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Pointwise convergence

Fix an mpt (((T : X,X , µ))) on a prob.space.
Let AN(f) denote the fnc whose value at x is

Ak
N

(
f(T kx)

)
. Use E(· | ·)for the conditional ex-

pectation operator.
The proof below is a symmetrized version of the

Katznelson-Weiss proof.

1: Birkhoff Ergodic Theorem. Fix f ∈ L1(µ). Then
this almost-everywhere limit exists,

a. e-lim
N→∞

AN(f) = E(f | I ) ,

where I denotes the field of T -invariant sets. ♦

Reduction. (The crux is proving a.e-convergence. For

then, identifying the limit function as E(f | I ) is not

difficult.) Let f and f denote the pointwise
lim[sup, inf]N→∞AN(f). It suffices to show that∫

f 6
∫
f .2:

For applying this to f yields
∫
f 6

∫
f . Hence∫

f 6
∫
f 6

∫
f . Since

∫
f 6

∫
f yet f() > f() ,

it follows that f
a.e
= f .

Let fM denote Max(f,M), for M ∈ Z−. So

f+ > f 1 > f 2 > f 3 > . . . ,

and the Monotone Convergence Thm, implies∫
fM ↘

∫
f as M ↘ ∞. Now suppose we

had (2) for bounded-below integrable fncs. Ap-
plying (2) to an fM gives

∫
fM >

∫
fM . Each

fM > f , so fM > f ; hence
�� ��∫
fM >

∫
f . So the

foregoing MonoCT yields that
∫
f >

∫
f . And

this is (2) for f .
The upshot is that we we may assume that f

is bounded below. And, since µ(X) <∞ we may

add a constant to assume that f() > 0 .

Bounding above. We now do another re-
duction, this time sending M↗∞. Let

hM() := Min
(
f(),M

)
− 1

M
.

Note that hM is T -invariant. And since

0 6 h1 6 h2 6 . . . and hM↗f

pointwise, the MonoCT forces
∫
hM ↗

∫
f .

Thus it suffices to establish
∫
f >

∫
h for each

bounded, invariant function h which is exceeded
(pointwise) by f . By scaling both f and h we may
assume the bound is 1. Our goal, having fixed a
positive ε, becomes

If a T -invariant function h() 6 1 satis-
fies h < limsup

n→∞
AN(f) pointwise, then∫

h 6 2ε+
∫
f .

2′: �

Pf of (1) via (??′). Let W (x) be the smallest
posint N such that

N−1∑
i=0

f(T ix) >
N−1∑
i=0

h(T ix) .∗:

The strict inequality in (2′) implies that this N
exists since (by T -invariance of h) RhS(∗) = h(x).
From this stopping time we will obtain a se-
quence of stopping times.

Fix a sufficiently large constant WMax so that
µ(Gc) 6 ε, where

G :=
{
x
∣∣∣ W (x) < WMax

}
.

Webpage http://www.math.ufl.edu/∼squash/ Page 1 of 2



Page 2 of 2 Pointwise convergence Prof. JLF King

For an x ∈ X, let s1 = s1(x) be the smallest
m > 0 so that Tm(x) ∈ G. For k = 1, 2, . . .
inductively define stopping times sk and `k and
intervals Jk as follows:

`k := W
(
T sk(x)

) note
6 WMax and

Jk := [sk .. sk + `k) .

Finally, let sk+1 is the smallest integer m >
sk + `k such that Tm(x) ∈ G.

Summing along a name. Fix an N � WMax

and let K = K(x) be the largest index k with
Jk ⊂ [0 .. N). Let

J :=
⊔K

k=1
Jk and Jc := [0 .. N) r J .

By definition of W () we have the inequality∑
i∈J h(T ix) 6

∑
i∈J f(T ix). Since f() > 0, then,∑

i∈J
h(T ix) 6

∑
i∈[0 .. N)

f(T ix) .

Note also that an i can be in Jc only if either
i ∈ JK+1 or if T i(x) ∈ Gc. Since h() 6 1 this
gives ∑

i∈Jc
h(T ix) 6 WMax +

∑
i∈[0 .. N)

1Gc(T ix) .

Adding these two inequalities then dividing by
an N > 1

ε
·WMax, yields

1
N

∑
i∈[0 .. N)

h(T ix) 6 ε+ 1
N

∑
i∈[0 .. N)

1Gc(T ix) + 1
N

∑
i∈[0 .. N)

f(T ix) .

Observe that this inequality has no mention of
a stopping-time. Thus, there is no issue as to what
it means to integrate it w.r.t x. And indeed,∫

h 6 ε+ µ(Gc) +
∫
f 6 ε+ ε+

∫
f2′′:

is the result, yielding (??′) as desired. �
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