

E4: Fill-in each blank, and the appropriate letter for True/False questions. Show no work.

a With $f(t) := \int_{\sin(t^3)}^{\exp(5t)} \cos(\sin(x)) dx$, then $f'(t)$ equals

Simplified, $f'(0) =$

[Hint: Chain rule and Fund. Thm of Calculus.]

b That $1/5$ is a *Lebesgue number* of open-cover \mathcal{C} of (X, d) , means that

Patches $\mathcal{C} := \{(-\infty, 28], [17, +\infty)\}$ cover \mathbb{R} . Thus $\text{MaxLebesgueNumber}(\mathcal{C}) =$

c Every compact MS is complete.

Suppose compact MS Y is a subspace of MS X . Then Y is automatically X -closed.

d $K := (4, 7]$ is a \mathcal{G}_δ -set because K can be written
. And K is \mathcal{F}_σ since $K =$

e P.L fncs g_n converge ptwise, but not uniformly, to $-Id$ where the cutpoint and height tuples of g_n are

$$\vec{p} := (2, 3, \dots, 5)$$

$$\text{and } \vec{h} := (-2, -3, \dots, -5).$$

P.L fncs f_n converge ptwise, but not uniformly, to $x \mapsto 2x$ where the cutpoint and height tuples of f_n are

$$\vec{p} := (1, 2, \dots, 4)$$

$$\text{and } \vec{h} := (2, \dots, 8 + \frac{1}{n}).$$

Essay question, triple-spaced:

E5: Let \mathbf{J} be the interval $(2, 6)$. Suppose functions $H_n \xrightarrow{\text{uniformly}} f$, where $f, H_n: \mathbf{J} \rightarrow \mathbb{R}$. If each H_n is uniformly-cts, prove that f is **uniformly-cts**.

End of Class-E

E4: _____ 100pts

Poorly stapled, **E5:** _____ 45pts

or missing _____ -10pts

name or honor sig: _____ -15pts

Not triple-spaced: _____ -15pts

Total: _____ 145pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____