

Carefully TYPE a triple-spaced, grammatical, essay solving the problem. I suggest L^AT_EX; you should learn it now, since it will be required next semester. This final project is due by **2PM, Friday, 12Dec2008**, slid completely under my office door, LIT402.

Fill-in every blank on this sheet.

Essays violate the CHECKLIST at *Grade Peril...*

E1: For $N=1, 2, \dots$, define fncs $R_N, F_N: \mathbb{R} \rightarrow \mathbb{R}$ by

$$R_N(x) := \exp\left(\frac{N}{1+Nx^2}\right) \quad \text{and} \quad F_N := 1/R_N.$$

a Prove that, pointwise, $F_1 \geq F_2 \geq F_3 \geq \dots \geq 0$. Use this to prove, $\forall x \in \mathbb{R}$, that $L(x) := \lim_{n \rightarrow \infty} F_n(x)$ exists in \mathbb{R} . Computing, $L(0) = \dots$.

b There is a “Calc 1” fnc $M(x) := \dots$, defined^{♥1} on $U := \mathbb{R} \setminus \{0\}$, so that $L|_U = M|_U$. Differentiating, $M'(x) = M(x) \cdot \dots$.

Graph L and some of the F_n . Indicate horizontal asymptotes, points of inflexion, local max/min-points, TW9Ys.^{♥2}

Let $\|\cdot\|$ denote the supremum-norm on functions. Compute $\|L - F_n\|$. Prove or disprove that

$$F_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} L. \quad (?)$$

Is the $(F_n)_{n=1}^{\infty}$ sequence $\|\cdot\|$ -Cauchy?

c In any case, prove that $L()$ is continuous at zero. Please prove the fol proposition, which may help with the above and below tasks. (Is L'H useful?)

1: Prop'n. For each polynomial $P()$, necessarily $\lim_{x \rightarrow 0} [P(\frac{1}{x}) \cdot M(x)]$ equals zero. \diamond

With this tool in hand, prove that L is differentiable at zero by directly applying the **definition** (difference-quotient) of derivative.

d Now prove that L is ∞ differentiable by establishing the following nifty lemma.

^{♥1}Note that $L()$ and $M()$ are *different* functions; after all, they have different domains.

^{♥2}The Whole Nine Yards.

2: Nifty Poly Lemma. Given a polynomial P , define

$$3: \quad L_P(x) := \begin{cases} 0, & \text{if } x = 0 \\ P\left(\frac{1}{x}\right) \cdot M(x), & \text{if } x \neq 0 \end{cases}.$$

Prove that L_P is differentiable at the origin (use the **defn** of derivative), as well as everywhere else. Give a formula (in terms of P) for a new polynomial \widehat{P} satisfying that $[L_P]' = L_{\widehat{P}}$. (The foregoing **Proposition** may help in proving equality at zero.) \diamond

At this juncture, let Q_0 be the constant-1 polynomial. Inductively define $Q_{k+1} := \widehat{Q}_k$, for each $k \in \mathbb{N}$. Prove that L is ∞ ly differentiable by showing that $L^{(k)} = L_{Q_k}$, for each $k = 0, 1, 2, \dots$.

Exhibit a table showing the coefficients of polynomial Q_k , for $k = 1, 2, 3, 4$, at least.

(Do you see a pattern, or a recurring property, here?)

e Compute the Taylor series, centered at zero, for $L()$. It has form $\sum_{k=0}^{\infty} C_k \cdot [x - 0]^k$ where $C_k = \dots$. What is the RoC (radius-of-convergence) of this Taylor series?

What surprising relation do you note between $L()$ and its Taylor series?

E1:	_____	55pts
Poorly stapled, or missing ordinal :	_____	-5pts
Missing name, or honor signature :	_____	-5pts
Poorly proofread:	_____	-One Million pts
Total:	_____	± 55 pts

Print name: Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: