

e is irrational

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage <http://squash.1gainesville.com/>
30 September, 2021 (at 21:35)

From the web.

1: Lemma. Consider positive reals $a_0 \geq a_1 \geq a_2 \geq \dots$ such that $a_n \rightarrow 0$. Then

$$L := a_0 - a_1 + a_2 - a_3 + a_4 - \dots$$

exists in \mathbb{R} . Moreover, for each even posint N ,

$$\left[\sum_{k=0}^{N-1} (-1)^k a_k \right] + a_N > L > \sum_{k=0}^{N-1} (-1)^k a_k.$$

Proof. Exercise. ◊

2: Theorem. The number e is irrational ◊

Proof. FTSOC, suppose $1/e$ equals p/q , for some posints p, q . Recall that $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$. Thus

$$\frac{1}{e} = \frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$$

For N even, then,

$$* : \left[\sum_{k=0}^{N-1} \frac{(-1)^k}{k!} \right] + \frac{1}{N!} > \frac{p}{q} > \sum_{k=0}^{N-1} \frac{(-1)^k}{k!}.$$

Multiplying this by $N!$ gives

$$S+1 > \frac{N!}{q} \cdot p > S,$$

where $S := N! \cdot \text{RHS}(*)$ is an integer.

Taking an $N \geq q$ makes $\frac{N!}{q}$ an integer, yielding contradiction that $S+1 > \text{Integer} > S$. ◆

Filename: [Problems/NumberTheory/e_irrational.latex](#)
As of: Thursday 30Sep2021. Typeset: 30Sep2021 at 21:35.