

Carefully TYPE, double-or-triple(Abraham!)-spaced, grammatical essays solving the three problems. This is due at BoC on Wednesday, 02Mar2011.

Please follow the CHECKLIST on our Teaching page.

E1: Letting $J := [0, 1]$, we study fncs $J \rightarrow \mathbb{R}$. A **step function** is a finite linear-combination of indicator-fncs of intervals.

i For a step fnc $h := \sum_{k=1}^K \alpha_k \mathbf{1}_{I_k}$ [where $\alpha_k \in \mathbb{R}$ and each I_k is an interval] and an $\varepsilon > 0$, construct a piecewise-linear (P.L) fncs are automatically cts) fnc $\varphi() \leq h()$ such that $\int_J h \leq \varepsilon + \int_J \varphi$. [Sugg: As a LEMMA, prove the $K=1$ case. Now use the lemma to prove the general THM, arguing carefully. For both, draw pictures to illustrate the ideas.]

ii Prove: [Use pics to illustrate your rigorous argument.]

1: Continuous-are-nearby thm. Fix $f \in \text{RI}(J \rightarrow \mathbb{R})$. Given $\varepsilon > 0$, there exists a continuous function $\theta()$, with $\theta \leq f$, such that $\int_J f \leq \varepsilon + \int_J \theta$. \diamond

iii Use pictures to show how *your construction* works when $f := -\mathcal{R}_{\mathbb{D}}$, the negative of the Ruler-fnc of the dyadic rationals.

E2: Dis/Prove: There exists a series $\vec{p} \subset \mathbb{Q}$ which is *absolutely-Q*-convergent, yet *Q*-divergent. (I.e, sum $\sum_{n=1}^{\infty} |p_n|$ is rational, yet seq $K \mapsto \left[\sum_{n=1}^K p_n \right]$ fails to *Q*-converge.)

Prove an Interesting Lemma that is more general than what you need.

E3: Show no work.

a Interval $J := [-3, \pi]$ has ptn \mathbb{P} with cutpoints $\{-3, 1, \pi\}$. Define $\beta := [x \mapsto \sqrt[3]{x} \cdot \mathbf{1}_{\mathbb{Q}}(x)]$. Then $\text{Osc}^{\beta}(\mathbb{P}) = \dots + \dots$. Equipping \mathbb{P} with sample points $\{-2, \pi/2\}$, now $\text{RS}^{\beta}(\mathbb{P}) = \dots$.

b Use IRI for “Improper RI”. Produce functions $\psi_n \in \text{IRI}(\mathbb{R} \rightarrow \mathbb{R})$ st. $\psi_n \xrightarrow[n \rightarrow \infty]{\text{unif}} 0$, yet $\left[\int_{\mathbb{R}} \psi_n \right] \not\rightarrow 0$, as $n \rightarrow \infty$.

Indeed, $\forall n: \left[\int_{\mathbb{R}} \psi_n \right] = n^2$. For example, let

$\psi_n := \dots$

E1:	_____	115pts
E2:	_____	75pts
Poorly stapled, E3: or missing names or honor sigs:	_____	45pts
Not double-spaced:	_____	-15pts
Poorly proofread:	_____	-15pts
Total:	_____	235pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____