

Brief answers to *Ending the semester in Style*

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

Webpage <http://people.clas.ufl.edu/squash/>

2 September, 2015 (at 02:21)

11 Dec., 1995. Here are some answers, but without proofs.

B1: Suppose (Ω, \mathcal{T}) is a topological space and \mathcal{C} is a prebase for \mathcal{T} . Say that an open cover (of Ω) is “good” if it has a finite subcover...

An answer: You can find this in Folland's **Real Analysis**.

B2: Property “Stavros”: For every point p and neighborhood N of p there exists a nbhd V of p whose closure $\overline{V} \subset N$. Is “Stavros” equivalent to one of the separation (T_0 – T_4 , regular, normal) properties? Prove your result.

An answer: “Stavros” is equivalent to T_3 ; a closed set can be separated from a singleton via disjoint open sets.

b On \mathbb{R} , give an example of two distinct topologies, $\mathcal{T} \neq \mathcal{B}$, which are sequentially-equivalent, $\mathcal{T} \asymp \mathcal{B}$.

An answer: On \mathbb{R} , for both the co-countable topology and the discrete topology, the only convergent sequences are the eventually-constant sequences. (The co-finite topology has other convergent sequences.)

B3: Let $\mathbf{J} := [0, 1]$. You may use, without proof, the Schröder-Bernstein thm and the following.

a₁: $\mathbb{R} \asymp \{0, 1\}^{\mathbb{N}}$. **a₂:** $\mathbb{N} \times \mathbb{R} \asymp \mathbb{R}$.

a₃: For each three sets Ω, B, D : $\Omega^{B \times D} \asymp [\Omega^B]^D$.

a₄: The set $S := \mathbb{Q} \cap \mathbf{J}$ is countable.

Prove that **C(J)**, the set of continuous functions $\mathbf{J} \rightarrow \mathbb{R}$, is bijective with \mathbb{R} . Cite each **(a_i)** where you use it. Specify what Ω, B, D are, when you apply **(a₃)**. [Note: Does your proof split into easily-understood lemmas?]

B4: Let Ω be the half-plane $[0, \infty) \times \mathbb{R}$, let \mathcal{T} be the tangent-disk topology on Ω and let \mathcal{U} be the usual (metric) topology on the half-plane.

Prove or provide (with proof) a CEX: If $K \subset \Omega$ is \mathcal{T} -closed then K is \mathcal{U} -closed.

An answer: The implication fails. Let $p = (17, 0)$ on the x -axis. Let B be the radius-5 \mathcal{U} -openBall centered at $(17, 5)$; so $B' := B \cup \{p\}$ is \mathcal{T} -open. Thus $K := \Omega \setminus B'$ is \mathcal{T} -closed; so p is not in its \mathcal{T} -closure. Yet the \mathcal{U} -closure of K does own p .

B5: Let $X := \bigotimes_{j=1}^{\infty} Y_j$, where $Y_j := [0, 1]$. Equip X with the box topology \mathcal{B} . Prove or disprove: (X, \mathcal{B}) is metrizable.

An answer: This space is not metrizable. You can use a Cantor Diagonalization argument to show that the space fails to be Locally Countably Generated.

b Show that (X, \mathcal{B}) is not sequentially compact by giving an explicit sequence $\vec{x} := (x_n)_{n=1}^{\infty} \subset X$ and proving that \vec{x} has no convergent subsequence.

An answer: Let x_n be the tuple $(1, 1, \dots, 1, 0, 0, \dots)$ in X .

c Prove or disprove: The box space (X, \mathcal{B}) is compact.

An answer: This space is not compact. Let K be the collection $\{x_n\}_{n=1}^{\infty}$ defined in part (b). This set K is \mathcal{B} -closed and so, were X compact, would be compact. But the relative topology on K is discrete. Thus, since K is infinite, K is not compact.