

A proof that e is transcendental

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 30 September, 2021 (at 17:54)

ABSTRACT: Uses calculus and divisibility to show that e is not algebraic. The file has two proofs, a short one due to Hilbert and a long one, probably of Hermite.

Notation. For posint N , let \equiv_N means “mod- N congruent”. Let \approx_N mean $\equiv_{N!}$ ie., congruence mod N -factorial.

1: Lemma. For k a natnum, integral $J_k := \int_0^\infty x^k e^{-x} dx$ equals

$$J_k = k! . \quad \diamond$$

Proof. IByparts yields $J_n = n \cdot J_{n-1}$. And $J_0 = 1$. \diamond

2: Corollary. For each natnum M and intpoly f :

$$\int_0^\infty f(x) \cdot x^M e^{-x} dx \approx_{M+1} f(0) \cdot M! .$$

$$\text{Thus } \int_0^\infty f(x) \cdot x^M e^{-x} dx \approx_M 0 . \quad \diamond$$

Hilbert's proof that e is transcendental

The Set-up. FTSOC, suppose e is algebraic of degree $D \in \mathbb{Z}_+$. We thus have an intpoly

$$h(x) := B_D x^D + \cdots + B_1 x + B_0, \text{ with } B_D \neq 0,$$

such that $h(e) = 0$. And $B_0 \neq 0$, since $h()$ has minimal degree. \square

Proof of transcendentalty. For a posint exponent r to be chosen later, define

$$\Phi(x) := [x-1][x-2][x-3] \cdots [x-D], \quad \text{and}$$

$$\mathbf{I}_\ell^u := \int_\ell^u x^r [\Phi(x)]^{r+1} e^{-x} dx, \quad \text{where } \ell, u \in [0, \infty].$$

Thus $0 = 0 \cdot \mathbf{I}_0^\infty = h(e) \cdot \mathbf{I}_0^\infty = U(r) + L(r)$, where we have split each integral into an Upper part and a Lower part:

$$U(r) := B_0 \mathbf{I}_0^\infty + \sum_{K=1}^D B_K e^K \mathbf{I}_K^\infty, \quad \text{and}$$

$$L(r) := \sum_{K=1}^D B_K e^K \mathbf{I}_0^K.$$

Since $U(r) + L(r) = 0$, we have that

$$\frac{U(r)}{r!} + \frac{L(r)}{r!} = 0.$$

The contradiction will come by showing that $\frac{U(r)}{r!}$ is always a non-zero integer; then showing that r can be chosen large enough that $\left| \frac{L(r)}{r!} \right|$ is less than 1.

Upperbounding $L(r)$. Over all x in the compact interval $[0, D]$, let \mathbf{A} be an upperbnd for the abs-value of $x \cdot \Phi(x)$ and of $\Phi(x)$. So

$$|x^r \Phi(x)^{r+1} e^{-x}| \leq \mathbf{A}^r \mathbf{A} \cdot 1 = \mathbf{A}^{r+1}.$$

For $K \in [1 .. D]$, then, $|\mathbf{I}_0^K| \leq K \mathbf{A}^{r+1} \leq D \mathbf{A}^{r+1}$.

Let $\mathbf{B} := \sum_{K=1}^D |B_K| \cdot e^K$. It follows that

$$|L(r)| \leq \mathbf{B} \cdot D \mathbf{A}^{r+1}.$$

Divided by $r!$, this quantity goes to zero as $r \nearrow \infty$.

Value $U(r)$ is a non-zero multiple of $r!$. Fix a $K \in [1 .. D]$. Consider Change-of-Var $y := x - K$. Then $dx = dy$, and $e^K \cdot e^{-x} = e^{-y}$. So $e^K \cdot \mathbf{I}_K^\infty$ equals

$$* : \int_0^\infty [y+K]^r [[y+K-1][y+K-2] \cdots [y+K-D]]^{r+1} e^{-y} dy.$$

For $K \in [1 .. D]$, the K^{th} -term is $[y+K-K]$. Consequently

$$e^K \cdot \mathbf{I}_K^\infty = \int_0^\infty f_K(y) \cdot y^{r+1} e^{-y} dy,$$

for some intpoly f_K . Hence

$$\dagger : e^K \cdot \mathbf{I}_K^\infty \approx_{r+1} 0,$$

by setting $M := r+1$ in (2Lower).

For $K = 0$, integral \mathbf{I}_0^∞ has form $\int_0^\infty f(x) \cdot x^r e^{-x} dx$, where $f(x) := [\Phi(x)]^{r+1}$. By (2Upper), then,

$$\ddagger : \mathbf{I}_0^\infty \approx_{r+1} f(0) \cdot r! = [[-1]^D \cdot D!]^{r+1} \cdot r!.$$

Adding up $B_K \cdot e^K \mathbf{I}_K^\infty$ over all $K \in [0 .. D]$ gives, courtesy (\dagger, \ddagger), that $\frac{U(r)}{r!}$ is an integer. Moreover,

$$\frac{U(r)}{r!} \equiv_{[r+1]} B_0 \cdot [[-1]^D \cdot D!]^{r+1}.$$

The righthand quantity is not zero, so integer $\frac{U(r)}{r!}$ is not zero. \diamond

Credit. The following proof may be due to Hermite. I found several versions on the web. \square

Preliminaries. For a poly(nomial) \mathbf{H} , I use $\text{Dim}(\mathbf{H})$ for $1 + \text{Deg}(\mathbf{H})$; this is the dimension of the vector-space obtained by varying the coefficients of \mathbf{H} .

Next $\heartsuit 1$ a few lemmata, then to the details. Use $\binom{7}{2,5}$ for the binomial coeff; it equals $\frac{7!}{2! \cdot 5!}$.

3: Lemma. For ℓ -times diff'able fncs f and g , the ℓ^{th} -derivative of their product is

$$3': [f \cdot g]^{(\ell)} = \sum_{j+k=\ell} f^{(j)} \cdot g^{(k)} \cdot \binom{\ell}{j, k},$$

where the sum is taken over natnums j and k . \diamond

4: Prop'n. Fix an integer T and natnum Q . Let

$$\mathbf{H}(x) := [x - T]^Q \cdot g(x),$$

where $g()$ is an intpoly. Differentiating,

- a: $\forall \ell \in [0..Q] : \mathbf{H}^{(\ell)}(T) = 0.$
- b: $\forall \ell \in \mathbb{N} : \mathbf{H}^{(\ell)}(T) \bullet Q!.$
- c: $\mathbf{H}^{(Q)}(T) = Q! \cdot g(T).$

If $g(x) = \gamma(x)^{Q+1}$, with γ an intpoly, then

$$d: \forall \ell \in \mathbb{N} \setminus \{Q\} : \mathbf{H}^{(\ell)}(T) \bullet [Q+1]!. \quad \diamond$$

Proof. Let $f(x) := [x - T]^Q$. For each natnum $j \neq Q$, note, $f^{(j)}(T)$ is zero. So (3') yields (4a).

Hence expression $[f \cdot g]^{(\ell)}(T)$ can be non-zero only when $\ell \geq Q$. And $f^{(Q)}(T) = Q!$, so by (3'),

$$* : [f \cdot g]^{(\ell)}(T) = Q! \cdot g^{(\ell-Q)}(T) \cdot \binom{\ell}{Q, \ell-Q}.$$

$\heartsuit 1$ Use \equiv_N to mean “congruent mod N ”. Let $n \perp k$ mean that n and k are co-prime [no prime in common].

Use $k \bullet n$ for “ k divides n ”. Its negation $k \nmid n$ means “ k does not divide n .” Use $n \bullet k$ and $n \nmid k$ for “ n is/is-not a multiple of k .” Finally, for p a prime and E a natnum: Use double-verticals, $p^E \bullet n$, to mean that E is the **highest** power of p which divides n . Or write $n \mid p^E$ to emphasize that this is an assertion about n . Use **PoT** for Power of Two and **PoP** for Power of (a) Prime.

But $g^{(\ell-Q)}$ is an intpoly, so $g^{(\ell-Q)}(T)$ is an integer. Thus (4b). Setting $\ell := Q$ in (*) gives (4c).

As for (4d), WLOG $\ell \geq Q+1$ (by (4a)). Note that $g'(x)$ equals $[Q+1]$ times some intpoly. (We don't need to know that the intpoly is $\gamma^Q \cdot \gamma'$.) So

$$\forall k \geq 1 : g^{(k)}(T) \bullet Q+1;$$

this used that T is an integer. Finally, (*) implies

$$\mathbf{H}^{(\ell)}(T) \bullet Q! \cdot g^{(k)}(T),$$

where $k := \ell - Q$. Together with the preceding line, this implies (4d). \spadesuit

5: Trick Lemma. Consider a poly $\mathbf{H}()$ and real number $T \geq 0$. Let

$$6: \langle T, \mathbf{H} \rangle := \int_0^T [-e^{T-x}] \cdot \mathbf{H}(x) \cdot dx.$$

Letting $N := \text{Dim}(\mathbf{H})$, then,

$$7: \langle T, \mathbf{H} \rangle = \left[\sum_{\ell \in [0..N]} \mathbf{H}^{(\ell)}(T) \right] - e^T \cdot Z,$$

where $Z := \sum_{\ell \in [0..N]} \mathbf{H}^{(\ell)}(0)$. If $T \in \mathbb{N}$ and $\mathbf{H}()$ is an intpoly, then $\langle T, \mathbf{H} \rangle$ is an integer. Note that Z does not depend on T . \diamond

Proof. Integrating by-parts, our $\langle T, \mathbf{H} \rangle$ equals

$$\begin{aligned} & [e^{T-x}] \cdot \mathbf{H}(x) \Big|_{x=0}^{x=T} - \int_0^T [e^{T-x}] \cdot \mathbf{H}'(x) \cdot dx \\ &= [\mathbf{H}(T) - e^T \mathbf{H}(0)] + \langle T, \mathbf{H}' \rangle. \end{aligned}$$

Using this recurrence N times gives

$$\langle T, \mathbf{H} \rangle = \text{RHS}(7) + \langle T, \mathbf{H}^{(N)} \rangle.$$

But $\mathbf{H}^{(N)} \equiv 0$, so integral $\langle T, \mathbf{H}^{(N)} \rangle$ is zero. \spadesuit

Sequence-properties. Below, “sequence” will mean a sequence of integers *indexed by the primes*, e.g. $\vec{V} = (V_2, V_3, V_5, V_7, V_{11}, \dots, V_p, \dots)$.

Say that a \vec{V} is **slow** if there exist posreals α and β with

$$S1: \quad |V_p| \leq \alpha \cdot \beta^p$$

for all large primes p . Evidently:

\ddagger : A finite linear-combination of slow sequences, is slow.

The argument for transcendence of e will produce a slow sequence \vec{V} . On the other hand, were e algebraic then each V_p would be an integer with

$$S2: \quad V_p \bullet [p-1]!, \quad \text{yet}$$

$$S3: \quad V_p \not\propto p.$$

Together (S2,S3) imply that $|V_p| \geq [p-1]!$. But this contradicts (S1), seen by sending $p \nearrow \infty$.

The Proof

8: Theorem (Hermite). e is transcendental. \diamond

Proof. FTSOContradiction, suppose e is algebraic of, say, degree 5. Thus

$$9: \quad \sum_{T \in [0..6]} C_T \cdot e^T = 0,$$

for some integers C_0, \dots, C_5 , with $C_0 \neq 0$.

A $\dim=N$ intpoly $\mathbf{H}()$ yields an integer

$$A1: \quad V := \sum_{T \in [0..6]} C_T \cdot \langle T, \mathbf{H} \rangle.$$

Courtesy (7) and (9),

$$A2: \quad V = \sum_{T \in [0..6]} C_T \cdot \sum_{\ell \in [0..N]} \mathbf{H}^{(\ell)}(T).$$

We now choose a particular poly $\mathbf{H}()$.

Slownessitude (S1). Each prime p determines a polynomial

$$10: \quad \begin{aligned} \mathbf{H}(x) &:= \mathbf{H}_p(x) \\ &:= [x-0]^{p-1} \cdot [[x-1][x-2] \cdot \dots \cdot [x-5]]^p. \end{aligned}$$

For each real $x \in [0, 5]$, certainly

$$|\mathbf{H}(x)| \leq 5^{p-1} \cdot [5 \cdot \dots \cdot 5]^p \stackrel{\text{note}}{\leq} [5^6]^p.$$

To upperbound $V_p := V_{\mathbf{H}_p}$, it suffices to upperbound $\langle T, \mathbf{H}_p \rangle$. Each $T \in [0..5]$ gives

$$\begin{aligned} |\langle T, \mathbf{H}_p \rangle| &\leq \int_0^T |-e^{T-x}| \cdot |\mathbf{H}(x)| \cdot dx \\ &\leq \int_0^5 e^5 \cdot |\mathbf{H}(x)| \cdot dx. \end{aligned}$$

So $|\langle T, \mathbf{H}_p \rangle| \leq 5 \cdot e^5 \cdot [5^6]^p$. Hence $p \mapsto \langle T, \mathbf{H}_p \rangle$ is slow. The linear combination (A1), then, is slow; i.e. $p \mapsto V_p$ is slow. We have (S1).

For the next two arguments, fix a prime

$$p > \text{Max}(5, |C_0|)$$

and prepare to apply Lemma 4 with $Q := p-1$.

Divisibility (S2). Each integer $T \in [0..5]$ is a zero of $\mathbf{H}()$ with multiplicity at least $p-1$. For each natnum ℓ , then,

$$\mathbf{H}^{(\ell)}(T) \bullet [p-1]!,$$

from (4b). So (A2) implies (S2).

Lack of Divisibility (S3). For integers B and B' , use $B \bowtie B'$ to mean:

Either both B and B' are divisible by p , or neither is.

For $T = 1, \dots, 5$, lemma (4b) yields that each $\mathbf{H}^{(\ell)}(T)$ is divisible by $p!$, hence by p . Thus

$$V \bowtie C_0 \cdot \sum_{\ell \in [0..N]} \mathbf{H}^{(\ell)}(0).$$

By hypothesis, $0 < |C_0| < p$. Since p is prime,

$$V \bowtie \sum_{\ell \in [0..N]} \mathbf{H}^{(\ell)}(0).$$

Using (10), the definition

$$\gamma(x) := [x-1][x-2] \cdots [x-5]$$

shows that $\mathbf{H}()$ has the correct form for lemma (4d).
 Thus $V \bowtie \mathbf{H}^{(p-1)}(0)$. Using (4c) with $Q := p-1$ and
 $T := 0$ gives

$$V \bowtie g(0) \stackrel{\text{note}}{=} \gamma(0)^p.$$

Hence $V \bowtie \gamma(0)$. And $\gamma(0) \bowtie 5!$. But $5! \nmid p$, since
 prime p was chosen to exceed the degree, 5, of e's
 purported minimal-polynomial. \spadesuit

Filename: Problems/NumberTheory/e_transcendental.latex
 As of: Tuesday 24Feb2004. Typeset: 30Sep2021 at 17:54.