

The Euler-line of a triangle

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 23 September, 2017 (at 15:19)

Proof. Since $\|B\| = \|C\|$ [because $P \in \text{PerpBisect}(\overline{BC})$] points, $P, B, B+C, C$ form the vertices of a rhombus. Thus point $B+C$ is the reflection of P across \overleftrightarrow{BC} . ♦

Nomenclature. Fix points B and C .

Use \overline{BC} for the *line-segment* with those endpts, and use $\text{Len}(\overline{BC})$ or just BC for its length.

Use \overleftrightarrow{BC} for the ray starting at B and traversing C .

Use \overleftrightarrow{BC} for the *line* that B and C determine.

As sets, then, $\overleftrightarrow{BC} \supset \overrightarrow{BC} \supset \overline{BC}$. And $C \in \overline{BC}$.

[If $B = C$ then the segment, ray and line are degenerate.]

Defn. The “ W -altitude” of $\mathbf{T} := \triangle UVW$ ” is the line through W which is orthogonal to edge \overline{UV} . Three particular points associated with \mathbf{T} are:

$$\text{CircumCenter}(\mathbf{T}) := \bigcap \{\text{Perp-bisectors of } \mathbf{T}\};$$

$$\text{Centroid}(\mathbf{T}) := \bigcap \{\text{Medians of } \mathbf{T}\};$$

$$\text{OrthoCenter}(\mathbf{T}) := \bigcap \{\text{Altitudes of } \mathbf{T}\}. \quad \square$$

1: Euler-line Theorem. For triangle $\mathbf{T} := \triangle UVW$, let

$$\mathbf{P} := \text{CircumCenter}(\mathbf{T}),$$

$$1a: \quad \mathbf{Q} := \text{Centroid}(\mathbf{T}) \quad \text{and}$$

$$\mathbf{R} := \text{OrthoCenter}(\mathbf{T}).$$

Then this triple is collinear in that order, and

$$1b: \quad \text{Dist}(\mathbf{R}, \mathbf{Q}) = 2 \cdot \text{Dist}(\mathbf{Q}, \mathbf{P}).$$

If \mathbf{T} is equilateral, then points $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ coincide; otherwise, no two of $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ coincide. ◇

Vectors. Take an arbitrary point P in the plane. If we regard P as the origin, then we can view the plane as a vectorspace. How? Well, for each point X , interpret X as the vector from- P -to- X . Write the (Euclidean) length of this vector as $\|X\|$; this is $\text{Len}(\overline{PX})$. ◻

2: Lemma. Fix a line-segment \overline{BC} . Consider a point P on the perp-bisector of \overline{BC} . Viewing P as the origin of a vectorspace, vector $B + C$ is orthogonal^{◇1} to \overline{BC} . ◇

^{◇1}If P is also on \overleftrightarrow{BC} , then $B = -C$, i.e $B + C$ is the zero-vector. The conclusion remains true, as the zero-vector is orthogonal to all vectors.

Pf of (1). View \mathbf{P} , the circumcenter of \mathbf{T} , as the origin of a vectorspace. Define the vector sum

$$H := U + V + W.$$

Since \mathbf{P} is on $\text{PerpBisect}(\overline{UV})$, vector $U + V$ is orthogonal to \overline{UV} . Thus $W + [U + V]$ is on the line through W perpendicular to \overline{UV} . IOWords, H is on the W -altitude of \mathbf{T} .

Since vector-addition is commutative and associative, we can write H as

$$V + [W + U] \quad \text{and as} \quad U + [V + W].$$

Hence H also lies on the V and U -altitudes of \mathbf{T} . Thus $H = \mathbf{R}$.

Collinearity. The centroid of \mathbf{T} is the average^{◇2} of \mathbf{T} ’s vertices. The upshot: With \mathbf{P} viewed as the origin of a vectorspace, we have that

$$\begin{aligned} \mathbf{R} &= 1 \cdot [U + V + W]; \\ \mathbf{Q} &= \frac{1}{3} \cdot [U + V + W]; \\ \mathbf{P} &= 0 \cdot [U + V + W]. \end{aligned}$$

These points are multiples of a single vector, hence form a collinear triple [in the given order, the order of their scalars] satisfying (1b).

When $\mathbf{R} = \mathbf{P}$ [i.e, the 3 points coincide]. The U -altitude is $\text{PerpBisect}(\overline{VW})$, so $\triangle VUW$ is isosceles. Similarly, $\triangle UWV$ is isosceles. Thus \mathbf{T} is equilateral. ♦

2nd proof of (1). Use (1a). Let $\mathbf{s} := \triangle uvw$ be the rev-medial triangle of \mathbf{T} ; so U is $\text{Midpt}(\overline{vw})$, etc..

Using similar triangles [perhaps the Reader can provide the Picture?] each \mathbf{s} -median is a \mathbf{T} -median. Hence

$$\text{Centroid}(\mathbf{s}) = \text{Centroid}(\mathbf{T}) \stackrel{\text{def}}{=} \mathbf{Q}.$$

Let $\varphi: \text{Plane} \rightarrow \text{Plane}$ spin the plane about \mathbf{Q} by 180° , then dilate by a factor of two^{◇3}. So φ sends lines

^{◇2}Averaging is an origin-invariant notion, BTWay.

^{◇3}With $(0, 0) := \mathbf{Q}$ the origin, this is the $(x, y) \mapsto (-2x, -2y)$ map.

through Q to themselves, reversing their orientation, and dilating by two. Thus \overleftrightarrow{PQ} is sent to itself, the line $\overleftrightarrow{\varphi(P)Q}$. And

$$* : \text{Dist}(\varphi(P), Q) = 2 \cdot \text{Dist}(P, Q).$$

Note that φ carries T to s , hence carries P to $\text{CircumCenter}(s)$. But $\text{CircumCenter}(s)$ equals $\text{OrthoCenter}(T)$. I.e, $\varphi(P) = R$, thus $\overleftrightarrow{PQ} = \overleftrightarrow{RQ}$, so P, Q, R are collinear. And $(*)$ is a restatement of (1b). \spadesuit

Filename: Problems/Geometry/euler-line.latex
As of: Saturday 03Mar2012. Typeset: 23Sep2017 at 15:19.