

This Delightful Exam is due **2PM, Friday, 08Dec2006**, slid under my LIT402 door.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Fill in **ALL blanks**; neat pencil is fine.

E1: Show no work.

1 $\log_B(64) = \frac{3}{5}$, where $B =$.
 $\log_{\sqrt{243}}(27) =$.

2 For $0 \leq t < 1$: $\int_0^{70+t} [x - \lfloor x \rfloor] dx =$.

[Hint: Graph the integrand fnc.]

3+ Set $H(t) := \exp(t^2)$. Centered at zero, its Taylor series is $\sum_{n=0}^{\infty} B_n t^n$. Numbers $B_2 =$, $B_4 =$.

Let p_n be the polynomial st. $H^{(n)} = p_n \cdot H$. There is a simple update formula, $p_{n+1} = \text{Formula}(p_n, p'_n)$,

where $p_{n+1}(t) =$.

E2: **a** Let $f(x) := \frac{\log(x)}{x}$. So $f'(x) =$

and $f''(x) =$. Determine (no proof)

these seven open intervals: $\text{Dom}(f) = ($,).

$\{f < 0\} = ($,) & $\{f > 0\} = ($,).

$\{f' < 0\} = ($,) & $\{f' > 0\} = ($,).

$\{f'' < 0\} = ($,) & $\{f'' > 0\} = ($,).

So $\text{MaxPt}(f) =$ and $\text{InflexionPt}(f) =$.

b Use the above info to make a full-page LARGE graph of f , with all above points and intervals labeled. (Use brightly different colors, so that I can understand what you are “talking about”. Sugg: Carefully graph f once, make photocopies and use colors to mark the data for f on one photocopy, the data for f' on another, f'' on another...)

c The Heart of the Problem: For posreals y and z , I want you to study this relation:

1: $y^z = z^y$, with $y < z$.

How is (1) connected to properties of the above f ?

Prove that if both $y, z > 5$, then (1) has **no solns**. But 5 is too big a lower-bound for this: What is the correct (i.e, lowest) lower-bound $\mathbf{L} =$ so that

2: For all $y, z > \mathbf{L}$, relation (1) has **no solns**.

d

Now prove that for each $z > \mathbf{L}$, there exists a **unique** posreal y less than \mathbf{L} , such that (1). Visually, you’ll want to use $\text{Graph}(f)$ in your argument so that you can mark the corresponding (y, z) -pairs.

To **prove** rigorously the existence of a y corresponding to z , you’ll want to use the **IVT**.

To **prove** rigorously that there is only one y corresponding to a given z , you’ll likely want to use something about f' in order to show strict monotonicity of f in the interval where you need it.

e

You know my admonition: “I always ask that you do more than what I ask you to do.” What else can you say for this problem? Can you parameterize

$$y(s) := \text{Formula}(s) \text{ and } z(s) := \text{Formula}(s)$$

the pairs? If not, what about a specific (y, z) -pair? What posreals $y < \mathbf{L}$ that have no corresponding z ?

A

E3: Consider a cts $F: J \rightarrow \mathbb{R}$, where $J := [3, 7]$. If $\int_J F \cdot g = 0$ for each bnded RI (Riemann integrable) fnc g , **prove** that $F() \equiv 0$.

B

Contrast: Replace “cts” by “bnded and RI”, and **produce** an F (nec, discts) where the conclusion fails.

E4: A diff’able $H: \mathbb{R}_+ \rightarrow \mathbb{R}$ has $\lim_{t \rightarrow \infty} [H + H'](t) = 7$. Use L’H to **prove** that these next two limits exist, with values $\lim_{t \rightarrow \infty} H(t) = 7$ and $\lim_{t \rightarrow \infty} H'(t) = 0$. [Hint: Apply L’H to ratio $\frac{f \cdot H}{f}$, for a cleverly-chosen fnc f .]

E1: 110pts

E2: 135pts

E3: 95pts

E4: 95pts

Total: 435pts

Print name Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: