

Birkhoff Ergodic Theorem

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
 Webpage <http://www.math.ufl.edu/~squash/>
 8 March, 2013 (at 20:22)

Pointwise convergence

Fix an mpt $(T: X, \mathcal{X}, \mu)$ on a prob.space. Let $\mathbb{A}_N(f)$ denote the fnc whose value at x is $\mathbb{A}_N^k(f(T^k x))$. Use $\mathbb{E}(\cdot | \cdot)$ for the conditional expectation operator.

The proof below is a symmetrized version of the Katznelson-Weiss proof.

1: Birkhoff Ergodic Theorem. *Fix $f \in \mathbb{L}^1(\mu)$. Then this almost-everywhere limit exists,*

$$\text{a.e-}\lim_{N \rightarrow \infty} \mathbb{A}_N(f) = \mathbb{E}(f | \mathcal{I}),$$

where \mathcal{I} denotes the field of T -invariant sets. \diamond

Reduction. (The crux is proving a.e-convergence. For then, identifying the limit function as $\mathbb{E}(f | \mathcal{I})$ is not difficult.) Let \bar{f} and \underline{f} denote the pointwise $\lim[\sup, \inf]_{N \rightarrow \infty} \mathbb{A}_N(f)$. It suffices to show that

$$2: \quad \int \bar{f} \leq \int f.$$

For applying this to $-f$ yields $\int f \leq \int \underline{f}$. Hence $\int \bar{f} \leq \int f \leq \int \underline{f}$. Since

$$\int \bar{f} \leq \int f \quad \text{yet} \quad \bar{f} \geq f,$$

it follows that $\bar{f} \stackrel{\text{a.e.}}{=} f$.

Let f_M denote $\text{Max}(f, M)$, for $M \in \mathbb{Z}_+$. So

$$f^+ \geq f_{-1} \geq f_{-2} \geq f_{-3} \geq \dots,$$

and the Monotone Convergence Thm, implies $\int f_M \searrow \int f$ as $M \searrow -\infty$. Now suppose we

had (2) for bounded-below integrable fncs. Applying (2) to an f_M gives $\int f_M \geq \int \bar{f}$. Each $f_M \geq f$, so $\bar{f} \geq f$; hence $\int f_M \geq \int f$. So the foregoing MonoCT yields that $\int f \geq \int f$. And this is (2) for f .

The upshot is that we we may assume that f is bounded below. And, since $\mu(X) < \infty$ we may add a constant to assume that $f() \geq 0$.

Bounding above. We now do another reduction, this time sending $M \nearrow \infty$. Let

$$h_M() := \text{Min}(\bar{f}(), M) - \frac{1}{M}.$$

Note that h_M is T -invariant. And since

$$0 \leq h_1 \leq h_2 \leq \dots \quad \text{and} \quad h_M \nearrow \bar{f}$$

pointwise, the MonoCT forces $\int h_M \nearrow \int \bar{f}$.

Thus it suffices to establish $\int f \geq \int h$ for each bounded, invariant function h which is exceeded (pointwise) by \bar{f} . By scaling both f and h we may assume the bound is 1. Our goal, having fixed a positive ε , becomes

2': If a T -invariant function $h() \leq 1$ satisfies $h < \limsup_{n \rightarrow \infty} \mathbb{A}_N(f)$ pointwise, then \square

$$\int h \leq 2\varepsilon + \int f.$$

Pf of (1) via (2'). Let $W(x)$ be the smallest posint N such that

$$*: \quad \sum_{i=0}^{N-1} f(T^i x) \geq \sum_{i=0}^{N-1} h(T^i x).$$

The strict inequality in (2') implies that this N exists since (by T -invariance of h) $\text{RhS}(*) = h(x)$. From this **stopping time** we will obtain a sequence of stopping times.

Fix a sufficiently large constant W_{Max} so that $\mu(G^c) \leq \varepsilon$, where

$$G := \{x \mid W(x) < W_{\text{Max}}\}.$$

For an $x \in X$, let $s_1 = s_1(x)$ be the smallest $m \geq 0$ so that $T^m(x) \in G$. For $k = 1, 2, \dots$ inductively define stopping times s_k and ℓ_k and intervals J_k as follows:

$$\ell_k := W(T^{s_k}(x)) \stackrel{\text{note}}{\leq} W_{\text{Max}} \quad \text{and}$$

$$J_k := [s_k .. s_k + \ell_k].$$

Finally, let s_{k+1} is the smallest integer $m \geq s_k + \ell_k$ such that $T^m(x) \in G$.

Summing along a name. Fix an $N \gg W_{\text{Max}}$ and let $K = K(x)$ be the largest index k with $J_k \subset [0 .. N]$. Let

$$\mathbb{J} := \bigsqcup_{k=1}^K J_k \quad \text{and} \quad \mathbb{J}^c := [0 .. N) \setminus \mathbb{J}.$$

By definition of $W()$ we have the inequality $\sum_{i \in \mathbb{J}} h(T^i x) \leq \sum_{i \in \mathbb{J}} f(T^i x)$. Since $f() \geq 0$, then,

$$\sum_{i \in \mathbb{J}} h(T^i x) \leq \sum_{i \in [0 .. N]} f(T^i x).$$

Note also that an i can be in \mathbb{J}^c only if either $i \in J_{K+1}$ or if $T^i(x) \in G^c$. Since $h() \leq 1$ this gives

$$\sum_{i \in \mathbb{J}^c} h(T^i x) \leq W_{\text{Max}} + \sum_{i \in [0 .. N]} \mathbf{1}_{G^c}(T^i x).$$

Adding these two inequalities then dividing by an $N > \frac{1}{\varepsilon} \cdot W_{\text{Max}}$, yields

$$\frac{1}{N} \sum_{i \in [0 .. N]} h(T^i x) \leq \varepsilon + \frac{1}{N} \sum_{i \in [0 .. N]} \mathbf{1}_{G^c}(T^i x) + \frac{1}{N} \sum_{i \in [0 .. N]} f(T^i x).$$

Observe that *this inequality has no mention of a stopping-time*. Thus, there is no issue as to what it means to integrate it w.r.t x . And indeed,

$$2'': \quad \int h \leq \varepsilon + \mu(G^c) + \int f \leq \varepsilon + \varepsilon + \int f$$

is the result, yielding (??') as desired. ◆