On Tue Nov 2 11:31:09 EDT 2010 ## This example is from P.247 of "Linear Algebra", by Friedberg, Insel and Spence. > G := <<1,4>|<3,2>>; Goft := G - t*eye(2); [1 3] [1 - t 3 ] G = [ ] , Goft = [ ] [4 2] [ 4 2 - t] > fGt := Det(Goft) = factor(fGt) ; 2 fGt = -10 - 3 t + t = (t + 2) (t - 5) > GN2 := G - (-2)*eye(2); G5 := G - (5)*eye(2); [3 3] [-4 3] GN2 = [ ] , G5 = [ ] [4 4] [ 4 -3] > rrefGN2 := RREF(GN2) ; rrefG5 := RREF(G5) ; [1 1] [1 -3/4] rrefGN2 = [ ] , rrefG5 = [ ] [0 0] [0 0 ] > v1 := <-1,1>; v2 := <3,4>; G . v1; G . v2; [-1] [3] v1 = [ ] , v2 = [ ] [ 1] [4] [ 2] [15] [ ] , [ ] [-2] [20] > C := ; Dmat := MI(C) . G . C; [-1 3] [-2 0] C = [ ] , Dmat = [ ] [ 1 4] [ 0 5] > IsThisG := C . Dmat . MI(C); G := G ; [1 3] [1 3] IsThisG = [ ] , G = [ ] [4 2] [4 2] ## So we have succeeded in conjugating G to a diagonal matrix.