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ABSTRACT: Uses calculus and divisibility to show that e
is not algebraic. The file has two proofs, a short one due to
Hilbert and a long one, probably of Hermite.

Notation. For posint N, let =y means “mod-N
congruent”. Let ::y::
N-factorial.

mean =y ie., congruence mod

1: Lemma. For k a natnum, integral Jj, == [;° zFe™ dx

equals

J. = k. O
Proof. 1ByParts yields J, =n-J,_1. And Jy=1. ¢

2: Corollary. For each natnum M and intpoly f:

| @
Thus /0 )

Hilbert’s proof that e is transcendental

The Set-up. FTSOC, suppose e is algebraic of de-
gree D € Z,. We thus have an intpoly

h(z) =

such that h(e) = 0. And By # 0, since h() has mini-
mal degree. O

caMe™dx gy £(0) - M.

aMe™da iy 0. O

BD:L'D+"'+Bl$+BO’ with Bp # 0,

Proof of transcendentality. For a posint exponent r to
be chosen later, define

O(z) = [z -1z —2][x—3] -
I} = e ) il d where £,u ].
¥ /va[ (z)]""e™dx, where fu € [0,0]

[x — D] , and

Thus 0 = 0-I5° = h(e)-I5® = U(r)+ L(r), where
we have split each 1ntegral into an Upper part and
a Lower part:

U(r) == BoIs® + Z?Zl Bgef I, and
D
> o Bref I
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Since U(r) + L(r) = 0, we have that

u(r)  L(r)

r! 7!

0.

The contradiction will come by showing that Uﬁ) is

always a non-zero integer; then showing that r can be

chosen large enough that ’%’ is less than 1.

Upperbounding L(r). Over all x in the compact
interval [0, D], let A be an upperbnd for the abs-value
of - ®(z) and of ®(z). So

le"®(x) e < ATA-1 = AL,

For K € [1..D], then, |I/{| < KA™! < DA"!,
Let B := Y2 _ | [Bg|-e/. It follows that

|L(r)] < B-DA"!.

Divided by r!, this quantity goes to zero as r "oc.

Value U(r) is a non-zero multiple of r!. Fix
a K € [1..D]. Consider Change-of-Var y =z — K.
Then dz = dy, and ef- e =e¥. So eK-If{o equals

*3 /OTy—’_K]T[[y—’_K_1][y+K_2]"'[y—ﬁ-K—D]]THe*ydy.

For K € [1.. D], the K*"-term is [y + K — K]. Con-

sequently
/ fr(y

for some intpoly fr. Hence
B eI g 0,

by setting M = r+1 in (2Lower).
For K = 0, integral I§° has form [;°
where f(z) = [®(z)]

v Ig° wpqn f(O)-r! = [[*1]D-D!]T+1 -l

Adding up By -eXI2° over all K € [0.. D] gives, cour-
t Ul(r)
esy (1,1),

-7 1s an integer. Moreover,

S Sy TleV dy,

f(x)-z"e™ dx,
mH By (2Upper), then,

U(r +1
:v ) =p+1) Bo- [F]P-DY".
The righthand quantity is not zero, so integer Uﬁr) is
not zero. ¢
Page 1 of 4



Page 2 of 4

C'redit. The following proof may be due to Hermite.
I found several versions on the web. g

Preliminaries. For a poly(nomial) H, I use Dim(H)
for 14+Deg(H); this is the dimension of the vector-
space obtained by varying the coefficients of H.

Next”! a few lemmata, then to the details. Use
(2T5) for the binomial coeff; it equals 2,7—'5,

3: Lemma.
gth

For (-times diff’able fncs f and g, the
-derivative of their product is

= >V (%)

jt+k=¢t

3 [f - g
where the sum is taken over natnums j and k. O

4: Prop'n. Fix an integer T' and natnum Q). Let
H(z) = [¢—T]?-g(x),

where ¢() is an intpoly. Differentiating,

ar VLE[0.Q): O(T) =
b: VleN: O(T) |.
c: H(Q (T) = Q- g(T).

If g(z) = y(2)?*?, with v an intpoly, then

d: VLeN~{Q}: HO(T) o [Q+1]!. O

Proof. Let f(z) := [x — T]%. For each natnum j # Q,
note, fU)(T) is zero. So (3') yields (4a).

Hence expression [f - 9]¢ (T') can be non-zero only
when ¢ > Q. And f@(T) = Q!, so by (3),

o [Fg M) = QgD (g, 1)

“lUse =y to mean “congruent mod N”. Let n | k mean
that n and k are co-prime [no prime in common].

Use k o n for “k divides n”. Its negation k Jn means “k does
not divide n.” Use n fo k and n '} k for “n is/is-not a multiple
of k.” Finally, for p a prime and E a natnum: Use double-
verticals, p” ¢| n, to mean that E is the highest power of p
which divides n. Or write n o p” to emphasize that this is an
assertion about n. Use PoT for Power of Two and PoP for
Power of (a) Prime.
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But ¢“~@) is an intpoly, so ¢~ (T) is an integer.
Thus (4b). Setting £ := @ in (x) gives (4c).

As for (4d), WLOG ¢ > Q+1 (by (4a)). Note that
¢'(z) equals [Q+1] times some intpoly. (We don’t need

to know that the intpoly is v< - 7'.) So

VE>1 ®(T) o Q+1;
this used that T is an integer. Finally, () implies

(1) 0 Q-gM(T),

where k = ¢ — (). Together with the preceding line,
this implies (4d). ¢

5: Trick Lemma.
ber T'> 0. Let

Consider a poly H() and real num-

T

6: (T,H) = / [—ef=%] . H(z) - dz.
0

Letting N = Dim(H), then,

7 (TH) = | Y HOD)] -2,

£e[0..N)
where Z =3 0. N)H(K) (0). If T'e N and H() is an

intpoly, then (T,H) is an integer. Note that Z does
not depend on T. O

Proof. Integrating by-parts, our (T, H) equals

_ T
T H@EZ - [ R
= [H(T) — e"H(0)] + (T,H').

1 H (x) - do

Using this recurrence N times gives

(T,H) = RhS(7) + (T,HM).

But H®) =0, so integral (T, HM)) is zero. ¢

Filename: Problems/NumberTheory/e_transcendental.latex



Prof. JLF King

Sequence-properties. Below, “sequence” will
mean a sequence of integers indexed by the primes,
c.g V = (‘/2,%,‘/5,‘/7,‘/11,. . .,Vp,...).

Say that a V is slow if there exist posreals o and 3
with

Si: Vol < a-pP
for all large primes p. Evidently:

A finite linear-combination of slow se-
quences, is slow.

The argument for transcendence of e will produce a
slow sequence V. On the other hand, were e algebraic
then each V, would be an integer with

S2: Vo o [p—1]!, yet
S3: Vo b p.

Together (S2,53) imply that |V,| > [p—1]!. But this
contradicts (S1), seen by sending p  oc.

The Proof

8: Theorem (Hermite). e is transcendental. O

Proof. FTSOContradiction, suppose e is algebraic of,
say, degree 5. Thus

9: ZC’T~eT:0,

.,05, with CO 7’5 0.
A dim=N intpoly H() yields an integer

for some integers Cy, ..

Al: Vo= ZCT-(T,H).

T€[0..6)

Courtesy (7) and (9),

Stor- Y HOT).

T€[0..6)  £€[0..N)

A2: V =

We now choose a particular poly H().

The Proof
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Slownessitude (S1).
polynomial

Fach prime p determines a

10: H(z) = Hp(fﬂl)
=—0"" [[z—1x—2]-... [z —5]]".
For each real z € [0, 5], certainly

note

H(z)] < 5°71.[5.....5]P [561P.

To upperbound , it suffices to upper-
bound (7, Hp). Each T' € [0..5] gives

T
(TH,)| < [ =] (@) da

5
< / ¢ [H(z)| - dz.
0

So {T,Hp)| < 5-€°-[55P. Hence p — (T,Hp) is
slow. The linear combination (A1), then, is slow; i.e
p — Vj is slow. We have (S1).

For the next two arguments, fix a prime

p > Max(5, |Col)

and prepare to apply Lemma 4 with .

Divisibility (S2). FEach integer T' € [0..5] is a
zero of H() with multiplicity at least p—1. For each
natnum £, then,

HO(T) o [p-1].,
from (4b). So (A2) implies (S2).

Lack of Divisibility (S3).
use B >1 B’ to mean:

Either both B and B’ are divisible by p, or
neither is.

For integers B and B’,

For T =1,...,5, lemma (4b) yields that ecach H(®(T)
is divisible by p!, hence by p. Thus

Vo G- Y HO0).
¢e[0..N)

By hypothesis, 0 < |Cp| < p. Since p is prime,

S HY(0).

¢€[0..N)

V X
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Using (10), the definition
y(z) = [z =1z —2]-... [z — 5]

shows that H() has the correct form for lemma (4d).
Thus V a1 HP~1(0). Using (4c) with Q := p—1 and
T =0 gives

Vo g(0) 25 (0).

Hence V 1 v(0). And ~(0) > 5!. But 5! } p, since
prime p was chosen to exceed the degree, 5, of e’s
purported minimal-polynomial. ¢
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