

# Eisenstein Criterion for Irreducibility of a Polynomial : Algebra

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

[squash@ufl.edu](mailto:squash@ufl.edu)

Webpage <http://squash.1gainesville.com/>

2 June, 2023 (at 20:24)

ABSTRACT: Proofs of Eisenstein Criterion and the Gauss Lemma.

**Nomenclature.** Use  $\heartsuit^1$  *poly* for “polynomial” and *coeff* for “coefficient”. I will be considering three polys,

$$\begin{aligned} \alpha(x) &= A_0 + A_1x + A_2x^2 + \cdots + A_Jx^J, \\ \beta(x) &= B_0 + B_1x + \cdots + B_Kx^K, \\ 1: \quad \mu(x) &= M_0 + M_1x + M_2x^2 + \cdots + M_Lx^L, \end{aligned}$$

with each of  $A_J, B_K, M_L$  non-zero.

My convention is that later coefficients are all defined, and equal zero; so  $0 = M_{L+1} = M_{L+2}, \dots$ . An *intpoly* is a poly whose coefficients are integers. A *ratpoly* has rational coefficients. Traditionally, the symbol  $\mathbb{Z}[x]$  is used for the set of int polys, and  $\mathbb{Q}[x]$  for the collection of rat polys. These sets are rings.

A poly  $\alpha$  is “a unit” in  $\mathbb{Z}[x]$ , if its reciprocal is also in  $\mathbb{Z}[x]$ . There are only two units in  $\mathbb{Z}[x]$ ; the constant polys  $\pm 1$ . In  $\mathbb{Q}[x]$ , however, each constant poly  $x \mapsto q$  is a unit, where  $q$  ranges over the non-zero rationals.

<sup>1</sup>Use  $\equiv_N$  to mean “congruent mod  $N$ ”. Let  $n \perp k$  mean that  $n$  and  $k$  are co-prime [no prime in common].

Use  $k \bullet n$  for “ $k$  divides  $n$ ”. Its negation  $k \nmid n$  means “ $k$  does not divide  $n$ .” Use  $n \mid k$  and  $n \nmid k$  for “ $n$  is/is-not a multiple of  $k$ .” Finally, for  $p$  a prime and  $E$  a natnum: Use double-verticals,  $p^E \bullet n$ , to mean that  $E$  is the *highest* power of  $p$  which divides  $n$ . Or write  $n \parallel p^E$  to emphasize that this is an assertion about  $n$ . Use **PoT** for Power of Two and **PoP** for Power of (a) Prime.

A poly  $\mu$  is “*irreducible* over  $\mathbb{Z}$ ” if, whenever it can be factored into int polys  $\mu = \alpha\beta$ , then either  $\alpha$  or  $\beta$  is a unit (in  $\mathbb{Z}[x]$ ). Thus  $6x - 15$  is reducible over  $\mathbb{Z}$ , since

$$2: \quad 6x - 15 = 3 \cdot [2x - 5].$$

However  $6x - 15$  is irreducible over  $\mathbb{Q}$ , since 3 is a  $\mathbb{Q}$ -unit.

**Reversing a poly.** Below is a “trivial” factoring result; I put it here so that we can apply the Eisenstein criterion to it later.

Say that a poly  $\mu$  is *good* if its constant term is non-zero. The *reversal* of a deg- $L$  good  $\mu$  is

$$M_L + M_{L-1}x + M_{L-2}x^2 + \cdots + M_1x^{L-1} + M_0x^L,$$

denoted by  $\overleftarrow{\mu}(x)$ . On the set of good polys, “reversal” is an involution.

If a good poly factors as  $\mu = \alpha\beta$ , then evidently each of  $\alpha, \beta$  is good.

**3: Reverse factor lemma.** (Here “factorization” and “irreducible” mean over  $\mathbb{Q}$ .) Suppose

$$\dagger: \quad \mu = \alpha\beta$$

is a factorization of a good poly. Then  $\alpha$  and  $\beta$  are necessarily good and

$$\ddagger: \quad \overleftarrow{\mu} = \overleftarrow{\alpha} \overleftarrow{\beta}.$$

Furthermore,  $(\ddagger)$  is a non-trivial factorization iff  $(\dagger)$  is non-trivial.

In particular,  $\mu$  is irreducible iff  $\overleftarrow{\mu}$  is. So if  $A$  is a non-zero algebraic number, then  $1/A$  is also an algebraic number, and of the same degree.  $\diamond$

*Proof.* The degrees add,  $L = J + K$ . Plug  $\frac{1}{x}$  into  $(\dagger)$ , then multiply by  $x^L$ . This produces

$$x^L \mu(1/x) = x^J \alpha(1/x) \cdot x^K \beta(1/x).$$

And this is simply  $(\ddagger)$ , rewritten.

WLOG each of  $\mu, \alpha, \beta$  is monic. If  $(\dagger)$  is trivial, say  $\alpha() = 1$ , then  $\overleftarrow{\alpha}()$  is also 1; so  $(\ddagger)$  is a trivial factorization. [The argument uses that we work with *good* polys, so that reversal is involutory.]  $\blacklozenge$

## The Gauss Lemma

To rule out the above “uninteresting” factorization (2) over  $\mathbb{Z}$ , we restrict the polys we look at. A poly  $\mu$  is **primitive** if: *It is an intpoly with positive high-order coefficient and the GCD of its coeffs is 1.*

**4: Gauss Lemma.** *The product of primitive polys is primitive.*  $\lozenge$

**Proof of Gauss lemma.** Take a product  $\mu = \alpha \cdot \beta$  of primitive polys. To show  $\mu$  primitive, ISTFix an arbitrary prime  $p$  and produce an index  $\ell$  for which

$$4a: \quad M_\ell \nmid p.$$

Since  $\alpha, \beta$  are primitive, there are *smallest* indices  $\hat{j}, \hat{k} \in \mathbb{N}$  so that

$$A_{\hat{j}} \nmid p \quad \text{and} \quad B_{\hat{k}} \nmid p.$$

Let  $\ell := \hat{j} + \hat{k}$ . Then  $M_\ell = A_{\hat{j}} B_{\hat{k}} + S$  where  $S$  is the sum, of products  $A_j B_k$ , taken over all *other*

pairs  $j + k = \hat{j} + \hat{k}$ . Relation (4a) is equivalent, since  $A_{\hat{j}} B_{\hat{k}}$  is *not* a multiple of  $p$ , to showing that  $S$  is a multiple of  $p$ . Hence ISTProve that the product

$$4b: \quad A_j \cdot B_k \mid p$$

for each “other” index-pair  $(j, k)$ . But if  $j < \hat{j}$  then  $A_j \nmid p$ ; otherwise  $j > \hat{j}$  and thus  $k < \hat{k}$ , in which case  $B_k \nmid p$ . Either case yields (4b).  $\blacklozenge$

The **Gauss content** of a non-zip ratpoly  $\mu$  is the unique rational number  $q$ , where we write  $\mu() = q \cdot \alpha()$ , with  $\alpha()$  primitive. Write  $\text{GC}(\mu) = q$ .

**5: Corollary.** *For non-zip ratpolys  $\mu_1$  and  $\mu_2$ ,*

$$\text{GC}(\mu_1 \cdot \mu_2) = \text{GC}(\mu_1) \cdot \text{GC}(\mu_2). \quad \lozenge$$

**Proof.** Write  $\mu_i() = q_i \cdot \alpha_i()$ , with  $\alpha_i$  primitive. Hence  $\mu_1 \mu_2 = [q_1 q_2] \cdot \alpha_1 \alpha_2$ . By the Gauss Lemma,  $\alpha_1 \alpha_2$  is primitive. So  $\text{GC}(\mu_1 \mu_2) = q_1 q_2$ .  $\blacklozenge$

**6: Corollary.** *Suppose that a primitive poly  $\mu$  is irreducible over  $\mathbb{Z}$ . Then  $\mu$  is  $\mathbb{Q}$ -irreducible.*  $\lozenge$

**Proof.** Supposing  $\mu = \mu_1 \mu_2$  over  $\mathbb{Q}[x]$ , write  $\mu_i() = q_i \cdot \alpha_i()$ , with  $\alpha_i$  primitive. But

$$q_1 q_2 = \text{GC}(\mu_1 \mu_2) = \text{GC}(\mu) = 1.$$

So  $\mu = \alpha_1 \alpha_2$ . But  $\mu$  is  $\mathbb{Z}[x]$ -irreducible, so WLOG  $\alpha_2() = \pm 1$ . Hence  $\mu_2()$  is the constant poly  $q_2$ , which is a  $\mathbb{Q}[x]$ -unit.  $\blacklozenge$

**7: Coro. (Rational root thm).** *Suppose rational number  $\frac{p}{q}$ , with  $p \perp q$ , is a root of intpoly  $B_N x^N + \dots + B_1 x + B_0$ . Then  $q \mid B_N$  and  $p \mid B_0$ .*  $\lozenge$

**Proof.** Factoring the intpoly as

$$[qx - p] \cdot [C_{N-1}x^{N-1} + \cdots + C_1x + C_0]$$

implies that  $C_{N-1} = \frac{B_N}{q}$  and  $C_0 = \frac{-B_0}{p}$ . Now  $\text{GC}(x \mapsto [qx - p])$  is 1, since  $p \perp q$ . Thus the Gauss content of  $C_{N-1}x^{N-1} + \cdots + C_0$  is an integer. In particular, both  $C_{N-1}$  and  $C_0$  are integers.  $\spadesuit$

We now come to the induction proof that we have all been waiting for.

**8: Eisenstein Criterion (E.C.).** Consider an intpoly

$$\mu(x) = M_0 + M_1x + M_2x^2 + \cdots + M_{L-1}x^{L-1} + M_Lx^L,$$

with  $M_L$  non-zero. Suppose there exists a prime number  $p$  such that

$$8a: \quad p^2 \nmid M_0,$$

$$8b: \quad p \nmid M_L, \text{ yet}$$

$$8c: \quad p \bullet M_0, M_1, M_2, \dots, M_{L-1}.$$

Then  $\mu$  is  $\mathbb{Q}$ -irreducible.  $\diamond$

**Example.** The poly  $\mu(x) := 5 + 50x + x^2$  is irreducible, using E.C with the prime 5. Since this  $\mu$  only has degree 2, we can deduce irreducibility just from the discriminant  $50^2 - 4 \cdot 1 \cdot 5$ , which is not a perfect square.  $\square$

**Proof of E.C.** Courtesy the Gauss Lemma we may assume that  $\mu$  is primitive and endeavor to show that if  $\mu = \alpha\beta$  is a factorization into int polys as in (1), then degree  $J$  or  $K$  indeed equals  $L$ .

For specificity, suppose that the prime asserted in the hypotheses is 23. Since  $23 \bullet M_0 = A_0B_0$ , WLOG  $23 \bullet A_0$ . Courtesy (8a) then,

$$8a': \quad 23 \nmid B_0.$$

Suppose we could establish that

$$8c': \quad A_j \bullet 23, \quad \text{for each } j = 0, 1, 2, \dots, L-1.$$

Were  $J$  strictly less than  $L$ , then this would imply that 23 divides all the  $\alpha$ -coeffs, hence all the coeffs of  $\mu$  (since  $\beta$  has integer coeffs). But this latter contradicts (8b). Hence it suffices to establish (8c').

**Inducting along the coeffs.** Were (8c') to fail, then there would be a smallest value  $j \in [0..L-1]$  for which  $A_j \nmid 23$ . Multiplying out,  $M_j$  equals

$$A_j B_0 + [A_{j-1}B_1 + A_{j-2}B_2 + \cdots + A_0B_j].$$

(If  $j = 0$  then the bracketed sum is empty, hence zero.) Since  $j$  is the *smallest* bad index, necessarily 23 divides the bracketed sum. Since 23 divides  $M_j$ , we conclude that  $23 \bullet A_j B_0$ . And (8c') now assures that  $23 \bullet A_j$ ; this contradicts that  $j$  was bad.  $\spadesuit$

### Example uses of E.C.

Suppose  $f$  is an intpoly which has no prime fulfilling the E.C. (Eisenstein criterion). Sometimes one can find an appropriate integer  $T$  so that the translated intpoly

$$g(z) := f(z + T)$$

does fulfill E.C. This end-around shows  $f$  to be irreducible. Here is an example.

9: *Cyclo-poly  $\mathbf{C}_p$  is irreducible.* Fixing a prime  $p$ , we endeavor to show that the  $p^{\text{th}}$  cyclotomic polynomial

$$\mathbf{C}_p(x) = x^{p-1} + x^{p-2} + \cdots + x^2 + x + 1 \stackrel{\text{note}}{=} \frac{x^p - 1}{x - 1}$$

is irreducible. Although the E.C (Eisenstein criterion) doesn't directly apply to  $\mathbf{C}_p$ , we *can* apply E.C to translation  $g(z) := \mathbf{C}_p(z+1)$ . Expanding,

$$g(z) = \frac{[z+1]^p - 1}{z} = \frac{1}{z} \cdot \sum_{\substack{j+k=p \\ j \in [1..p]}} \binom{p}{j, k} \cdot z^j \cdot 1^k,$$

by the binomial thm. Letting  $\ell := j-1$ , rewrite this [using  $M_\ell$  to denote the coeff of  $z^\ell$ ] as

$$g(z) = \sum_{\ell=0}^{p-1} \binom{p}{\ell+1} \cdot z^\ell =: \sum_{\ell=0}^{p-1} M_\ell \cdot z^\ell.$$

For each  $\ell \in [0..p-2]$ : Since  $p$  is prime, coeff  $M_\ell$  is a multiple of  $p$ ; yet  $M_{p-1} \stackrel{\text{note}}{=} 1$  is not. And  $M_0 \stackrel{\text{note}}{=} p$  fails to be divisible by  $p^2$ . The conditions of E.C being satisfied,  $g$  is irreducible; hence so is cyclotomic  $\mathbf{C}_p$ .  $\square$

10: *Quartic example.* Here is a pretty application that I read in J. S. Milne's "Fields and Galois Theory" at

<http://www.jmilne.org/math/CourseNotes/index.html>

in pdf form.

One way to show that an intpoly  $f(x)$  is irreducible over  $\mathbb{Z}[x]$  is to produce a prime  $p$  for which  $f(x)$  is  $\mathbb{Z}_p[x]$ -irreducible. But there isn't always such a  $p$ , and here is a nice example. We will show that this (note: primitive) polynomial

$$10a: \quad f(x) := x^4 - 10x^2 + 1.$$

is irreducible as a  $\mathbb{Q}$ -poly but, for each prime  $p$ , factors non-trivially as a  $\mathbb{Z}_p$ -poly.

In  $\mathbb{Z}$ , does  $f$  have a degree-1 factor, i.e, an integer root? Well,  $f(x)=0$  becomes

$1 = [10 - x^2] \cdot x^2$ . So both  $x$  and  $[10 - x^2]$  must be  $\pm 1$ ; this has no solution.

Could  $f$  have a quadratic factor? Then

$$f(x) = [x^2 - Ax \pm 1] \cdot [x^2 - Bx \pm 1]$$

for some  $A, B \in \mathbb{Z}$ . And  $f(x)$  has no  $x^3$  term, so  $B = -A$ . Thus  $f(x) = [x^2 + Bx \pm 1] \cdot [x^2 - Bx \pm 1]$ , i.e

$$f(x) = x^4 - [B^2 \mp 2]x^2 + 1.$$

So  $[B^2 \mp 2] = 10$ . But equation  $B^2 = 10 \pm 2$  has no integer solution. The upshot is that

10b:  $f(x)$  is  $\mathbb{Z}[x]$ -irreducible.

10c: **Lemma.** For each prime  $p$ : Polynomial  $f(x)$  factors non-trivially over  $\mathbb{Z}_p[x]$ .  $\diamond$

**Proof.** If 2 is a mod- $p$  square (whether or not  $2 \perp p$ ), then

$$10d: \quad f(x) = [x^2 - 2\sqrt{2}x - 1] \cdot [x^2 + 2\sqrt{2}x - 1].$$

Similarly, if 3 is a mod- $p$  square then

$$10e: \quad f(x) = [x^2 - 2\sqrt{3}x + 1] \cdot [x^2 + 2\sqrt{3}x + 1].$$

So WLOG  $p > 3$ .

Now  $2 \perp p$  and  $3 \perp p$ . So if neither (10d) nor (10e) applies, then both 2 and 3 are *non*-quadratic-residues, mod- $p$ . Thus  $2 \cdot 3 = 6$  is a  $p$ -quadratic-residue. And

$$10f: \quad f(x) = [x^2 - A] \cdot [x^2 - B], \text{ where } \begin{aligned} A &:= 5 + 2\sqrt{6}; \\ B &:= 5 - 2\sqrt{6}. \end{aligned}$$

This, since  $A + B = 10$  and  $A \cdot B = 1$ .  $\diamond$

Filename: [Problems/Algebra/eisenstein-irred.latex](#)  
As of: Thursday 24May2007. Typeset: 2Jun2023 at 20:24.