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ABSTRACT:
Gauss Lemma.

Proofs of Eisenstein Criterion and the

Nomenclature. Use”! poly for “polynomial”
and coeff for “coefficient”. I will be considering

three polys,

alr) = Ag+ Ax + Agx® + -+ Ay’
B(ZL’) = Bo+B1$—|—"‘+BK$K,
w(r) = Mo+ Mz + Mya® 4 - + Mpa*™,

with each of A;, By, My, non-zero.

My convention is that later coefficients are all de-
fined, and equal zero; so 0 = My, = Mpyo,....
An intpoly is a poly whose coefficients are inte-
Tra-
ditionally, the symbol Z[z] is used for the set of

gers. A ratpoly has rational coefficients.
intpolys, and Q[z| for the collection of ratpolys.
These sets are rings.

A poly « is “a unit” in Z[z], if its reciprocal
is also in Z[z]. There are only two units in Z[z];
the constant polys +1. In Q[z], however, each
constant poly x+>¢q is a unit, where ¢ ranges over

the non-zero rationals.

“IUse =5 to mean “congruent mod N”. Let n L k
mean that n and k are co-prime [no prime in common]|.

Use k o n for “k divides n”. Its negation k $n means
“k does not divide n.” Usen o k and n } k for “n is/is-not a
multiple of k£.” Finally, for p a prime and F a natnum: Use
double-verticals, p” o 7, to mean that E is the highest
power of p which divides n. Or write n [o p” to emphasize
that this is an assertion about n. Use PoT for Power of
Two and PoP for Power of (a) Prime.
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A poly p is “erreducible over Z” if, whenever it
can be factored into intpolys p = af, then either
a or £ is a unit (in Z[z]). Thus 6x — 15 is reducible

over 7, since

2: 6r—15 = 3-[2z—5].
However 6z — 15 is irreducible over Q, since 3 is
a Q-unit.

Reversing a poly. Below is a “trivial” factor-
ing result; I put it here so that we can apply the
Eisenstein criterion to it later.

Say that a poly u is good if its constant term

is non-zero. The reversal of a deg-L good p is
M+ M1z + Mp_o2® + -+ Mzt + Myz® |

denoted by i (x).

“reversal” is an involution.

On the set of good polys,

If a good poly factors as u = af3, then evidently
each of o, f is good.

3: Reverse factor lemma. (Here “factorization” and

“irreducible” mean over Q.) Suppose
E po= ab

is a factorization of a good poly. Then « and f3
are necessarily good and
—
I: w = ap.
Furthermore, (I) is a non-trivial factorization iff
(1) is non-trivial.
In particular, u is irreducible iff % is. So if A

is a non-zero algebraic number, then 1/A is also

an algebraic number, and of the same degree. ¢
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Proof.  The degrees add, L = J + K. Plug *
into (1), then multiply by z%. This produces

ehu(l/z) = 27a(l/z)-2%p(1/2).

And this is simply (I), rewritten.

WLOG each of u, o, 8 is monic. If (1) is trivial,
say o) = 1, then @ () is also 1; so (}) is a trivial
factorization. [The argument uses that we work with

good polys, so that reversal is involutory.] ¢

The Gauss Lemma

To rule out the above “uninteresting” factoriza-
tion (2) over Z, we restrict the polys we look at.
A poly p is primitive if: It is an intpoly with
positive high-order coefficient and the GCD of its

coeffs is 1.

4: Gauss Lemma. The product of primitive polys

is primitive. O

Proof of Gauss lemma. Take a product p =« - f3
of primitive polys. To show p primitive, ISTFix
an arbitrary prime p and produce an index ¢ for

which
4a: M}bp.

Since «, § are primitive, there are smallest in-
dices j,% € N so that
and

At op B} p.

Let £ =7+ k. Then EM( = AB; + S] where S is

the sum, of products A;By, taken over all other

The Gauss Lemma
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pairs j + k = j+k. Relation (4a) is equiva-
lent, since A-B; is not a multiple of p, to showing
that S is a multiple of p. Hence ISTProve that
the product

4b: AJBk IO pP

for each “other” index-pair (j,k). But if j < 7
then A; o p; otherwise j > 7 and thus k < %, in
which case By @ p. Either case yields (4b). ¢

The Gauss content of a non-zip ratpoly pu
is the unique rational number ¢, where we write
() = q-a(), with a() primitive. Write GC(u) = q.

5: Corollary. For non-zip ratpolys py, and s,

GC(p - p2) = GC(pr) - GC((p2) - O

Proof.  Write p;() = q; - a;(), with «; primitive.
Hence p1ps = [q1ge] - anz. By the Gauss Lemma,
aj e is primitive. So GC(p1p2) = q14o- ¢
6: Corollary.  Suppose that a primitive poly p is
irreducible over Z. Then p is Q-irreducible. O

Proof.
i)

Supposing p = pipe over Qx], write

= ¢; - ;(), with a; primitive. But

01q2 = GC(puipe) = GC(p) = 1.

So = ayap. But p is Z[x]-irreducible, so WLOG
as() = £1. Hence ps() is the constant poly g¢a,
which is a Q[x]-unit. ¢

7: Coro. (Rational root thm). Suppose rational num-

ber %, with p L g, is a root of intpoly Byxz"™ +

+++ Bz + By. Then q o By and p ¢ By. O
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Proof. Factoring the intpoly as

lgz —p] - [Cnaz™ 4+ Cra + Co

implies that (Cy—1 = 2] and (Cp = £} Now

GC(Q: > [q:c—p]) is 1, since p L ¢. Thus the
Gauss content of Cy_1zV "t +--- 4+ Cy is an in-
teger. In particular, both Cy_; and Cj are inte-

gers. ¢

We now come to the induction proof that we

have all been waiting for.
8: Eisenstein Criterion (E.C). Consider an intpoly

pw(x) = Mo+ Mz + Mox® + ...+ Mot + Mpal

with M, non-zero. Suppose there exists a prime

number p such that

8a: p> T My,

8b: p Mg, yet

8c: P .‘ M07M17M27"'7ML—1-

Then p is Q-irreducible. O

Erample. The poly p(x) == 5+ 50z + 2% is irre-
ducible, using E.C with the prime 5. Since this p
only has degree 2, we can deduce irreducibility
just from the discriminant 50% — 4 -1 -5, which is

not a perfect square. U

Proof of E.C. Courtesy the Gauss Lemma we may
assume that y is primitive and endeavor to show
that if © = af is a factorization into intpolys as

in (1), then degree J or K indeed equals L.

Example uses of E.C.
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For specificity, suppose that the prime asserted
in the hypotheses is 23. Since 23 o My = Ay By,
WLOG 23 o Aj. Courtesy (8a) then,

8a': 23 ) By.
Suppose we could establish that

8/: A; 23, foreachj=0,1,2,...,L-1.

Were J strictly less than L, then this would imply
that 23 divides all the a-coeffs, hence all the coeffs
of p (since B has integer coeffs). But this latter con-
tradicts (8b). Hence it suffices to establish (?7).

Were (?77?') to fail,
then there would be a smallest value j € [0.. L—1]
for which A; } 23. Multiplying out, M; equals

Inducting along the coeffs.

AjBo + [Aj—lBl + Aj_QBQ + -+ Aij:| .

(If j = 0 then the bracketed sum is empty, hence zero.)
Since j is the smallest bad index, necessarily 23 di-
vides the bracketed sum. Since 23 divides M;, we
conclude that 23 o A;By. And (??') now assures
that 23 ¢ A;; this contradicts that j was bad. 4

Example uses of E.C.

Suppose f is an intpoly which has is no prime
fulfilling the E.C. (Eisenstein criterion). Sometimes
on can find an appropriate integer 71" so that the
translated intpoly

9(z) = f(z+T)

does fulfill E.C. This end-around shows f to be
irreducible. Here is an example.
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9: Cyclo-poly C, s irreducible. Fixing a prime p,
we endeavor to show that the p®* cyclotomic
polynomaal

Colz) =P +aP?+. +a?+o+1

note xp - 1

r—1

is irreducible. Although the E.C (Eisenstein criterion)
doesn’t directly apply to C,, we can apply E.C to
translation ¢(z) = C,(z+1). Expanding,

1P-1 1 4
g(z):&:f. 3 <.p>.za.1k7
z z 02, ULk
JE[l.p]

by the binomial thm. Letting ¢ := j—1, rewrite
this [using M, to denote the coeff of zf] as

= (np ¢ _. = ¢
g(z) = Z%) <£+1> 2= Z%)Mg-z :

For each ¢ € [0.. p—2]: Since p is prime, coeff
M, is a multiple of p; yet M, 2% 1 is not. And
My " p fails to be divisible by p?. The condi-
tions of E.C being satisfied, ¢ is irreducible; hence
so is cyclotomic C,,. O

10: Quartic example. Here is a pretty application
that I read in J. S. Milne’s “Fields and Galois
Theory” at

http://www.jmilne.org/math/CourseNotes/index.html

in pdf form.

One way to show that an intpoly f(z) is irre-
ducible over Z[x] is to produce a prime p for which
f(z) is Zp[z]-irreducible. But there isn’t always
such a p, and here is a nice example.  We will
show that this (note: primitive) polynomial

10a: f(z) = 2" —102* + 1.

is irreducibile as a Q-poly but, for each prime p,
factors non-trivially as a Z,-poly.

In Z, does f have a degree-1 factor, i.e,
an integer root? Well, f(z)=0 becomes

Example uses of E.C.
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1=[10 — 2% - z*. So both z and [10 — z?] must
be =£1; this has no solution.
Could f have a quadratic factor? Then

f(x) = [#* — Az £1] - [2* — Bx +1]

for some A, B € Z. And f(x) has no 23 term, so
B =-A. Thus f(z) = [22+ Bz + 1] - [#?> — Br £ 1], i.e

flz) =

So [B* ¥ 2] = 10. But equation B* = 10+2 has
no integer solution. The upshot is that

vt — [B*F 22® + 1.

10b:  f(z) is Z]x]-irreducible.

10c: Lemma.  For each prime p:  Polynomial
f(x) factors non-trivially over Z,[z]. O

Proof. If 2 is a mod-p square (whether or not 2 L p),
then

10d:  f(z) = [2® — 2V2z — 1] [2® + 2V22 — 1].
Similarly, if 3 is a mod-p square then
10e:  f(z) = [* — 2VBx + 1] [2* + 2V3z + 1].

So WLOG p > 3.

Now 2 L pand 3 L p. So if neither (10d)
nor (10e) applies, then both 2 and 3 are non-
quadratic-residues, mod-p. Thus 2-3 = 6 is a
p-quadratic-residue. And

A:=5+26;
B:=5-26.

This, since A+ B=10and A- B = 1. ¢

10f: f(x) = [2* — A] - [#* — B], where
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