the **Alexander Prebase Lemma**: If every \mathcal{C} -cover is good then every \mathcal{T} -cover is good, i.e., \mathcal{T} is compact.

 State Tychonoff’s theorem. Now prove this theorem using some form of AC together with the **Alexander Prebase lemma**.

B20: Give, with proof, an example of a compact space which is not sequentially-compact.