

Staple!

Combinatorics
MAD4204 4563

Class-F

Prof. JLF King
Wedn., 21Mar2018

Ord: _____

Welcome. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.**F5:** Short answer. Show no work.

a

Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*, and the due date for the emailed-PDF is **March 28**, but he'd like a draft a few days earlier. Circle:

Yes

True

Yeah, man!

b

For $K \geq 1$, the K -dim' al **hypercube-graph** U_K has 2^K vertices; the bit-sequences of length- K . Two vertices are connected by an edge IFF their bit-seqs differ in a single position. [So U_2 and U_3 are the edge-graphs of the square and cube.] Thus $|\text{Aut}(U_K)| =$ _____.

c

The n vertices of a *connected, simple* graph G all have the same degree. When G has 22 edges, the values of n are (list, separated by commas): _____.

OYOP: *In grammatical English sentences, write your essays on every third line* (usually), so that I can easily write between the lines. Start each essay on a new sheet-of-paper.

F6: For $N \geq 3$, let D_N be the complete graph K_N but with one edge removed; so D_N has $\binom{N}{2} - 1$ edges. Let $f(N)$ be the number of spantrees of D_N .

i

Compute $f(3) =$ _____ by drawing each spantree isomorphism-type and counting how often it occurs. Do the same for $f(4) =$ _____.

ii

Numbering the vertices $1, 2, \dots, N$, with the removed-edge being between vertices $N-1$ and N , exhibit (draw it LARGE) the Laplacian matrix $L = L(D_N)$.

iii

(Draw matrices L_0 , H and U , LARGE and unambiguous.) Remove the last row and column from L to produce a reduced-Laplacian L_0 .

Replacing the first row by the sum of all the rows, produces matrix H . Adding the first H -row to all the others, creates upper-triangular matrix U . Thus

#Spantrees(D_N) = _____.

F7: For $N \geq 3$ prove, as we did in class, that an N -vertex di-connected tournament admits a [directed] Hamiltonian cycle.

End of Class-F

F5: _____ 50pts**F6:** _____ 50pts**F7:** _____ 40pts**Total:** _____ 140pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord

Ord: _____