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Pointwise convergence

Fix an mpt (7:X,2,u) on a prob.space.
Let An(f) denote the fnc whose value at z is
A%, (f(T"“:c)) Use E(- | -)for the conditional ex-
pectation operator.

The proof below is a symmetrized version of the
Katznelson-Weiss proof.

1: Birkhoff Ergodic Theorem. Fix f € I!(u). Then
this almost-everywhere limit exists,

EC(f 1),

aNe;l;om An(f) =

where . denotes the field of T-invariant sets. <

Reduction. (The crux is proving a.e-convergence. For

then, identifying the limit function as E(f | .#) is not
difficult. ) Let f and f denote the pointwise
lim[sup, inf]y_,  An(f). It suffices to show that

2 /7 < /f-

For applying this to -f yields [ f < [ f. Hence
JT<Jf</[[ Since

JE<Jf yet  FO = [0,

it follows that f % f.
Let fy; denote Max(f, M), for M € Z_. So

ffT2fh>fa>=fs>...,

and the Monotone Convergence Thm, implies
Jfvw N\ [f as M \, —-co. Now suppose we
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had (2) for bounded-below integrable fncs. Ap-
plying (2) to an fy gives [ far = [ fu. BEach
far = f, 0 far > f; hence So the
foregoing MonoCT yields that [f > [f. And
this is (2) for f.

The upshot is that we we may assume that f
is bounded below. And, since p(X) < oo we may
add a constant to assume that | f() > 0|.

Bounding above. We now do another re-
duction, this time sending M "oo. Let

ha() = Min(f(), M) - 4.

Note that h;s is T-invariant. And since

0< h <hy<... and hyf

pointwise, the MonoCT forces [hy 7 [ f.

Thus it suffices to establish [ f > [ h for each
bounded, invariant function h which is exceeded
(pointwise) by f. By scaling both f and h we may
assume the bound is 1. Our goal, having fixed a
positive €, becomes

If a T-invariant function h() < 1 satis-
fies h < limsup Ay(f) pointwise, then
n—oo

/h < 25+/f.

Pf of (1) via (?77").
posint N such that

N-1 )
+: > f(T'z) >
=0

Let W(z) be the smallest

=

-1

h(T'x).

Il
=)

%

The strict inequality in (2') implies that this N
exists since (by T-invariance of k) RhS(%) = h(x).
From this stopping time we will obtain a se-
quence of stopping times.

Fix a sufficiently large constant Wy so that
u(G°) < e, where

G = {x ‘ W(z) < WMaX}.

Page 1 of 2



Page 2 of 2 Pointwise convergence Prof. JLF King
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inductively define stopping times s; and ¢ and
intervals J, as follows:

b, = W(TS’“ (m)) noéte WAlax and
Jk = [Sk .S+ €k) .

Finally, let sp.; is the smallest integer m >
sk + ¢, such that T™(z) € G.

Summing along a name. Fix an N > Wy
and let K = K(z) be the largest index k with
Ji C [O N) Let

Je=1]  J and  J°=[0.N)\T.

By definition of W() we have the inequality
Sieg M(Tix) < ¥y f(Tx). Since f() = 0, then,

S h(Tz) < > f(T'x).

i€ i€[0..N)

Note also that an ¢ can be in J° only if either
i € Jgy1 or if T'(x) € G¢. Since h() < 1 this
gives

Y h(T'z) € Watax + D 1ge(T'x).

icJe i€[0..N)

Adding these two inequalities then dividing by
an N > é-WMaX, yields

¥ XZhTiz) < et X 1ee(Tha) + 5 L f(T').
i€[0.. N) i€[0.. N) i€[0..N)

Observe that this inequality has no mention of
a stopping-time. Thus, there is no issue as to what
it means to integrate it w.r.t . And indeed,

2" /h < 5+M(GC)+/f < e+e+/f

is the result, yielding (??’) as desired. ¢
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