

F1: *Show no work. Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.*

a Let $\mathbf{J} := [0, 1]$. A map $h: \mathbf{J} \rightarrow \mathbb{R}$ is **Lipschitz cts** IFF

.....

.....
An example of a *continuous* but not Lipschitz $f: \mathbf{J} \rightarrow \mathbb{R}$, which is *differentiable* on $\mathbf{J}^\circ = (0, 1)$ is

$f(x) :=$
.....

b Suppose function $G: [7, 9] \rightarrow \mathbb{R}$ is discontinuous on a dense set, and is non-increasing. For the statement “ G is Riemann integrable”, the best line:

No-such-functions-exist

Always-True

Sometime-True--Sometimes-False

Always-False

Essay questions, triple-spaced. Start each essay on a new sheet of paper.

F2: For two real normed-vectorspaces $(\mathbf{V}, \|\cdot\|)$ and $(\mathbf{H}, \|\cdot\|)$, define what it means for a map $L: \mathbf{V} \rightarrow \mathbf{H}$ to be **linear**.

β At point $P \in \mathbf{V}$, define precisely what it means for a map $f: \mathbf{V} \rightarrow \mathbf{H}$ to be “**differentiable** at P ”. (This is sometimes called the “total derivative”.) If your defn needs them, use $\mathbf{0}_\mathbf{V}$ and $\mathbf{0}_\mathbf{H}$ for the zero-vectors in the two spaces. Use the correct symbol, $\|\cdot\|$ or $[\cdot]$, if you use the norms in your defn.

F3: Fnc $f(x) := x^3 + 3x^2 + x$ mapping $\mathbb{R} \rightarrow \mathbb{R}$ has many fixed-points. Classify each as repelling,

attracting, left-attract right-repel, right-attract left-repel. f -fixed-pnts:

$x =$ is: **R A LA-RR RA-LR**

For each fixed-point, use a full sheet of paper to graph f and the appropriate line on the same coord-system, and draw the Verhulst diagram (cobweb plot) of an f -orbit starting near the fixed-point. Draw arrows, so I see which way is “time-going-forward” on the Verhulst diagram.

F4: Define a (*uniform*) **contraction map** [on what kind of space?] and a **weak-contraction map**.

Carefully state the Contraction mapping theorem, both parts.

Prove the Contraction mapping theorem.

End of Class-F

F1: _____ 50pts

F2: _____ 35pts

F3: _____ 65pts

Poorly stapled, or missing _____ 90pts

name or honor sig: _____ -15pts

Not triple-spaced: _____ -15pts

Total: _____ 240pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____