

ACT
MAA4212 3009

Home-F

Prof. JLF King
Touch: 6May2016

Carefully TYPE a triple-spaced, grammatical, essay solving the problem. I suggest L^AT_EX. Due date/time: **The beginning of class, Friday, 16Jan2009.**

Essays violate the CHECKLIST at Grade Peril...

F1: Below, X is a MS. The Setting for all parts:

*: Fncts $g, f_n: X \rightarrow \mathbb{R}$ with $f_n \searrow g$ pointwise.

Let “ \vec{f} is cts” mean that each f_n is continuous. Use $\|\cdot\|$ for the supremum-norm, $\|\cdot\|_{\sup}$, on fncts.

Z Please carefully prove t.fol theorem.

1: Nested uniform-conv thm (Nested UC). Suppose (*), with g cts and \vec{f} cts. Then $f_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} g$ if either:

i: Space X is compact, or

ii: $\forall \varepsilon > 0, \exists$ an index $K = K(\varepsilon)$ such that the set

$$B_\varepsilon := \{x \in X \mid [f_K - g](x) \geq \varepsilon\}$$

is compact. \diamond

[Generalizing: Let $B_{n,\varepsilon}$ denote $\{x \in X \mid [f_n - g](x) \geq \varepsilon\}$.]

[Hint: Argue carefully (but briefly!) that “WLOG, g is the constant-zero function”. I.e, having redefined each f_n , you’ll need to show that the new \vec{f} is continuous, and is nested, and pointwise-converges to $\mathbf{0}$. And you’ll NTShow that [new \vec{f} conv-uniformly to $\mathbf{0}$] implies that [orig \vec{f} conv-uniformly to g].

Having done this, likely you can argue that the sequence $[n \mapsto \|f_n\|]$ is non-incr. The crux of the problem is to prove that these numbers decrease to zero(!) Don’t wave your hands.]

CEXes. In each of t.fol, you are to construct functions g, \vec{f} and space X fulfilling (*), yet $\|f_n - g\|$ does not go to zero. Indeed, $\|f_n - g\| \geq 1$ for each n .

Each soln below should have labeled graphs of its f_n and g functions. Place each graph appropriately in its solution-description; don’t just shove all the pictures to the end of your write-up.

a Here, X is cpt and \vec{f} is cts, but g might not be.

b Here, X is cpt and $g = \mathbf{0}$ but \vec{f} is not-nec cts.

c Here, $g = \mathbf{0}$ and \vec{f} is cts, but X is not-nec cpt.

F2: For $N=1, 2, \dots$, define $b_N := \frac{i}{\sqrt{N}} \in \mathbb{C}$. Create functions $F_N: \mathbb{C} \rightarrow \mathbb{C}$ by

$$F_N(z) := \exp\left(\frac{-N}{1+Nz^2}\right), \quad \text{for } z \notin \{b_N, -b_N\};$$

$$F_N(\pm b_N) := 0.$$

On the **punctured complex plane** $\mathbb{C}^\circ := \mathbb{C} \setminus \{0\}$, let $M(z) := \exp(-1/z^2)$. Define $L|_{\mathbb{C}^\circ} := M$ and $L(0) := 0$, analogous to what we did in PROJECT E.

d Function $L()$ is continuous at the origin: **T** **F**

e Dis/Prove that \vec{F} pointwise-converges to L .

f Dis/Prove that \vec{F} uniformly-converges to L .

End of Home-F

F1: _____ 120pts

F2: _____ 45pts

In L^AT_EX: _____ 10pts

Poorly stapled, or missing ordinal : _____ -5pts

Missing name, or honor signature : _____ -5pts

Total: _____ 165pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* **Name/Signature/Ord**

Ord: _____

Ord: _____

Ord: _____