

“Finishing the second Semester in Style”

Due: Thursday, **23Apr1998** by 4PM, slid under my office door.

Notation. TS, MS, topological/metric space. BCT, Baire Category Thm. LCG, Locally countably generated. (LCG means: *Each point has a countable local-base*. The standard, but non-intuitive, term is “*first-countable*”.)

Suppose Y, X are TSes, with $Y \subset X$. Then Y is a **subspace** of X , if Y ’s topology is indeed that which is induced from X .

E1: The indicator function $\mathbf{1}_{\mathbb{Q}}$ is discontinuous everywhere.

a Use BCT on \mathbb{R} to show that $\mathbf{1}_{\mathbb{Q}}$ is **not** the pointwise limit of a sequence of continuous functions.

b In contrast, produce a *net* $(f_i)_{i \in D}$ of continuous functions such that

$$f_i \rightarrow \mathbf{1}_{\mathbb{Q}}$$

[Hint: Given finitely many reals $(y_j)_{j=1}^N$ and $x_1 < x_2 < \dots < x_N$, it is convenient to prove a LEMMA: *There is a continuous function f on \mathbb{R} such that $\forall j: f(x_j) = y_j$*]

E2: Let $\Omega := \mathbb{R} \times [0, \infty)$ be the upper half-plane, equipped with the Tangent-Ball Topology of 3.5 of §C of my notes. Its topology, \mathcal{D} , is generated by sets of these forms, for reals x and $y \geq r > 0$:

$$\text{Bal}_r((x, y)), \text{ usual balls;}$$

$$W_r(x) := \{(x, 0)\} \cup \text{Bal}_r((x, r)), \text{ weird balls.}$$

We showed in class (Thanks Suzanne!) that \mathcal{D} is regular. Prove that \mathcal{D} is **not** normal, using these steps:

i Let $X \subset \Omega$ denote the x -axis. Show that each subset $S \subset X$ is \mathcal{D} -closed (i.e, regarded as a subset of Ω).

ii Write $X = \mathbb{Q} \sqcup I$, where I is the set of irrationals on the x -axis. From part (i), each of \mathbb{Q} and I is \mathcal{D} -closed. Now suppose that U and J are \mathcal{D} -open sets such that $U \supset \mathbb{Q}$ and $J \supset I$. Prove that U must intersect J , as follows:

Let $M_k \subset I$ be the set of $x \in I$ such that

$$W_{1/k}(x) \subset J,$$

and let \widetilde{M}_k denote its closure in \mathbb{R} under the *standard* topology. Argue geometrically that if $U \cap J$, then \widetilde{M}_k is \mathbb{R} -meager. (This is the key step —be *careful* and *precise*!)

Now use BCT on \mathbb{R} to carefully get a contradiction.

E3: With X a normal TS which is not compact, let \widehat{X} denote its Stone-Čech compactification. Prove that \widehat{X} is not LCG. (In particular, \widehat{X} is not metrizable.) [Hint: See Munkres #9 on P.243.]

E4: Carefully do the retraction problem, Munkres #3^P330. This problem is all “definition chasing”, but will require you to read ahead.

E5: Invent a good, interesting problem which involves either BCT or Stone-Čech or Urysohn/Tietze or space-filling curves or manifolds. Preferably—but not necessarily—give a solution to your problem.

Alternatively, generalize one of the exam problems in some interesting way.

Extra problems from a make-up exam

ES1: In a Hausdorff TS X , consider a subset E . For each of the following, give a *proof* or *counterexample*.

a Suppose E is connected. Then its boundary, ∂E , is connected.

b If ∂E is connected then so is E .

c If E is connected then its interior, E° , is connected.

d If E° is connected, then so is E .

ES2: A TS is **nifty** if: *Each closed subset is a \mathcal{G}_δ set.*

i Let \mathcal{D} be the co-finite topology on \mathbb{R} . Show that TS $(\mathbb{R}, \mathcal{D})$ is **not** nifty.

ii Prove that each MS is nifty.

iii Give an example—with proof!—of a compact Hausdorff space which is *not* nifty.

ES3: Let \mathbb{R}_n be a copy of \mathbb{R} , and let \mathcal{U}_n denote the usual topology on \mathbb{R}_n . Let \mathcal{T} be the box topology on

$$\Omega := \mathbb{R}_1 \times \mathbb{R}_2 \times \dots$$

Prove that (Ω, \mathcal{T}) is a **BaireCat** space, i.e, every \mathcal{T} -residual set is dense.

ES4: Suppose Z is a normal TS which is not compact. Let \widehat{Z} denote its Stone-Čech compactification. Prove that \widehat{Z} is not LCG. (In particular, \widehat{Z} is not metrizable.) [Hint: See Munkres #9P243.]

ES5: Let $Y_1 \subset Y_2 \subset \dots$ be TSes, where each Y_n is a closed *subspace* of Y_{n+1} . Let $\Lambda := \bigcup_{n=1}^{\infty} Y_n$, and say that a subset $U \subset \Lambda$ is *green* IFF: For each n the intersection $U \cap Y_n$ is Y_n -open.

a Show that the green sets form a topology on Λ .

b We henceforth equip Λ with the green topology. Show that Y_1 is a Λ -closed subspace of Λ . What about Y_n ?

c [The real question.] Now assume that each Y_n is a *normal* TS. Prove that Λ is then also normal.

End of Home-E

End Notes and Hints. For(ES1), different counterexamples may use different TSes X and different sets E .

For (ES3), since Ω is not locally-compact nor metrizable, it does not satisfy the hypotheses of BCT. Nonetheless, you can mimic the proof of BCT, keeping track of what happens in each \mathbb{R}_n component.

Important: Be unambiguous about which topology you are using, e.g, "... is \mathcal{U}_3 -open", "Take the \mathcal{T} -closure of ...", "... is \mathcal{U}_n -residual" etc.

Here is one approach to (ES5). We need –given disjoint Λ -closed subsets A and B – to produce disjoint Λ -open sets $U \supset A$ and $W \supset B$. Use the Tietze Extension Theorem to argue that you can build functions $(h_n)_{n=1}^{\infty}$ so that

I: $h_n: Y_n \rightarrow [0, 1]$ and is Y_n -continuous;

II: Its restrictions satisfy $h_n|_A \equiv 0$ and $h_n|_B \equiv 1$;

III: h_n extends h_{n-1} .

(For $n = 0$, let Y_0 be the emptyset, and let h_0 be the void function.) Argue that the h_n functions can be stitched together to make a Λ -continuous function $g: \Lambda \rightarrow [0, 1]$, then make use of this function. \square

This was commented-out. Let's restate (ES5). Say that A, B is a *good-pair* if they are Λ -closed disjoint subsets of Λ . The pair is *nice* if there exist disjoint

Λ -open sets $U \supset A$ and $W \supset B$. You need to show that every good-pair is nice.

Here is one approach. Let $A_n := A \cap Y_n$ and $B_n := B \cap Y_n$. Argue that each pair A_n, B_n is a good-pair. Argue that if each pair A_n, B_n is nice, then so is pair A, B .

Lastly, cleverly use the Tietze extension theorem to prove that each pair A_n, B_n is in fact nice. (This is the step to be careful on. Since Λ is not yet known to be normal, you can not apply Tietze to Λ .) \square