

Staple!

Combinatorics 2
MAD4204

Class-F

Prof. JLF King
Touch: 2Apr2017**F1:** Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Use OGF/EGF for Ordinary/Exponential Generating Func.

a Coeff of x^{12} in $1/[1+x^4]^6$ is**b** Suppose $G(x)$ is the OGF of seq. $\vec{b} = (b_0, b_1, \dots)$, where b_n is the number of partitions of n whose parts are primes < 9 . Then $G(x) =$ **c** With c_n the n^{th} Catalan number, then $c_3 =$ The recurrence relation satisfied by $C(x)$, the OGF of \vec{c} , is**d** With $a_0 := 1$, and $a_{n+1} := n!$, the EGF of \vec{a} is [A “closed formula”; no summation sign.]**e** There are $\binom{K}{J}$ many [diagonal] lattice-paths from point $(0, 2)$ to $(15, 5)$, where $K =$ and $J =$ Such a path is **bad**, if it touches the x -axis. And $|\text{BAD}| = \binom{N}{L}$, where $N =$ and $L =$ OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines.**F2:** Let r_n be the number of ways of painting the elements of $[1..n]$, with evenly many of them *Amber*, oddly many *Blue*, and the rest *Cream*. [Each element has just one color. Note that zero is even.] So $r_3 =$ **i** Let $R(x) \xrightarrow{\text{EGF}} \vec{r}$. Write $R(x)$ as $A(x) \cdot B(x) \cdot C(x)$, for the three EGFs of sequences $\vec{a}, \vec{b}, \vec{c}$ that you explicitly define.**ii** Compute $A(x), B(x)$ and $C(x)$. Compute $R(x)$.**iii** A “closed formula” for $r_n =$ Does your formula give the value for r_3 that you computed above? (Did you remember to fill-in the blank, there?)

End of Class-F

F1: _____ 100pts**F2:** _____ 95pts**Total:** _____ 195pts