## Below is a 3x3 matrix, G. Let T be the LefthandAction(G). We'll discover that T has a single eigenvalue, call it q, of algebraic-multiplicity 3. However the dimension of the q-eigenspace of T will turn out to be 2-dim'al. I.e, the geometric-multiplicity of eval q is 2. > G := Matrix(3,3,{(1, 1) = 3, (1, 2) = 2, (1, 3) = 1, (2, 1) = -80, (2, 2) = -34, (2, 3) = -16, (3, 1) = 135, (3, 2) = 54, (3, 3) = 25}) ; [ 3 2 1] [ ] G = [-80 -34 -16] [ ] [135 54 25] > Det(G) ; -8 > Gofx := G - (x * eye(3)) ; fGx := Det(Gofx) ; fGx := factor(fGx) ; [3 - x 2 1 ] [ ] Gofx = [ -80 -34 - x -16 ] [ ] [ 135 54 25 - x] 2 3 fGx := -8 - 12 x - 6 x - x 3 fGx = -(2 + x) ## Ah ha, so the above-mentioned eigenvalue, q, is negative-two. > M := G - ((-2) * eye(3)) ; DetM := Det(M) ; [ 5 2 1] [ ] M = [-80 -32 -16] [ ] [135 54 27] DetM = 0 > rrefM := RREF(M) ; [1 2/5 1/5] [ ] rrefM = [0 0 0 ] [ ] [0 0 0 ] > evecn2a := <-2/5, 1, 0>; evecn2b := <-1/5, 0, 1>; [-2/5] [-1/5] evecn2a = [ 1 ] , evecn2b = [ 0 ] [ 0 ] [ 1 ] > evecn2a := 5 * evecn2a; evecn2b := 5 * evecn2b; [-2] [-1] evecn2a = [ 5] , evecn2b = [ 0] [ 0] [ 5] > GTimesEveca := G . evecn2a; GTimesEvecb := G . evecn2b; [ 4] [ 2] GTimesEveca = [-10] , GTimesEvecb = [ 0] [ 0] [-10] > C := >; Dmat := MI(C) . G . C ; [-2 -1 0] [-2 0 -16/5] [ ] [ ] C = [ 5 0 0] , Dmat = [ 0 -2 27/5 ] [ ] [ ] [ 0 5 1] [ 0 0 -2 ] ## Perhaps I can make this an all-integer matrix. Let's change the third basis-vector. > C := >; Dmat := MI(C) . G . C ; [-2 -1 0] [-2 0 -16] [ ] [ ] C = [ 5 0 0] , Dmat = [ 0 -2 27] [ ] [ ] [ 0 5 5] [ 0 0 -2] > CDCinv := C . Dmat . MI(C) ; G := G ; [ 3 2 1] [ 3 2 1] [ ] [ ] CDCinv = [-80 -34 -16] , G = [-80 -34 -16] [ ] [ ] [135 54 25] [135 54 25] > Det(C) ; 25 > quit ; bytes used=4468028, alloc=2948580, time=1.16