

The Ben Problems

Autumn 2015 LinAlg class

Webpage <http://squash.1gainesville.com/course.DfyQ.2015t.html>

16 March, 2016 (at 00:33)

Standing notation. Symbols $\mathbf{V}, \mathbf{W}, \mathbf{H}$ denote vectorspaces, unless stated otherwise.

To indicate that sets A, B are disjoint, I may write $A \sqcap B$ rather than $A \cap B = \emptyset$. A pair of sets $\mathcal{A}, \mathcal{B} \subset \mathbf{V}$ is *span-disjoint* if

$$\mathcal{A} \sqcap \text{Spn}(\mathcal{B}) \text{ and } \text{Spn}(\mathcal{A}) \sqcap \mathcal{B}.$$

Use VS to abbreviate ‘vectorspace’, and VSS abbreviates ‘VectorSubSpace’. \square

Ben1: “Push-forwards of VSSes are VSSes.”

Consider a linear map $T: \mathbf{V} \xrightarrow{\text{VSS}} \mathbf{H}$, and $\mathbf{W} \subset \mathbf{V}$. Prove that $T(\mathbf{W})$ is a VSS of \mathbf{H} .

Ben2: Consider a span-disjoint pair $\mathcal{A}, \mathcal{B} \subset \mathbf{V}$ such that \mathcal{A} is L.I and \mathcal{B} is L.I, and each set is finite. Prove, or provide a CEX: *Union $\mathcal{A} \cup \mathcal{B}$ is L.I.*

[In class we proved that when $\mathcal{B} = \{\mathbf{v}\}$ is a singleton, then “yes”, union $\mathcal{A} \cup \{\mathbf{v}\}$ is L.I.]

Ben3: Collection $\mathcal{Y} \subset \text{MAT}_{3 \times 3}(\mathbb{R})$, where

$$\mathcal{Y} := \{\mathbf{v}^t \cdot \mathbf{w} \mid \mathbf{v}, \mathbf{w} \in \text{MAT}_{1 \times 3}\}.$$

Since $\text{MAT}_{3 \times 3}$ has 9 degrees-of-freedom whereas \mathcal{Y} has only 6, our \mathcal{Y} is *not* all of $\text{MAT}_{3 \times 3}$. Prove, or disprove: *Our \mathcal{Y} is a VSS of $\text{MAT}_{3 \times 3}$.*

Ben4: Evidently $\mathcal{W} \subset \text{MAT}_{2 \times 2}$, where

$$\mathcal{W} := \{\mathbf{v}^t \cdot \mathbf{w} \mid \mathbf{v}, \mathbf{w} \in \text{MAT}_{1 \times 2}\}.$$

Prove, or provide a CEX: *This \mathcal{W} is all of $\text{MAT}_{2 \times 2}$.*

Ben5: Does $\mathcal{Y} := \{\mathbf{v}^t \cdot \mathbf{w} \mid \mathbf{v}, \mathbf{w} \in \text{MAT}_{1 \times 3}\}$ span $\text{MAT}_{3 \times 3}$? I.e, does $\text{Spn}(\mathcal{Y}) \stackrel{?}{=} \text{MAT}_{3 \times 3}$?