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Abstract: Proofs of Eisenstein Criterion and the
Gauss Lemma.

Nomenclature. Use♥1 poly for “polynomial”
and coeff for “coefficient”. I will be considering
three polys,

α(x) = A0 + A1x+ A2x
2 + · · ·+ AJx

J ,

β(x) = B0 +B1x+ · · ·+BKx
K ,

µ(x) = M0 +M1x+M2x
2 + · · ·+MLx

L,

with each of AJ , BK ,ML non-zero.

1:

My convention is that later coefficients are all de-
fined, and equal zero; so 0 = ML+1 = ML+2, . . . .
An intpoly is a poly whose coefficients are inte-
gers. A ratpoly has rational coefficients. Tra-
ditionally, the symbol Z[x] is used for the set of
intpolys, and Q[x] for the collection of ratpolys.
These sets are rings.

A poly α is “a unit ” in Z[x], if its reciprocal
is also in Z[x]. There are only two units in Z[x];
the constant polys ±1. In Q[x], however, each
constant poly x 7→q is a unit, where q ranges over
the non-zero rationals.

♥1Use ≡N to mean “congruent mod N ”. Let n ⊥ k
mean that n and k are co-prime [no prime in common].
Use k •| n for “k divides n”. Its negation k �r| n means

“k does not divide n.” Use n |• k and nr|� k for “n is/is-not a
multiple of k.” Finally, for p a prime and E a natnum: Use
double-verticals, pE •|| n, to mean that E is the highest
power of p which divides n. Or write n ||• pE to emphasize
that this is an assertion about n. Use PoT for Power of
Two and PoP for Power of (a) Prime.

A poly µ is “irreducible over Z” if, whenever it
can be factored into intpolys µ = αβ, then either
α or β is a unit (in Z[x]). Thus 6x−15 is reducible
over Z, since

6x− 15 = 3 · [2x− 5] .2:

However 6x − 15 is irreducible over Q, since 3 is
a Q-unit.

Reversing a poly. Below is a “trivial” factor-
ing result; I put it here so that we can apply the
Eisenstein criterion to it later.

Say that a poly µ is good if its constant term
is non-zero. The reversal of a deg-L good µ is

ML +ML−1x+ML−2x
2 + · · ·+M1x

L−1 +M0x
L ,

denoted by ←−µ (x). On the set of good polys,
“reversal” is an involution.

If a good poly factors as µ = αβ, then evidently
each of α, β is good.

3: Reverse factor lemma. (Here “factorization” and

“irreducible” mean over Q.) Suppose

µ = αβ†:

is a factorization of a good poly. Then α and β

are necessarily good and

←−µ = ←−α
←−
β .‡:

Furthermore, (‡) is a non-trivial factorization iff
(†) is non-trivial.

In particular, µ is irreducible iff ←−µ is. So if A
is a non-zero algebraic number, then 1/A is also
an algebraic number, and of the same degree. ♦
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Proof. The degrees add, L = J + K. Plug 1
x

into (†), then multiply by xL. This produces

xLµ(1/x) = xJα(1/x) · xKβ(1/x) .

And this is simply (‡), rewritten.
WLOG each of µ, α, β is monic. If (†) is trivial,

say α() = 1, then ←−α () is also 1; so (‡) is a trivial
factorization. [The argument uses that we work with

good polys, so that reversal is involutory.] �

The Gauss Lemma

To rule out the above “uninteresting” factoriza-
tion (2) over Z, we restrict the polys we look at.
A poly µ is primitive if: It is an intpoly with
positive high-order coefficient and the GCD of its
coeffs is 1.

4: Gauss Lemma. The product of primitive polys
is primitive. ♦

Proof of Gauss lemma. Take a product µ = α · β
of primitive polys. To show µ primitive, ISTFix
an arbitrary prime p and produce an index ` for
which

M`
r|� p .4a:

Since α, β are primitive, there are smallest in-
dices ̂, k̂ ∈ N so that

A̂
r|� p and B

k̂
r|� p .

Let ` := ̂+ k̂. Then
�� ��M` = A̂Bk̂

+ S where S is
the sum, of products AjBk, taken over all other

pairs j + k = ̂+ k̂. Relation (4a) is equiva-
lent, since A̂Bk̂

is not a multiple of p, to showing
that S is a multiple of p. Hence ISTProve that
the product

Aj ·Bk |• p4b:

for each “other” index-pair (((j, k))). But if j < ̂

then Aj |• p; otherwise j > ̂ and thus k < k̂, in
which case Bk |• p. Either case yields (4b). �

The Gauss content of a non-zip ratpoly µ

is the unique rational number q, where we write
µ() = q·α(), with α() primitive. Write GC(µ) = q.

5: Corollary. For non-zip ratpolys µ1 and µ2,

GC(µ1 · µ2) = GC(µ1) ·GC(µ2) . ♦

Proof. Write µi() = qi · αi(), with αi primitive.
Hence µ1µ2 = [q1q2] · α1α2. By the Gauss Lemma,
α1α2 is primitive. So GC(µ1µ2) = q1q2. �

6: Corollary. Suppose that a primitive poly µ is
irreducible over Z. Then µ is Q-irreducible. ♦

Proof. Supposing µ = µ1µ2 over Q[x], write
µi() = qi · αi(), with αi primitive. But

q1q2 = GC(µ1µ2) = GC(µ) = 1 .

So µ = α1α2. But µ is Z[x]-irreducible, so WLOG
α2() = ±1. Hence µ2() is the constant poly q2,
which is a Q[x]-unit. �

7: Coro. (Rational root thm). Suppose rational num-
ber p

q
, with p ⊥ q, is a root of intpoly BNx

N +

· · ·+B1x+B0. Then q •| BN and p •| B0. ♦
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Proof. Factoring the intpoly as

[qx− p] · [CN−1x
N−1 + · · ·+ C1x+ C0]

implies that
�



�
	CN−1 =

BN

q
and

�



�
	C0 =

B0

p
. Now

GC
(
x 7→ [qx− p]

)
is 1, since p ⊥ q. Thus the

Gauss content of CN−1x
N−1 + · · ·+ C0 is an in-

teger. In particular, both CN−1 and C0 are inte-
gers. �

We now come to the induction proof that we
have all been waiting for.

8: Eisenstein Criterion (E.C). Consider an intpoly

µ(x) = M0 +M1x+M2x
2 + ...+ML−1x

L−1 +MLx
L ,

with ML non-zero. Suppose there exists a prime
number p such that

p2 �r| M0 ,8a:

p �r| ML , yet8b:

p •| M0,M1,M2, . . . ,ML−1 .8c:

Then µ is Q-irreducible. ♦

Example. The poly µ(x) := 5 + 50x + x2 is irre-
ducible, using E.C with the prime 5. Since this µ
only has degree 2, we can deduce irreducibility
just from the discriminant 502 − 4 · 1 · 5, which is
not a perfect square. �

Proof of E.C. Courtesy the Gauss Lemma we may
assume that µ is primitive and endeavor to show
that if µ = αβ is a factorization into intpolys as
in (1), then degree J or K indeed equals L.

For specificity, suppose that the prime asserted
in the hypotheses is 23. Since 23 •| M0 = A0B0,
WLOG 23 •| A0. Courtesy (8a) then,

23 �r| B0 .8a′:

Suppose we could establish that

Aj |• 23 , for each j = 0, 1, 2, . . . , L−1.8c′:

Were J strictly less than L, then this would imply
that 23 divides all the α-coeffs, hence all the coeffs
of µ (since β has integer coeffs). But this latter con-
tradicts (8b). Hence it suffices to establish (??′).

Inducting along the coeffs. Were (??′) to fail,
then there would be a smallest value j ∈ [0 .. L−1]
for which Aj

r|� 23. Multiplying out, Mj equals

AjB0 +
[
Aj−1B1 + Aj−2B2 + · · ·+ A0Bj

]
.

(If j = 0 then the bracketed sum is empty, hence zero.)
Since j is the smallest bad index, necessarily 23 di-
vides the bracketed sum. Since 23 divides Mj, we
conclude that 23 •| AjB0. And (??′) now assures
that 23 •| Aj; this contradicts that j was bad. �

Example uses of E.C.

Suppose f is an intpoly which has is no prime
fulfilling the E.C. (Eisenstein criterion). Sometimes
on can find an appropriate integer T so that the
translated intpoly

g(z) := f(z + T )

does fulfill E.C. This end-around shows f to be
irreducible. Here is an example.
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9: Cyclo-poly Cp is irreducible. Fixing a prime p,
we endeavor to show that the pth cyclotomic
polynomial

Cp(x) = xp−1 + xp−2 + · · ·+ x2 + x+ 1

note
===

xp − 1

x− 1

is irreducible. Although the E.C (Eisenstein criterion)
doesn’t directly apply to Cp, we can apply E.C to
translation g(z) := Cp(z+1). Expanding,

g(z) =
[z+1]p − 1

z
=

1

z
·
∑

j+k=p
j ∈ [1 .. p]

(
p
j , k

)
· zj · 1k ,

by the binomial thm. Letting ` := j−1, rewrite
this [using M` to denote the coeff of z`] as

g(z) =
p−1∑
`=0

(
p
`+1

)
· z` =:

p−1∑
`=0

M` · z` .

For each ` ∈ [0 .. p−2]: Since p is prime, coeff
M` is a multiple of p; yet Mp−1

note
=== 1 is not. And

M0
note
=== p fails to be divisible by p2. The condi-

tions of E.C being satisfied, g is irreducible; hence
so is cyclotomic Cp. �

10: Quartic example. Here is a pretty application
that I read in J. S. Milne’s “Fields and Galois
Theory” at

http://www.jmilne.org/math/CourseNotes/index.html

in pdf form.
One way to show that an intpoly f(x) is irre-

ducible over ZJxK is to produce a prime p for which
f(x) is ZpJxK-irreducible. But there isn’t always
such a p, and here is a nice example. We will
show that this (note: primitive) polynomial

f(x) := x4 − 10x2 + 1 .10a:

is irreducibile as a Q-poly but, for each prime p,
factors non-trivially as a Zp-poly.

In Z, does f have a degree-1 factor, i.e,
an integer root? Well, f(x)=0 becomes

1 = [10− x2] · x2. So both x and [10 − x2] must
be ±1; this has no solution.

Could f have a quadratic factor? Then

f(x) = [x2 − Ax± 1] · [x2 −Bx± 1]

for some A,B ∈ Z. And f(x) has no x3 term, so
B = A. Thus f(x) = [x2 +Bx± 1] · [x2 −Bx± 1], i.e

f(x) = x4 − [B2 ∓ 2]x2 + 1 .

So [B2 ∓ 2] = 10. But equation B2 = 10±2 has
no integer solution. The upshot is that

f(x) is ZJxK-irreducible.10b:

10c: Lemma. For each prime p: Polynomial
f(x) factors non-trivially over ZpJxK. ♦

Proof. If 2 is a mod-p square (whether or not 2 ⊥ p),
then

f(x) = [x2 − 2
√
2x − 1] · [x2 + 2

√
2x − 1] .10d:

Similarly, if 3 is a mod-p square then

f(x) = [x2 − 2
√
3x + 1] · [x2 + 2

√
3x + 1] .10e:

So WLOG p > 3.
Now 2 ⊥ p and 3 ⊥ p. So if neither (10d)

nor (10e) applies, then both 2 and 3 are non-
quadratic-residues, mod-p. Thus 2 · 3 = 6 is a
p-quadratic-residue. And

f(x) = [x2 −A] · [x2 −B] , where A := 5 + 2
√
6 ;

B := 5− 2
√
6 .

10f:

This, since A+B = 10 and A ·B = 1. �
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